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Abstract

The Level Set-Discrete Element Method (LS-DEM) extends DEM towards ar-

bitrary grain shapes by storing distance-to-surface values on a grid for each

Discrete Element (DE), together with considering boundary nodes located onto

the DE’s surface. Both these ingredients are shown to affect the precision and

computational costs of LS-DEM, considering various numerical simulations at

the contact- and packing-scales for ideal spherical and superellipsoid shapes. In

the case of a triaxial compression for spherical particles, approaching with a

reasonable precision the reference result obtained in classical DEM requires the

grid spacing to be smaller than one tenth of particle size, as well as using a

couple thousands of boundary nodes. Computational costs in terms of memory

(RAM) or evaluation time then increase in LS-DEM by two or three orders

of magnitude. Simple OpenMP parallel simulations nevertheless significantly

reduce the increase in time cost, possibly dividing the latter by 20.

Keywords: computational cost, particle shape, Level Set-Discrete Element

Method (LS-DEM)

1. Introduction1

At the micro-scale considered by Discrete Element Methods (DEM), granular2

soils reveal diverse grain’s shapes, that constitute one ingredient of their discrete3

nature. This shape enters soil classification and is directly used in geotechnical4
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engineering for the ballast foundations of railtracks, which rely over angular,5

not spherical, particles. Outside of this pratical example, particle shape has6

been recognised as influencing the mechanical behavior of granular materials7

since several studies often adopting DEM approaches. In an early 2D study8

on rotating cylinders and heap configurations (Pöschel and Buchholtz, 1993), a9

non-spherical shape was shown to contribute even more to macro-behavior than10

contact friction in the sense non spherical particles in frictionless interaction re-11

vealed a higher slope stability than spherical particles in frictional interaction.12

For a given frictional interaction, a higher shear strength of non-spherical par-13

ticles has also been found for biaxial configurations in other 2D studies (Szarf14

et al., 2009; Jerves et al., 2016), together with a shape influence onto the critical15

state line (Jerves et al., 2016).16

Investigating the mechanical influence of shape in real 3D conditions re-17

mains however technically challenging. While experimental studies require a18

proper particle-scale characterization of the complex shapes exhibited in nature19

(Vlahinić et al., 2014; Wang et al., 2019), those same real shapes have to be20

correctly introduced in the numerical world for DEM approaches. This induces21

a much more complex contact treatment in the DEM workflow, as opposed to22

the use of spherical particles which entails straightforward definitions of con-23

tact normals and relative displacements from the branch vector and the radii of24

contacting spheres. These complex contact treatments may obey several strate-25

gies which are partially listed in the following. First, rigid clusters of spheres26

(Pöschel and Buchholtz, 1993; Szarf et al., 2009; Garcia et al., 2009) enable the27

DEM practitioner to get much closer to real shapes, making these rigid clusters28

probably the second most-commonly used shape for Discrete Elements, just29

after spheres. These clusters nevertheless inherently include some unrealistic30

local roundness that may affect the mechanical description (Cho et al., 2006).31

Convex polyedra (Eliáš, 2014; Gladkyy and Kuna, 2017) now constitute another32

quite classical shape enhancement since Cundall (1988), thanks to a variety of33

algorithms such as searching for surface points with a common normal and/or34

minimizing interparticle distance (Dubois, 2011). As described by Zhao and35
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Zhao (2019), some of those algorithms can also be adapted to superellipsoids36

and quite general convex shapes without any edges. A last DEM variant to be37

mentioned is the Level Set-DEM (LS-DEM) proposed in 3D by Kawamoto et al.38

(2016). LS-DEM appears as promising in terms of versatility, since it does not39

include any inherent requirement for convexity and may apply directly to X-ray40

tomography images of soil samples (Kawamoto et al., 2016). Level Set concepts41

were initially proposed to study time evolutions of surfaces (Sethian, 1999), and42

applied in this sense to geotechnics by Golay et al. (2010, 2011) for flow-induced43

interfacial soil erosion. In the sense of LS-DEM, those Level Set concepts are44

used for defining in space distance fields to particles’ surfaces, that are at the45

heart of contact treatment.46

One can finally think about introducing more complex contact laws as an in-47

direct description of particle’s shape (Wensrich and Katterfeld, 2012; Aboul Hosn48

et al., 2017). However, this strategy obviously induces additional model param-49

eters and increased calibration efforts that diminish the appealing mechanical50

simplicity of DEM.51

Advocating therefore for a direct description of particle’s shape through e.g.52

LS-DEM, the present manuscript then aims to discuss associated technical as-53

pects in terms of obtained precision and increased computational costs, in the54

case of an implementation based on the YADE code (Šmilauer et al., 2015). De-55

tailed information in these technical aspects seem lacking until now, even though56

one can await significant costs from the mentions of gigabytes RAM footprint in57

(Kawamoto et al., 2016) or superprocessors with 480 cores in (Kawamoto et al.,58

2018).59

Section 2 presents the YADE implementation of LS-DEM based on the prin-60

ciples given by Jerves et al. (2016); Kawamoto et al. (2016). Section 3 discusses61

the variable precision of LS-DEM in describing contact- or packing-scale config-62

urations adopting spherical or superellipsoid shapes: ideal spherical shapes are63

in particular considered for the precision analysis to ground on reference results64

obtained using DEM. LS-DEM precision is then connected with computational65

costs in Section 4, before that parallel scalability is examined in Section 5 in66
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order to alleviate time costs.67

2. Outline of LS-DEM68

2.1. Shape description69

Describing shape, i.e. particle morphology, in LS-DEM relies on the signed70

distance function φp~xq that returns, for any point ~x in space, the shortest dis-71

tance from ~x to the surface at hand, with the convention of negative distances72

when ~x lies inside the surface. The surface of a Discrete Element (DE) then73

corresponds to the zero level set of the function φ, while the exterior (resp.74

inner) to the surface obeys φ ą 0 (resp. φ ă 0).75

In this sense, LS-DEM is similar to the potential particles approach proposed76

by Houlsby (2009); Boon et al. (2013) where the sign of a potential function f77

defines the position of any point with respect to particle’s surface, with f “78

0 along the surface. Potential particles however require convex shapes and79

polynomial equations for the potential f , unlike LS-DEM.80

In LS-DEM, the signed distance function φ is actually defined in a dis-81

crete fashion, storing φ-values on a cartesian body-centered grid, for each DE82

(Figure 1). This minor requirement of a discrete distance field, instead of an83

analytical equation, confers LS-DEM a great versatility to mimic real shapes,84

as exemplified by Kawamoto et al. (2016, 2018).85

Figure 1: Plane view of the 3D regular grid at the roots of shape description in LS-DEM.
Exact values of the signed distance function φ are known at each grid node M (the blue cross
evidences just one of them). Boundary nodes Ni play a role in contact treatment as described
in §2.2

From the knowledge of φ-values at each node of the grid, φp~xq is also defined86

for any point ~x within the grid extents from trilinear interpolation of φ-values87
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at the eight surrounding grid nodes. In addition to defining particle’s surface,88

and serving for contact treatment as described in the following section 2.2, this89

distance fied also enables one to define inertial quantities for DE summing mass90

and inertia contributions of all grid voxels that are considered inside a particle.91

Here, a grid voxel made of eight nodes tpi, j, kq ; i P ri0; i0`1s, j P rj0; j0`1s, k P92

rk0; k0 ` 1su is considered inside a particle depending on φ-value at the lowest93

node pi0, j0, k0q. A smoother description was proposed by Kawamoto et al.94

(2016) but is not considered here, having in mind quasi-static simulations with95

no influence from the inertial quantities onto the results.96

As will be discussed in more detail in section 3, the grid spacing ggrid, com-97

pared with particle’s characteristic length lgrain obviously affects the precision98

of the interpolated distance field, and that of LS-DEM.99

Moreover such a distance field, the contact algorithm precised below in § 2.2100

introduces a second key ingredient for the method, since a LS-DEM shape also101

involves a set of so-called boundary nodes, being exactly located on the surface102

(Figure 1). These are obtained through ray tracing (e.g. Lin and Ching, 1996):103

starting from the center of mass of a DE, as determined from the inside voxels,104

a half-line ray defined by its direction ~v is followed until crossing the DE’s105

surface. Rays ~v could be chosen adopting various partitions of the pθ, ϕq space,106

with θ P r0;πs and ϕ P r0; 2πs being the two spherical angles. Here, boundary107

nodes follow a spiral path in the spirit of (Rakhmanov et al., 1994), where a108

total number Nnod of boundary nodes is located along the following spherical109

coordinates pθk, ϕkq, k P r0;Nnod ´ 1s:110

θk “ arccos

ˆ

´1 ` 1 ` 2k

Nnod

˙

(1)

ϕk “ πp3 ´
?
5qk (2)

For spheres at least, such a spiral path seeds boundary nodes more uniformly111

over the particle’s surface, when compared with a rectangular partition of the112

pθ, ϕq space. As a matter of fact, it avoids an overdiscretization of the poles113

(θ “ 0 rπs) thanks to the non-constant step in θ. For each ray direction ~v, and114
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due to the trilinear description of distance within each grid voxel, the ray-surface115

intersection can be obtained solving the roots of a cubic polynom, giving the116

position of boundary nodes.117

As it will be detailed in the following paragraph, no real update of the118

boundary nodes, nor of the distance field is needed during LS-DEM simulations:119

considering rigid particles with constant shapes, both are determined once for120

all at the beginning of a simulation, in reference configurations of the DE.121

The present shape description appears as very general and distance fields122

for non-convex shapes could be readily obtained through Level Set algorithms123

(Sethian, 1999) that also apply to such cases. Ray traced boundary nodes may124

also follow non-convex shapes, with the only limitation being that ray tracing125

leads to a maximum of one boundary node per grid cell, along a given ray, due126

to the trilinear description of the distance field.127

2.2. Kinematics of contact from Level Set shape and boundary nodes128

Contact detection between two Level Set-shaped DEs first implies an ap-129

proximate neighbour search that is common to all YADE simulations, following130

a so-called sweep and prune algorithm working on bodies’ axis-aligned bound-131

ing boxes (Dubois, 2011; Šmilauer et al., 2015). This leads to a reduced list of132

potential contacts between bodies pairs.133

Exact determination of contact between two bodies in this list then relies134

on a master-slave algorithm whereby the exact determination of interparticle135

distance both relies on the distance field φB to the biggest (in volume) particle,136

and on the boundary nodes
ÝÝÑ
ONi (with O the origin) of the smallest particle137

(Figure 2). For convenience, labels 1,2 will replace in the following the mention138

of small or big particles, with φ2 “ φB . Contact is then obtained for at least139

one boundary node
ÝÝÑ
ONi showing φ2pÝÝÑ

ONiq ď 0. Boundary nodes logically need140

to be numerous enough to avoid bias in the LS-DEM results through missing141

contacts if φ2pÝÝÑ
ONiq ą 0 @Ni, as it will be investigated in the following sections.142

After detecting at least one boundary node of 1 touching 2, the interaction143

description is based on the node Nc showing the greatest penetration, leading144
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Figure 2: Distance field (colored map) and boundary nodes (black points) serving for the
LS-DEM contact algorithm, illustrated for spherical particles

to the following interparticle overlap un:145

un “ ´minpφ2pÝÝÑ
ONiq, ÝÝÑ

ONi P S1q “ ´φ2pÝÝÑ
ONcq ě 0 (3)

The current “greatest penetration” choice follows classical contact laws in DEM146

and corresponds to another recent LS-DEM study (Li et al., 2019). On the other147

hand, LS-DEM was initially proposed by Jerves et al. (2016); Kawamoto et al.148

(2016) with a mechanical interaction at each contacting node, which used to149

make the model behavior directly dependent on the number of boundary nodes,150

in addition to the kn and kt stiffnesses discussed below. That other choice would151

still enable to address non-convex shapes, which is not done here.152

While the overlap un serves as the normal relative displacement, the present153

contact treatment does not resort to any total tangential displacement but just154

to an incremental one at the subsequent stage of applying the contact law, see155

the next § 2.3. The normal and tangential contact directions actually refer to156

the normal to S1 at Nc, chosen as the contact normal:157

~n “ ~∇φ1pÝÝÑ
ONcq (4)

For simplicity, special shapes showing pathological definitions of the normal,158

with tips or edges, are not considered here.159

For e.g. the purpose of subsequent torque computations, a contact point ~xc160
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is defined in the middle of the overlap between 1 and 2:161

~xc “ ÝÝÑ
ONc ´ un

2
~n (5)

Considering the rigid bodies transformations of 1 and 2, the current contact162

algorithm easily makes use of the initial distance field and boundary nodes, as163

defined in the previous § 2.1 in reference configurations.164

In line with its master-slave nature, such a contact treatment is not sym-165

metric and this could be seen as a possible source of inaccuracy in the contact166

model in the sense different results could have been obtained adopting other167

choices, using e.g. φ2 instead of φ1 in Eq. (4). It is however reasonably believed168

that a sufficient discretization of particle’s surfaces with many boundary nodes169

would cancel this possible bias. One should also note that the present choice of170

the smallest particle for carrying the boundary nodes allows to explore distance171

fields (whose precision depends upon grid resolution only) with the greatest172

surface density in nodes.173

2.3. Mechanics of contact174

Once a contact is detected and kinematically described as presented in the175

above, classical elastic (resp. elastic-plastic) contact laws apply in the normal176

(resp. tangential) directions, with kn and kt the normal and tangential stiffnesses177

and µ the contact friction coefficient.178

The repulsive normal force ~Fn is first given by:179

~Fn “ kn un ~n (6)

In the tangent plane, the frictional tangential force is incrementally com-180

puted from ~0, one time step after another as per the following equation:181

d~Ft “ d

˜

||~Ft||
~Ft

||~Ft||

¸

“ ||~Ft||d
˜

~Ft

||~Ft||

¸

` dp||~Ft||q
~Ft

||~Ft||
(7)

In the rhs of Eq. (7), the first term just accounts for a possible change in182

the tangential force direction (its unit vector ~Ft{||~Ft||) while the interacting183

pair would move as a rigid body with possible variations in the orientation of184
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the tangent plane. This first term is computed from the previous and current185

normal directions and from the angular velocities of each DE (Šmilauer et al.,186

2015). On the contrary, the last term in Eq. (7) accounts for the force variation187

due to a incremental tangential relative displacement, d~ut, as computed at the188

contact point between the two DEs. A classical elastic-plastic force-displacement189

relationship here applies:190

dp||~Ft||q
~Ft

||~Ft||
“ kt d~ut enforcing ||~Ft|| ď µ||~Fn|| (8)

The interaction force being determined, an associated torque is also imposed191

with a possible contribution of the normal force for arbitrary shapes, unlike192

spheres.193

2.4. Equations of motion194

Sustaining resultant forces and torques, each DE is classically characterized195

in space using ~xptq, the current position of its center of mass P , as well as a196

rotation matrix Rptq that describes its current orientation, i.e. the orientation197

of the local frame of eigenvectors for the inertia matrix, p~eiq, i P r1; 3s, as seen198

in the global frame. The rotation matrix R actually transforms each vector ~uL199

of the local frame in its current counterpart in the global frame ~uG through200

classical change of basis relation ~uG “ R ~uL. Newton-Euler equations for the201

motion of rigid bodies then rule the evolutions of ~v, the velocity of point P and202

of ~ω, the angular velocity of the body:203

m
d~v

dt
“ ~f (9)

I
d~ω

dt
` ~ω ^ I~ω “ ~Γ (10)

, with ~f the resultant force on the DE and ~Γ the resultant torque computed204

at the center of mass P . For the purposes of deriving Eq. (10) ~Γ and ~ω are205

expressed in the local frame p~eiq, where I components are constant. We recall206

that Eq. (10) would simplify to Id~ω{dt “ ~Γ for simple, isotropic, shapes with a207

spherical inertia matrix I “ kδ (with δ the identity matrix), such as spheres or208

cubes.209
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Global damping is classically considered, modifying the resultant forces and210

torques in Eqs. (9)-(10) in dynamic cases where those are non-zero. A damping211

coefficient D, taken here equal to 0.2, enters the equations such that the right212

hand sides of Eqs. (9)-(10) actually are p1˘Dq~f or p1˘Dq~Γ, depending on the213

power of resultant forces or torques. Accelerating cases with a positive power214

are hindered, considering p1´Dq, while decelerating conditions with a negative215

power are amplified through the use of p1 ` Dq.216

Time variations of position and orientation finally follow from the above217

Newton-Euler equations as per:218

d~x

dt
“ ~v (11)

dR

dt
“ RΩ (12)

, with Ω in Eq. (12) being the antisymmetric matrix such that Ω ~x “ ~ω ^ ~x,219

@~x. Integrating these Eqs. (9) to (12) is achieved in YADE from appropriate220

explicit numerical schemes and using a quaternion equivalent for the rotation221

matrix R (Šmilauer et al., 2015).222

3. Precision of LS-DEM223

3.1. Materials and methods224

The precision of LS-DEM in connection with boundary nodes and grid spac-225

ing is now investigated for different kinds of numerical simulation, comparing226

when possible LS-DEM with classical DEM serving as a numerical reference.227

For comparison purposes, ideal spherical shapes are then often adopted, since228

they enable one to obtain such a DEM reference result. The distance fields229

necessary to LS-DEM are straightforward to define for spheres of given radii.230

Extending towards arbitrary shapes, superellipsoids, also known as super-231

quadrics (Barr, 1995), are also considered. Generalizing ellipsoids, they consti-232

tute a convenient choice for exploring non-spherical shapes, e.g. (Wang et al.,233

2019), since they offer an analytical description through three radii rx, ry, rz234

distorting length along the three axes, combined with two additional exponents235
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Shape index Half-extents (length unit) Curvature exponents (-)
rx ry rz ǫe ǫn

0 0.4 1 0.8 0.4 1.6
1 0.42 = 0.83 0.1 1
2 = = = 1 0.5
3 0.5 0.7 1 1.4 1.2

Table 1: Shape parameters of the four superellipsoids shown in Figure 3

ǫe, ǫn that modify the surface curvature. In local axes, their surface equation236

namely reads:237

fpx, y, zq “
˜

ˇ

ˇ

ˇ

ˇ

x

rx

ˇ

ˇ

ˇ

ˇ

2

ǫe

`
ˇ

ˇ

ˇ

ˇ

y

ry

ˇ

ˇ

ˇ

ˇ

2

ǫe

¸

ǫe

ǫn

`
ˇ

ˇ

ˇ

ˇ

z

rz

ˇ

ˇ

ˇ

ˇ

2

ǫn

´ 1 “ 0 (13)

While such an analytical description is not required in LS-DEM, it aptly provides238

a first order approximation for the signed distance function to a superellipsoid,239

which is herein simply proposed as:240

φ « f

||~∇f ||
(14)

Eq. (14) obviously describes a zero distance, φ “ 0, along the surface. It is241

furthermore easily verified that the Eikonal equation defining distances, ||~∇φ|| “242

1 (Sethian, 1999), is by construction verified at the first order close to the243

surface. This approximation, illustrated in Figure 3, is sufficient for typical244

LS-DEM simulations with negligible overlaps since an accurate distance field is245

then necessary close to the surface only.246

The Table 1 lists a chosen set of 4 shape parameters, with the corresponding247

4 different superellipsoids being depicted in Figure 3. The radii rx, ry , rz shown248

therein will be scaled to appropriate lengths in the following.249

Regardless of the shape or the modelling approach (DEM or LS-DEM) cho-250

sen thereafter, the same contact parameters and particle size distribution are251

used, see Table 2. The distribution of particle’s diameterD is uniform in number252

between extremeDmin andDmax, whose values do not necessarily correspond to253

any physical entity. Numerical samples made of superellipsoids include in equal254

proportion the 4 shapes presented in the above and conform that same particle255
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(a) Shape 0 (b) φ0

(c) Shape 1 (d) φ1

(e) Shape 2 (f) φ2

(g) Shape 3 (h) φ3

Figure 3: The four superellipsoids (left) defined in Table 1, illustrated together with their
distance fields (right). Image scales are constant for each shape (on each row), and the
positive range of color maps (shape’s interior) is capped to 0.2 length units for convenience
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size distribution. Doing so, a sieve diameter is chosen for each superellipsoid as256

the diameter of its circumscribed sphere, i.e. twice the greatest center-boundary257

node distance.258

Table 2: DEM and LS-DEM mechanical parameters

kn kt{kn µ Dmin Dmax{Dmin

(N/m) (-) (-) (cm) (-)
6ˆ105 0.3 0.577 6.1 3

3.2. Single contact description259

The precision of LS-DEM is first analyzed for the simple case of a single260

contact between two spherical particles, with a possible discrepancy in size (Fig-261

ure 2). While the precision of each particle’s distance field is fully defined by262

the resolution D{ggrid of its underlying grid, the ability of the LS-DEM contact263

algorithm to capture the distance field furthermore depends upon boundary264

nodes, in the number of Nnod, and on the diameter ratio D2{D1 ě 1. The265

Figure 4 illustrates how these three parameters affect the LS-DEM measure of266

an overlap between the two spherical particles.267

It is for instance observed in Figure 4(a) that using just 100 boundary nodes268

(in 3D space) leads to miss interactions close to the unit circle of the map, and269

to an approximation between the detected overlap and the true distance to a270

sphere. On the other hand, the Figure 4(d) confirms the true distance field can271

be re-obtained with a very good precision, i.e. un “ ´φ, using D{ggrid “ 50272

and Nnod “ 1600, with D2{D1 “ 1. Thanks to the present choice of locating273

boundary nodes on the smallest sphere, cases with D2{D1 ą 1 are described274

with a greater precision, see Figure 4(b) vs 4(a).275

3.3. Isotropic reconstruction276

A second examples devotes to the LS-DEM reconstruction of a dense pack-277

ing of 8000 spherical particles. While the current reconstruction procedure is278

essentially similar to the definition a LS-DEM sample from an experimental279

one, e.g. through computed tomography (Kawamoto et al., 2016, 2018), it ac-280

tually here applies to DEM data describing the isotropic state of a numerical281
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(a) D{ggrid “ 10;Nnod “ 100;D2{D1 “ 1
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(b) D{ggrid “ 10;Nnod “ 100;D2{D1 “ 3
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(c) D{ggrid “ 10;Nnod “ 1600;D2{D1 “ 1
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(d) D{ggrid “ 50;Nnod “ 1600;D2{D1 “ 1

Figure 4: Precision of the LS-DEM contact algorithm in capturing a sphere’s distance field.
Color maps show the overlap unpx, yq of a LS-DEM interaction between a sphere 1 centered
at pxc, yc, zcq and a bigger sphere 2 centered at pxc ` pr ` R2q cospθq, yc ` pr ` R2q sinpθq, zcq
with pr, θq the polar counterparts to the cartesian px, yq. The origin of the map, x “ y “ 0, for
instance corresponds to the center of 1 belonging the surface of 2, and to an expected overlap
value equal to R1. White region correspond to the absence of an interaction. Each map is
constructed using 4012 colored pixels and as many relative configurations of the two spheres
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sample, showing a nref « 0.372 porosity while subjected to an hydrostatic282

pressure pref “ 16.5 kPa. This pressure value corresponds to a stiffness ratio283

κ “ kn{ppD50q « 300 which is an intermediate value among DEM studies. One284

can for instance mention κ-values in the order of several hundreds up to one285

thousand in qualitative (Duriez et al., 2018) as well as quantitative (Aboul Hosn286

et al., 2017) studies.287

As such, a first DEM simulation, whose parameters were presented in Ta-288

ble 2, is run to reach that mechanical state. After exporting from the DEM289

model the positions and diameters D of all spherical particles, a LS-DEM recon-290

struction is attempted using at the particle scale different numbers of boundary291

nodes Nnod P t0;100;400;900;1200;1600;2000;2500;4000;9000u and grid resolu-292

tion D{ggrid P t10;20;30;50;90u. LS-DEM spheres being so defined from known293

positions and radii, reconstructed porosity n can be measured and one LS-DEM294

iteration is finally performed in order to also reconstruct normal contact forces295

being responsible for the sample’s mean stress p, while preventing any move-296

ments of the DE. The obtained precision in terms of porosity or mean stress can297

be quantified through the n{nref or p{pref ratios, where a value of 1 or 100%298

indicates a perfect LS-DEM reconstruction of the reference case.299

Porosity precision is actually independent of the boundary nodes and can300

be seen as geometric in nature since voxellised particles volumes are fully de-301

termined from the grid resolution. As such, the Figure 5 disregards boundary302

nodes number Nnod and evidences how spherical morphologies can be satisfac-303

torily described with tens of grid voxels per diameter, with the error on porosity304

i.e. solid volumes reducing below 4% for D{ggrid ě 20.305

On the other hand, in terms of mean stress p{pref data (Figure 6) illustrate306

how grid resolution and boundary nodes both contribute to the mechanical307

precision of LS-DEM. Starting from an absence of contacts and stress in the ex-308

treme case of Nnod “ 0, boundary nodes obviously have to be numerous enough309

for all contacts to be detected. For a given number of boundary nodes, grid310

resolution still improves precision since it contributes to more exact locations of311

these boundary nodes, closer to the true surface, as well as to a better overlap312
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Figure 5: Geometric precision of LS-DEM in terms of porosity n after reconstructing a fully
determined spherical packing in isotropic state
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Figure 6: Mechanical precision of LS-DEM in terms of mean stress p after reconstructing
a fully determined spherical packing in isotropic state. Each vertex of the depicted surface
corresponds to one LS-DEM reconstruction
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estimation. As a matter of fact, a 80% precision can here be obtained choos-313

ing tNnod;D{ggridu either as t2500;50u or t1600;90u. Among the cases tested,314

a maximum precision of 94 % is reached for 9000 boundary nodes and a grid315

resolution of 90, which is another step towards validating the present LS-DEM316

implementation with respect to DEM and investigating the role of its technical317

ingredients tNnod;D{ggridu. This is pushed further in the following section.318

3.4. Triaxial compression319

Another comparison between DEM and LS-DEM for spherical shapes even-320

tually considers the triaxial compression of that same dense sample, under the321

confining stress σ2 “ σ3 “ 16.5 kPa and until an axial strain ε1 “ 5 %. This322

axial strain value is posterior to the peak in deviatoric stress q “ σ1 ´ σ3 that323

is observed in DEM.324

Again, several LS-DEM simulations are carried on, for Nnod P t100;400;1600;325

2500;4000u and D{ggrid P t10;20;50u. Any LS-DEM simulation starts with the326

same sample definition than before, defining appropriate Level Set shaped bod-327

ies from the DEM data that describe the isotropic stress pref “ 16.5 kPa.328

Because the same mechanical state is not directly captured within LS-DEM,329

confining phase is pursued further, with a servo-control of boundary walls un-330

til that reference isotropic stress pref is re-obtained. Then, both DEM and331

LS-DEM simulations apply triaxial shear loading with a constant axial strain332

rate 9ε1 that corresponds to an inertial number I “ 9ε1 D50

a

ρ{σ3 « 10´4 low333

enough for its influence and the one of global damping to vanish. It is actually334

verified in DEM and LS-DEM that stresses measured along the boundary walls335

equal homogenized Love-Weber stresses (Love, 1892; Weber, 1966; Drescher and336

de Josselin de Jong, 1972) for static equilibrium conditions. Table 3 details rele-337

vant parameters, with a fictitious ρ “ 1000 kg/m3 density being herein adopted.338

The latter could be replaced by another value provided that time step and load-339

ing rate are also modified in order to avoid divergence of the explicit scheme and340

maintain the same inertial number. Such changes would keep constant the total341

number of DEM iterations required for simulating triaxial shear until ε1 “ 5 %.342
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Table 3: DEM and LS-DEM numerical parameters for the triaxial compressions

Density Timestep Damping Loading rate
ρ (kg/m3) ∆t (s) coefficient D (-) 9ε1 (s´1)

Spheres Superquadrics
1000 3.4 ˆ 10´4 1.7 ˆ 10´4 0.2 2.5 ˆ 10´3

On that second example, the LS-DEM precision is quantified comparing the343

deviator peak qmax of each LS-DEM simulation with the reference DEM value344

qmax
ref « 33 kPa, through a qmax{qmax

ref ratio that is illustrated in the Figure 7.345
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Figure 7: Precision of LS-DEM in terms of peak strength during the triaxial loading of
spherical grains

Similar trends in precision are observed on this third example, with a joint346

influence of the grid resolution and the number of boundary nodes. This be-347

ing said, the present DEM vs LS-DEM comparison with non-fixed DEs un-348

der deviatoric loading is more favorable than the isotropic reconstruction. In-349

deed, using 4000 boundary nodes and a grid resolution of 50 now enables350

one to reach an excellent 96% overall precision, whereas it previously led to351

just 85% for the isotropic example. This 85% precision would here be ex-352

ceeded choosing tNnod “ 400;D{ggrid “ 20u only. The particular case of353

tNnod ě 1600;D{ggrid “ 10u illustrates the marginal possibility for a non-354

monotonous increase in precision with respect to Nnod. One may think for355
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instance to the very specific case of two spheres in contact that could be per-356

fectly described with just one boundary node located along their branch vector.357

In addition to the only consideration of peak deviatoric stress, the Figure 8358

illustrates the effects of tNnod;D{ggridu choices onto the evolutions of other359

average quantities according to axial strain. LS-DEM is therein also compared360

with DEM for what concerns the volumetric strain εV , the anisotropy ac of361

the contact network, and the average contact number zc. As for the contact362

anisotropy ac, the latter is expressed as the difference between the axial and the363

lateral components of the fabric tensor F whose expression is represented in the364

following Eq. (15).365

F “ 1

Nc

ÿ

c

~n b ~n (15)

For the purpose of computing F in LS-DEM, it is recalled contact normals are366

computed in this case from the distance gradient as per the previous Eq. (4). The367

precision in evaluating this distance gradient again depends on grid resolution.368

The Figure 8 confirms that the LS-DEM evaluation of any quantity of in-369

terest tends to its DEM counterpart for tNnod;D{ggridu reaching the order of370

t4000;50u. It furthemore illustrates how the dense-like behavior traits, with371

softening and dilation, of the present numerical sample appear as diminished372

when using an insufficient LS-DEM discretization in terms of boundary nodes373

and grid resolution. One can lastly note that LS-DEM curves are generally374

speaking somewhat more noisy than DEM counterparts, due to the surface dis-375

cretization in boundary nodes. Such a surface discretization, when poor in376

particular, may indeed enhance the discontinuous i.e. sudden changes in over-377

lap and contact forces already present in DEM due to the time discretization,378

possibly affecting the curves at the macro-scale.379

3.5. Triaxial compression of superellipsoids380

A last example devotes to a packing of 8000 superquadrics, as defined in the381

above § 3.1, under the same triaxial loading than the one imposed on spherical382

particles. After reaching the isotropic state (Figure 9) p “ 16.5 kPa and n « 0.32383

through compressing an initial cloud of superellipsoids, in a similar manner than384
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Figure 8: DEM vs LS-DEM comparisons during a triaxial loading of spherical grains: effects
of LS-DEM discretization onto averaged quantities
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for spheres, triaxial shear is again pursued until an axial strain ε1 “ 5 % being385

posterior to the deviator’s peak. Among the simulation parameters, being listed386

in Tables 2 and 3, time step is modified from the spherical case because of a387

possibly lower volume, hence mass, of a superellipsoid when compared to a388

sphere having the same circumscribed diameter.389

Figure 9: Initial (left) and sheared (right, for ε1 “ 40 %) configurations of the superellipsoids
packing under triaxial loading

Such a LS-DEM simulation is carried on for different choices of Nnod P t400;390

1600;2500;4000u and 2minprx, ry, rzq{ggrid P t10;20;50u, disregarding here the391

less precise case Nnod “ 100. Looking at the obtained peak in q, the data392

illustrated in the Figure 10 once again show how both the grid resolution and the393

boundary nodes number affect the LS-DEM results. With respect to the ideal394

spherical shapes considered in the above, the results also suggest that capturing395

more complex shapes might be more demanding in terms e.g. of boundary nodes396

numberNnod. While usingNnod ě 1600 induced fairly constant LS-DEM results397

for spheres (within a 2-3 % variation, see Figure 7), the present results on398

superellipsoids still vary by nearly 10 % in that range, without a clear plateau.399

As for the deviator strength itself, one can also note from the most pre-400

cise LS-DEM simulations that the superquadrics packing exhibits a deviator401

strength qmax « 48 kPa, which is approximately 45 % higher than the ones for402

spheres (where qmax
ref « 33 kPa) and combined with differences in initial porosity403

or coordination number. A greater ultimate triaxial strength at critical state is404

also obtained, with M “ q{p « 0.76 for spheres, versus M « 1.13 for superel-405
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Figure 10: LS-DEM description of the peak strength for a triaxial loading imposed on su-
perellipsoids, choosing lgrain “ 2minprx, ry, rzq.

lipsoids using Nnod “ 2500 and 2minprx, ry, rzq{ggrid “ 20 until ε1 “ 40 %.406

While further discussion is left for future work, these results confirm the shape407

influence upon the mechanical properties.408

3.6. Discussion409

From the comparisons shown in the above, and with a greater focus on the410

more meaningful triaxial simulation with moving DEs, one could advice to use a411

grid resolution (lgrain{ggrid) in the order of few tenths, and a couple of thousands412

boundary nodes at least. Even though previous LS-DEM studies (Jerves et al.,413

2016; Kawamoto et al., 2016, 2018) did not explicitly provide such technical414

details, similar order of magnitudes can be inferred as follows.415

Regarding the boundary nodes, the key references (Jerves et al., 2016; Kawamoto416

et al., 2016) formulated the same guideline in terms of node-to-node spacing,417

proposing therein that restricting these distances to one tenth of particle diam-418

eter would avoid bias in the results. In addition to distance considerations, a419

proper set of boundary nodes should obviously cover the whole direction space420

θˆϕ “ r0;πsˆr0; 2πs. Assuming this was done in (Kawamoto et al., 2016) with421

a rectangular partition, and considering that R
a

∆θ2 ` ∆ϕ2, with ∆θ, ∆ϕ the422
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increments in the spherical angles θ, ϕ between two adjacent nodes, is an upper423

bound to that node-to-node distance, one can connect node-to-node spacing to424

the increments ∆θ, ∆ϕ, then to the total number of nodes Nnod. As such,425

the above distance guideline quoted by Jerves et al. (2016); Kawamoto et al.426

(2016) can eventually be related to a total number of nodes Nnod being in the427

order of 1200. The present comparisons rather confirm this order of magnitude428

of thousand of boundary nodes as a minimum, and they furthermore illustrate429

how the grid resolution articulates with Nnod for what concerns the precision of430

the method.431

As for the grid resolution itself, no exact mention of the latter seems to be432

found in (Jerves et al., 2016; Kawamoto et al., 2016, 2018). One can nevertheless433

speculate from Kawamoto et al. (2016) that a resolution lgrain{ggrid in the order434

of 30 or 40 was adopted therein, which also appears to be the required order of435

magnitude.436

To conclude, LS-DEM practice certainly requires to consider grid resolution437

and boundary nodes as similar technical ingredients than meshes for Finite438

Element Methods, and eventually to check their (non-)influence onto the results.439

4. Computational costs440

The greater flexibility of LS-DEM logically comes along greater computa-441

tional costs, be in terms of memory (RAM) footprint or evaluation time. These442

are now carefully investigated for the triaxial compression of spherical particles443

until ε1 “ 5% that was considered in the previous section 3.4, with the same444

choices of grid resolution D{ggrid and Nnod boundary nodes than before. The445

consideration of spheres allows once again direct comparisons with the classical446

DEM, but it is an interesting LS-DEM feature that computational costs are447

naturally insensible to the shapes being described, since they depend only upon448

grid resolution and boundary nodes number.449

First of all, the RAM costs associated with the definition of DEs in LS-DEM450

are quantified and compared with the corresponding RAM cost in DEM. While451

the introduction of classical spheres here requires 10 megabytes of RAM for452
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a DEM simulation, LS-DEM requires 100 or 1000 times more, i.e. gigabytes453

(Figure 11(a)). An important RAM consumption obviously arises due to the454

distance grid and its distance values counting in the order of r3 for a grid455

resolution r “ D{ggrid, per particle. Boundary nodes also contribute to RAM456

footprint since 3Nnod coordinate values have to be stored for each particle with457

Nnod boundary nodes. Several cases considered in previous sections 3.3 and 3.4458

make these two quantities comparable. The Figure 11(a) illustrates how RAM459

footprint is affected by boundary nodes number (then precision) for low grid460

resolution: D{ggrid “ 10 or 20, while being fairly constant for the finest grid with461

D{ggrid “ 50. For such a fine grid, most storage requirements indeed concern462

the distance values, with, in proportion, little extra-requirements coming from463

the boundary nodes.464

Second, evaluation costs are measured as the average wall clock duration of465

one iteration during the triaxial shearing. All LS-DEM simulations as well as466

the reference DEM simulations run sequentially as one thread executed on the467

same server machine. The server includes two Intel Xeon Platinum 8270, 2.7468

GHz, processors with 26 cores and 36 MB of cache memory each. It thus offers469

a total of 52 cores and 104 threads, together with 1.5 TB 2.9 GHz RAM. On470

that machine, LS-DEM execution takes approximately 25 to 300 times longer471

than classical DEM, depending on LS-DEM parameters such as Nnod. From a472

quantitative point of view, these observations should be cautiously interpreted473

since they suffer from a non-exactly reproducible nature of evaluation times, in474

connection e.g. with temperature changes. They furthermore certainly depend475

on the hardware and simulation at hand, and on the present implementation476

into the YADE code. The comparison nevertheless provides useful orders of477

magnitude for (LS-)DEM practitioners. From a qualitative point of view, the478

Figure 11(b) illustrates how the present time cost is primarily affected by the479

number of boundary nodes, with an increasing Nnod leading to longer loops for480

contact treatment, in the same time it globally improves precision. For a given481

Nnod, slight variations in time cost are observed depending on the grid resolu-482

tion D{ggrid, which just come from the previously mentioned non-reproducible483
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nature of evaluation times.484
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Figure 11: LS-DEM computational costs according to precision for the triaxial shear on
spheres, relative to the costs of DEM. Each datapoint corresponds to the use of different
numbers of boundary nodes Nnod, among t100;400;1600;2500;4000u, resulting into different
costs and precision for a given grid resolution D{ggrid

Finally, the present cost analysis also recalls the combined influence of both485

boundary nodes and grid resolution onto the results. It actually illustrates the486

possibility for different strategies of ressource managements, when seeking a487

given precision. Aiming to limit RAM consumption, a 95% precision could be488

here obtained choosing D{ggrid “ 20 and 4000 boundary nodes. On the other489

hand, choosingD{ggrid “ 50 and 1600 boundary nodes would show higher mem-490

ory requirements, but would lead to the same precision after faster simulations.491

5. OpenMP scalability for parallel simulations492

Parallel computing is an obvious strategy to alleviate the high time costs of493

LS-DEM, and is available in YADE e.g. in a OpenMP shared memory frame-494

work (Šmilauer, 2010). The OpenMP framework distributes the treatment of495

DEM variables among parallel threads that will collectively move forward the496

simulation. Typical examples include integrating motion for different DEs with497

different threads, or the parallel computing of interaction forces for different498

interactions. However, the shared memory paradim inherently requires costly499

safeguards to avoid conflicts between possible operations from different threads500
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onto the same DEM variable. One can think for instance to the resultant force501

of one given DE contributing to different interactions, which could be modi-502

fied by different threads after parallel computations of interaction forces. After503

performing extra-operations to avoid such pitfalls, OpenMP speedups in YADE504

usually do not reach the optimal value of threads number (Šmilauer, 2010), with505

possible peaks in speedup around 8 threads for spherical particles (Zhao and506

Zhao, 2019).507

As for LS-DEM, parallel speedups are investigated hereafter for the same508

triaxial shear on spheres and until ε1 “ 5 % than considered in the previous509

sections 3.4 and 4, using 1600 boundary nodes and a grid resolution of 20 which510

confered LS-DEM a sufficient precison (93%). Allocating a variable number of511

threads, the LS-DEM simulation is executed on the server machine mentioned512

in the above section 4, as well as on a workstation with one 4 cores (8 threads)513

Intel i7-7700, 3.60GHz processor with 8 MB of cache memory, as well as 64 GB514

of 2.4 GHz RAM.515

Allocated threads go from 1 to 8 for the workstation, and from 1 to 100 for516

the server. For each thread number j (including the sequential case j “ 1),517

simulation time t is measured repeating 3 times the simulation to account for518

the possible variations in time cost. Then, 9 parallel speedups can be measured519

for a given j, through the 9 ratios tpjq{tpj “ 1q.520

After averaging among these 9 measurements and quantifying error as one521

standard deviation, the data (Figure 12) show LS-DEM parallel simulations522

follow a linear speedup until 22 threads approximately. Under those conditions523

the workstation shows a fairly optimal speedup, while a 0.6 speedup coefficient,524

40% smaller than the optimal one, is obtained on the server. Using even more525

threads, simulations then continue to speed up, at a lower rate, until 50 threads526

approximately. For that number of threads, parallel execution is more than 20527

times faster than the sequential one. The simulation speed afterwards starts528

to decrease with the number of threads, whereby allocating more ressources529

eventually just increases evaluation time.530

Even though the OpenMP scalability is not necessarily optimal, significant531
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Figure 12: OpenMP speed up for the LS-DEM triaxial compression using spherical grains

time can then be saved in a LS-DEM simulation using an appropriate number532

of threads between 20 and 50. Time gains are even greater in proportion than533

one could get for classical DEM simulations. Indeed, the maximum parallel534

speed-up for the DEM simulation approximates 3.5 only, which is obtained for535

10 threads approximately (Figure 13). Such a scalability corresponds to the536

one observed for spheres by Zhao and Zhao (2019). Allocating more threads to537

the DEM simulation does not bring any benefit and can even be detrimental538

since parallel simulations using more 60 threads are eventually slower than the539

sequential one. This enhanced scalability of LS-DEM versus DEM relates with540

the former’s specificity that more than 99% of a sequential simulation is spent541

in contact treatment, with costly loops over boundary nodes.542

6. Conclusions and perspectives543

LS-DEM offers promising capabilities for arbitrary shape description in DEM544

with e.g. no inherent convexity requirements. Such a versatility requires a very545

significant amount of data per DE to be stored and numerically estimated during546

the DEM workflow, with three-dimensional tables of distance values on a grid,547

together with a set of boundary nodes for the purpose of master-slave contact548
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Figure 13: OpenMP speed up for the DEM triaxial compression on spheres

algorithms. By investigating simple configurations at the contact- and packing-549

scales for ideal spherical shapes with DEM serving as a reference, as well as550

superellipsoid ones, the precision of LS-DEM is shown to depend both on grid551

resolution and boundary nodes. On the present comparisons, reaching a good552

precision requires few tenths of grid spacings per particle size, as well as a couple553

of thousands boundary nodes.554

Such choices dramatically increase computational costs of the simulations, be555

it in terms of memory (RAM) requirements or evaluation time. While sequential556

3D DEM simulations at the sample scale usually weigh hours and megabytes,557

LS-DEM requires days and gigabytes, after an implementation based onto the558

YADE code. Time costs nevertheless can be significantly decreased through par-559

allel computing with few tenths of threads, whereby a simple OpenMP frame-560

work decrease time costs by more than an order of magnitude.561

Other parallel paradigms such as MPI, distributing memory instead of shar-562

ing it, may be even more useful and have yet to be investigated. Together with563

possible code and algorithmic (Duriez and Galusinski, 2020) improvements, they564

will hopefully make geotechnical simulations with real particle’s shape even more565

affordable.566
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