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a b s t r a c t

The ALBOMAURICE software runs a mosquito population dynamics model to predict the temporal
and spatial abundance of Aedes albopictus, the dengue disease vector in Mauritius. For each vector
surveillance zone, it solves a system of ordinary differential equations describing different stages of
the mosquito life cycle. ALBOMAURICE uses daily rainfall and temperature input data to produce
abundance maps used operationally by health services for targeting areas where to apply vector
surveillance and control measures. Model simulations were validated against entomological data
acquired weekly during a year at nine locations. Different control options can also be simulated and
their effects compared.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version V1
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00040
Code Ocean compute capsule none
Legal Code License CC BY NC SA
Code versioning system used none
Software code languages, tools, and services used Ocelet, java
Compilation requirements, operating environments & dependencies javaFX
If available Link to developer documentation/manual Tran Annelise, Lo Seen Chong Danny, Degenne Pascal. 2019. Use of ALBOMAURICE:

predictive mapping tool of Aedes albopictus in Mauritius - User guide and training
guideline document ALBOMAURICE V1 - QGIS V3.2. Sainte-Clotilde, Reunion Island:
CIRAD, 30 p.
http://agritrop.cirad.fr/594724/

Support email for questions annelise.tran@cirad.fr, pascal.degenne@cirad.fr

ALBOMAURICE software metadata

Current software version 1.0
Permanent link to executables of this version Data persistent ID: doi:10.18167/DVN1/FL7QML
Legal Software License CC BY NC SA
Computing platforms/Operating Systems Windows
Installation requirements & dependencies Windows 7 or later version
If available, link to user manual - if formally published include a
reference to the publication in the reference list

Tran Annelise, Lo Seen Chong Danny, Degenne Pascal. 2019. Use of ALBOMAURICE:
predictive mapping tool of Aedes albopictus in Mauritius - User guide and training guideline
document ALBOMAURICE V1 - QGIS V3.2. Sainte-Clotilde, Reunion Island: CIRAD, 30 p.
http://agritrop.cirad.fr/594724/

Support email for questions annelise.tran@cirad.fr, pascal.degenne@cirad.fr

∗ Correspondence to: CIRAD, plateforme CYROI, 2 rue Maxime Riviere, 97490
Sainte-Clotilde, Reunion Island, France.
E-mail address: annelise.tran@cirad.fr (Annelise Tran).

ttps://doi.org/10.1016/j.softx.2020.100638
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100638
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100638&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00040
http://agritrop.cirad.fr/594724/
mailto:annelise.tran@cirad.fr
mailto:pascal.degenne@cirad.fr
http://agritrop.cirad.fr/594724/
mailto:annelise.tran@cirad.fr
mailto:pascal.degenne@cirad.fr
mailto:annelise.tran@cirad.fr
https://doi.org/10.1016/j.softx.2020.100638
http://creativecommons.org/licenses/by/4.0/


Diana P. Iyaloo, Pascal Degenne, Khouaildi Bin Elahee et al. SoftwareX 13 (2021) 100638

1

t
c
e
i
J
g
a

t
(
g
2
t
c
a
s
c
l
h
o
c
a
f
y

a
O
i
a
o
t
M
M
e
t
o
p
m
i
t
w
H
b
t
r
a
a
g
a
i
u

p
t
s
i
H
c
e
R
t
1
t
a

. Motivation and significance

Ranked among the 100 most invasive species in the world [1],
he mosquito Aedes albopictus, in laboratory setting, could suc-
essfully transmit most of the viruses for which it has been
xperimentally tested [2]. Moreover, in field condition, 26 viruses
ncluding those causing Eastern equine encephalitis, La Crosse,
apanese encephalitis, Venezuelan equine encephalitis, Chikun-
unya, Dengue and Zika, have been isolated from wild-caught Ae.
lbopictus specimens [2–4].
In Mauritius, a small island (1865 km2, 1,265,000 inhabi-

ants) located in the Indian Ocean, 890 km East of Madagascar
Fig. 1), Ae. albopictus was responsible for epidemics of Chikun-
unya (2005–2006) and Dengue (2009, 2014, 2015, 2019 and
020) [5–7]. Mauritius has a mild tropical maritime climate with
wo seasons - a warm humid summer (November to April) and a
ool dry winter (June to September). Mean temperature and mean
nnual rainfall are respectively 24.7 ◦C and 1344 mm during
ummer and 20.4 ◦C and 666 mm during winter [8]. The island
onsists of a high central plateau (approximately 600 m above sea
evel) that slopes downward to the coast. The coastal climate is
ot and the atmosphere is either dry on the leeward side (West)
r intensely humid on the windward side (East). The higher
entral plateau is relatively cooler and more humid, receiving
n average annual rainfall of 3000–3600 mm [9]. This climate is
avourable to maintain Ae. albopictus populations throughout the
ear.
To date, no specific treatment exists for diseases caused by

rboviruses transmitted by Ae. albopictus and the World Health
rganization (WHO) recommends the dengue vaccination only
n countries with a high burden of disease [10]. Thus, in the
bsence of endemicity of mosquito-borne diseases on the island
f Mauritius, the control of Ae. albopictus remains a major tool
o prevent infections from the pathogens it may transmit [1].
oreover, the control of this species is a high priority for the
auritian Government since tourism is one of the pillars of its
conomy. Mosquito control measures currently undertaken by
he national health authorities include larviciding and spraying
f adulticides at and around the residence of imported and sus-
ected case of Dengue or Chikungunya [11–13]. Furthermore,
osquito surveillance is carried out on a routine basis across the

sland and results submitted to the Health Inspectorate for con-
rol interventions where needed. Control interventions in regions
ith high mosquito incidence, consists of yard inspection by
ealth Inspectors and larviciding of breeding sites which cannot
e overturned by Insecticide Operators [12]. However, due to
he ecological plasticity of Ae. albopictus, control of the species
emains a major challenge to the country. Thus, the need was
lso felt to develop a model that could predict the distribution
nd population dynamics of the species across the island. Data
enerated from such a model could assist vector surveillance
nd vector control departments in better planning and prior-
tizing their interventions so that pro-active measures can be
ndertaken in a timely and optimal manner.
Modelling approaches are powerful tools for identifying and

rioritizing where and when surveillance and control should be
argeted [14–17]. Mechanistic modelling approaches have been
uccessfully used to predict the temporal and spatial dynam-
cs of Ae. albopictus in temperate and tropical areas [18–21].
owever, to be used by public health authorities and vector
ontrol services, there is a need for the development of op-
rational tools, with easy-to-use interfaces, from such models.
ecently, ‘ALBORUN’, a population dynamics model of Ae. albopic-
us, was developed for Reunion Island [19], located approximately
75 km away from Mauritius Island. Based on daily rainfall and
emperatures, the model accurately predicts the spatio-temporal

The software ALBOMAURICE [22] presented in this article was
developed by adapting ‘ALBORUN’ to the local conditions and
needs of the Mauritian Ministry of Health and Wellness. AL-
BOMAURICE was also validated by comparing predicted larval
densities with entomological data from mosquito traps set up in
the vicinity of nine national weather stations.

2. Software description

2.1. Model description

The model of Ae. albopictus population dynamics is based on
a system of ordinary differential equations (ODE) and represents
all steps of the mosquito life cycle, considering aquatic juvenile
and aerial adult stages. In addition, adult mosquito females are
subdivided in compartments regarding their behaviour (host-
seeking, resting, ovipositing). Daily precipitation and temperature
are the main drivers of mosquito population dynamics. Indeed,
temperatures affect the development of aquatic stages, egg mat-
uration, and the mortality rates of larvae, pupae and adults [23];
rainfall has an impact on the availability of breeding sites in
the environment and on the mortality rates of aquatic stages
by flushing the breeding habitats [18,24]. Full description of the
model (ODE details, parameters and functions) is provided in [19].

In the ALBOMAURICE tool, the model inputs are (i) operational
zones used by the vector control service (polygon geometry,
shapefile format), characterized by their standard fixed and vari-
able environment carrying capacities, two values that describe
the availability and characteristics of the breeding sites in the
zone (see [19] for details), (ii) the location of weather stations
(point geometry, shapefile format), and (iii) the corresponding
daily rainfall and temperature (text file, csv format). The size
of the operational zones defines the spatial resolution of the
model, and can be either small (a city block, a neighbourhood),
or large (in the example of Fig. 1, they are 303 parcels with a
minimum, median and maximum sizes of 9 ha, 363 ha, and 7788
ha, respectively).

As outputs, ALBOMAURICE predicts the abundances of Ae. al-
bopictus mosquitoes per stage at a time frequency which can be
defined by the user, and for each operational zone (shapefile or
KML formats).

2.2. Software architecture

ALBOMAURICE is composed of two main software components
(Fig. 2): (i) the model of Ae. albopictus population dynamics,
which is written using the Ocelet modelling language [25] and (ii)
the user interface which is written using the Java programming
language. The compiled and executable software is entirely in
Java though because Ocelet is a domain specific language that is
translated into java sources automatically.

A series of input parameters is declared (in Ocelet) by the
population dynamics model. The generated code after these dec-
larations allow any Java program to instantiate the model, send
parameters values, run a simulation and obtain some feedback
from the running process. From the Ocelet Modelling Platform,
the model is in fact exported as a java archive (jar) file to become
a standalone java class that can be controlled by a user interface.

The user interface component is developed using the JavaFx
library (https://openjfx.io). Most of the graphics layout of the
interface is described in XML files (fxml format). And a series of
Java classes contain the control code of the interface widgets. The
user interface main class creates an instance of the jar-packed
model. It collects settings from the user, turn these settings into
the series of input parameters stored in a key–value table, and
bundance of the species at local scale. that table is sent to the model to run a simulation.

2
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Fig. 1. Location of Mauritius, Indian Ocean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Diagram of the software general architecture. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

2.3. Software functionalities

Using the ALBOMAURICE interface, the user can (i) define
ifferent settings regarding the simulation, inputs and outputs,
nd vector control options; (ii) run a simulation.

imulation settings. On ALBOMAURICE main configuration menu
Fig. 3a), the user can define the start and end simulation dates,
nd if new weather data are used. The options ‘‘Save state file’’
nd ‘‘Use previous state file’’ allow saving intermediate state
alues of a simulation and re-use them to run ulterior simulations
aster.

Input settings. In the Input settings menu are defined the work
directory, the weather data file, the parcels files and the weather
stations file (Fig. 3b).

Output settings. The Output settings menu allows the user to
choose the output directory and the output formats for the results
of the simulation (Fig. 3c): shapefile or KML format, saving single
date (the last date of the simulation), or multi-dates results. In
this last case, the output frequency can be modified.

Vector control options. ALBOMAURICE allows simulating the
population dynamics of Ae. albopictus mosquitoes under different
3



Diana P. Iyaloo, Pascal Degenne, Khouaildi Bin Elahee et al. SoftwareX 13 (2021) 100638

t
M
(
t

Fig. 3. ALBOMAURICE interface. (a) Main configuration menu; (b) Input settings menu; (c) Output settings menu; (d) Vector control menu. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

scenarios of vector control: (i) no action, (ii) destruction of breed-
ing sites, (iii) larviciding, and (iv) fumigation. The options of each
scenario are defined in the Vector Control menu (Fig. 3d): type
of action, start and end dates of the action, location where vector
control takes place (as shapefile format), effect of the action (as
percentage). Depending on the action, this percentage is applied
to reduce the environment carrying capacities (destruction of
breeding sites), to increase the larvae mortality (larviciding) or
the mosquito adult mortality (fumigation). The options of each
scenario have to be chosen by the user considering operational
constraints (e.g. the percentage of households visited) and tech-
nical characteristics of the insecticides used and their impact
on Aedes mosquito mortalities (e.g. from results of experimental
studies such as [26]).

Running a simulation. Simulations are launched from the main
page (Fig. 3a). A progress status bar and message window allow
following the progress of the simulation. A text file summarizing
all users’ choices is created.

3. Illustrative examples

Three examples are briefly presented to illustrate some uses
of ALBOMAURICE: (i) mapping Ae. albopictus densities in Mauri-
tius; (ii) comparison of predicted Ae. albopictus abundances and
field entomological data and (iii) assessing the impact of vector
control actions on the temporal dynamics of Ae. albopictus. For
hese three examples we used weather data provided by the
auritius Meteorological Services (MMS): the daily temperature

minimum and maximum) and rainfall records from January 2017

3.1. Mapping Ae. albopictus densities

Mauritius is divided into 303 parcels corresponding to the
Health Office zones where vector surveillance takes places (Fig. 1).
Each parcel is characterized by its elevation and environment
carrying capacities. In this illustrative example, the environment
carrying capacities were roughly estimated for each parcel from
its surface covered with urban areas extracted from a land cover
map [27], assuming that Ae. albopictus breeding sites are mainly
human-made containers located in urban areas, with a greater
number of breeding sites in discontinuous urban areas (500
breeding sites per ha) than in continuous urban areas (300),
and a mean number of 10 larvae per breeding site. For more
realistic estimations of the environment carrying capacities, field
observations are required [18].

During the simulation, at each time step, for each cell weather
data are read from the closest weather station (Fig. 1), and
mosquito population is estimated by solving the ODE system. As
output, a shapefile of 303 polygons corresponding to the input
Health Office zonation is created for the last date of the simula-
tion chosen by the user. Its attribute table include the predicted
number of Ae. albopictus eggs, larvae, pupae, total female adults
and host-seeking female adults. This information can be used in
a Geographic Information System (e.g. QGIS, Fig. 4). KML files can
be also produced for visualization in Google Earth.

3.2. Validation of ALBOMAURICE outputs

In February 2019, a set of 6 larval traps were positioned within
a radius of 100 m around nine national weather stations (Fig. 1).
Traps consisted of an empty 1-litre black plastic container that
could naturally be filled by rainfall. Over a span of one year, the
traps were serviced on a weekly basis. This consisted in counting
o February 2020 at 30 weather stations (Fig. 1).

4
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Fig. 4. Illustrative example: mapping Ae. albopictus densities in Mauritius at two different periods: January (austral summer, left panel) and August (austral winter,
ight panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

nd removing the number of larvae and pupae from each trap
hile maintaining the rainwater that had collected in the latter.
LBOMAURICE was run with as input parcels 100 m-buffer zones
round the nine weather stations, from 1st February 2019 to 31
anuary 2020. As output, a multi-date shapefile with a daily fre-
uency was generated. The number of trapped mosquitoes over
ime was compared to ALBOMAURICE’s predictions for larvae
sing Spearman’s correlation coefficient. The predictions were
onsistent with the observed Ae. albopictus larvae abundance in
he nine collections sites, with significant correlation coefficients
anging from 0.3 (Riche en Eau) to 0.68 (Port Louis) (Fig. 5).

.3. Simulation of vector control actions

ALBOMAURICE can be used to analyse different vector control
ctions. In this example, three simulations were run for the
ame period (1st January–30 June 2019) and the same area (Port
ouis), but with different vector control options: (i) no action;
ii) destruction of breeding sites (start and end dates: 1st and
th February); (iii) fumigation of adult mosquitoes (start and end
ates: 1st and 2nd February). The output multi-date files, created
ith a daily frequency, were used to create graphs illustrating
he expected impact of the different actions, and the time the
osquito population dynamics returns to the natural dynamics

without control) (Fig. 6).

. Impact

.1. Operational use

The main objective of our work was to develop a predic-
ive mapping tool of Ae. albopictus mosquito populations that
can be easily used by public health stakeholders for targeting
their surveillance and control actions. Several models have been
developed to predict mosquito population dynamics (e.g. [9,14–
18]), but few of them lead to the development of operational
tools [19,28]. ALBOMAURICE aimed at filling the needs of the
Mauritian Ministry of Health and Wellness by adapting an ex-
isting mosquito population model to the geographic context of
this tropical island. It was successfully transferred to agents of
the Vector Biology and Control Division and other departments
involved in mosquito surveillance and control activities. Of note,

the users have to be familiar to Geographic Information Systems
and mapping softwares to exploit and interpret the outputs of
ALBOMAURICE. In the future, such tool could be also deployed
in similar tropical environments such as Madagascar and the
other islands in the Western Indian Ocean. In temperate areas,
similar tool could be used, provided that the population dynamics
model of Ae. albopictus is modified to take into account diapause
processes during winter (e.g. [18]).

4.2. Future research

As ALBOMAURICE predicts Ae. albopictus densities from
weather variables, it could be used for studying the impact
of climatic conditions on mosquito population dynamics, either
using the current conditions or the future projections of temper-
ature and precipitations as predicted by the different scenarios
of climate changes [29]. Such studies would help characteriz-
ing the vulnerability of tropical islands such as Mauritius to
vector-borne diseases in the future. ALBOMAURICE could also
contribute to study the impact of vector control strategies. In-
deed, it can predict variations in mosquito abundance for a large
range of typical control strategies (date of control, frequency,
control efforts), that cannot all be tested in the field [14]. Finally,
future developments of ALBOMAURICE could consist in coupling
the mosquito population dynamics to epidemiological model of
disease transmission. Such approach (e.g. [30,31]) would allow
mapping the basic reproduction number (i.e. the expected num-
ber of people that would become infected from the introduction
of a single infected host in a fully susceptible population) of the
main diseases transmitted by Aedes mosquitoes, such as Dengue,
Zika, or Chikungunya.

5. Conclusions

The ALBOMAURICE software contributes to address the press-
ing need for operational solutions to control the spread of
mosquito-borne diseases, including Dengue Fever, into new areas
where mosquitoes can thrive due to environmental changes. It
encapsulates scientific knowledge of the Ae. albopictus mosquito
lifecycle with vector control requirements in a given geographical
environment (here Mauritius Island) to predict mosquito abun-
dance in space and time. These predictions come in the form of
5
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Fig. 5. Illustrative example: comparison of ALBOMAURICE outputs (in black) with entomological data collected in the field (in red). (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Illustrative example: simulating impacts of vector control actions on the mosquito population dynamics (the red arrow indicates the starting date of vector
control action). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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aps and indicators that health services can use operationally for
dentifying priorities and optimizing field intervention efforts. An
nteresting feature of ALBOMAURICE software is that the impact
f various control measures can be estimated beforehand. Scenar-
os of different control strategies can be simulated and compared
rior to decision-making. ALBOMAURICE is open-source and can
e adapted for use in other islands in the region or in anticipation
f the vector adaptation to climate change. It can also be tailored
or testing and assisting future control methods such as the
romising Sterile Insect Technique (SIT).
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