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Abstract: Meeting food demand for the growing population will require an increase to crop produc-
tion despite climate changes and, more particularly, severe drought episodes. Sorghum is one of
the cereals most adapted to drought that feed millions of people around the world. Valorizing its
genetic diversity for crop improvement can benefit from extensive phenotyping. The current methods
to evaluate plant biomass, leaves area and plants height involve destructive sampling and are not
practical in breeding. Phenotyping relying on drone based imagery is a powerful approach in this
context. The objective of this study was to develop and validate a high throughput field phenotyping
method of sorghum growth traits under contrasted water conditions relying on drone based imagery.
Experiments were conducted in Bambey (Senegal) in 2018 and 2019, to test the ability of multi-spectral
sensing technologies on-board a UAV platform to calculate various vegetation indices to estimate
plants characteristics. In total, ten (10) contrasted varieties of West African sorghum collection were
selected and arranged in a randomized complete block design with three (3) replicates and two (2)
water treatments (well-watered and drought stress). This study focused on plant biomass, leaf area
index (LAI) and the plant height that were measured weekly from emergence to maturity. Drone
flights were performed just before each destructive sampling and images were taken by multi-spectral
and visible cameras. UAV-derived vegetation indices exhibited their capacity of estimating LAI and
biomass in the 2018 calibration data set, in particular: normalized difference vegetative index (NDVI),
corrected transformed vegetation index (CTVI), seconded modified soil-adjusted vegetation index
(MSAVI2), green normalize difference vegetation index (GNDVI), and simple ratio (SR) (r2 of 0.8 and
0.6 for LAI and biomass, respectively). Developed models were validated with 2019 data, showing a
good performance (r2 of 0.92 and 0.91 for LAI and biomass accordingly). Results were also promising
regarding plant height estimation (RMSE = 9.88 cm). Regression plots between the image-based
estimation and the measured plant height showed a r2 of 0.83. The validation results were similar
between water treatments. This study is the first successful application of drone based imagery for
phenotyping sorghum growth and development in a West African context characterized by severe
drought occurrence. The developed approach could be used as a decision support tool for breeding
programs and as a tool to increase the throughput of sorghum genetic diversity characterization for
adaptive traits.

Keywords: sorghum; drought tolerance; West Africa; phenotyping; UAV platform; vegetation indices;
multi-spectral; RGB cameras
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1. Introduction

The human population is expected to reach 9.7 billion by 2050, thus meeting food
demand for the growing population will require an increase in crop production between 25
and 70% above the current levels [1]. The greatest challenge for agriculture is the changing
climate caused by increasing greenhouse gas emissions leading to extreme temperatures
and adverse weather conditions [2]. Sorghum is one of the most adapted cereals to abi-
otic constraints characterizing climate change [3,4]. Its huge genetic diversity provides
considerable sources of adaptations to future climatic stresses [5–7] and, probably, it will
play a key role for ensuring food security of millions of people worldwide in the future.
In order to take advantages of genetic diversity in a breeding context, it is required to
characterize available germplasm for adaptive traits in contrasting stressful situations
using controlled environments, as well as in multi-environments field trials [8–11]. The
assessment of plant growth, development, and physiological responses in the field often
implies manual measurement or visual scoring that must be performed during the day
under high radiation conditions, i.e., during four hours per day; this is for example the case
of leaf area index measurement using a Sunscan Septometer (Delta-T Devices, Cambridge,
UK) [12,13]. In addition, comparing genotypes for their physiological response to a climatic
variable implies to make measurements in a short period. This becomes problematic when
dealing with breeding populations with a high number of accessions to be compared for a
given physiological processes. The time spent between the measurement of the first and the
last genotype makes the comparison irrelevant. Thus, improving the throughput of pheno-
typing in the field become a big challenge [14]. With climate changes, quantitative breeding
for traits that enhance yield in water-limited environments is becoming a high priority [15].
Among these traits, leaf area index (LAI), as the size of the crop canopy has important
consequences on water use [16,17]. Crops with smaller leaf area index can consume less
water and can be in some situation suitable for water limited environment [18]. In addition,
LAI is a useful tool to evaluate the fraction of absorbed photosynthetically active radiation,
which is required to model canopy photosynthesis [19]. Being able to monitor leaf area
development over time would therefore allow to capture information not only of the water
use pattern of a genotype, but also on its light interception efficiency. Beside LAI, plants
height and biomass are essential to monitor as they are key indicators of plant growth and
of yield elaboration [20–23]. The above ground biomass is an important phenotype that in-
dicates the crop condition that is appropriate for crop monitoring and yield estimation [24].
An efficient and timely method for the prediction of sorghum biomass will help to speed
the development of higher biomass varieties for fodder breeding programs. The benefits of
sorghum as a biomass crop could be further enhanced if genotypes with high tolerance
to stresses such as water deficit can be more easily identified, which will be facilitated by
integrating sorghum genotyping and phenotyping technologies [25]. Plant height is a good
indicator of carbohydrate storage capacity and susceptibility to lodging [26]. Measured
over time, plant height enabled the assessment of critical genetic traits, fundamental plant
physiology, and the influence of environmental conditions on plant performance [27,28].
However, commonly used plant height measurement methods including manual field
measurement are slow, expensive, and do not scale well when large fields and repeated
measurements are involved [27]. Remote sensing using a low-altitude unmanned aerial
vehicle (UAV), such as radio-controlled multicopter, already proved its relevance for tack-
ling these phenotyping challenges [29,30]. UAV have its importance in the experimental
field in less accessible regions and with less instrumentation facilities breaking the use
of more expensive technological means (phenomobile, satellites, etc.). Previous studies
already demonstrated the potential of UAV phenotyping for capturing vegetation index
like Normalized Difference Vegetation Index (NDVI) and assess the seasonal leaf area
dynamics of sorghum [31] and plants biomass growth in barley [32]. Other studies even
developed relationship between sorghum grain yield and NDVI measured during the
vegetative stage [33]. Such vegetation indices is more commonly used to estimate LAI (e.g.,
in soybean and maize [34], wheat [35], sorghum [33]). Shafian et al. [33] used an unmanned
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aerial system (UAS) for monitoring growth traits including LAI, fractional vegetation cover,
and yield on six grain sorghum hybrids. Potgieter et al. [31] used UAS based multispectral
imaging to assess seasonal leaf area dynamics of sorghum breeding lines. Li et al. [25]
investigated the potential use of UAS-derived traits to elucidate biomass, nitrogen, and
chlorophyll content in sorghum lines under nitrogen stress treatments. However, to our
knowledge these technologies have never been applied to deal with growth traits under-
lying sorghum crop yield and their variability within sorghum genetic diversity panel
underlying by huge morphological variability and in response to drought.

The objective of this study was to set up and to assess the suitability of UAV based
vegetation indices to estimate the temporal dynamics of leaf area, shoot biomass, and plants
height within a sorghum panel representative of the genetic and phenotypic diversity of
African sorghum under contrasted water situations. Once results presented, they are
discussed particularly with respect to the need of supporting breeding innovation effort in
West Africa.

2. Materials and Methods
2.1. Plant Materials

The two field trials were carried out in the Bambey experimental station of ISRA/CERAAS
(14◦42′37′′ N; 16◦28′49′′ W, WGS84 reference system) in 2018 and 2019 (Figure 1A). The
plant material consisted of 10 elite varieties of sorghum from Mali, Nigeria, and Senegal
countries of West Africa (Table 1). These varieties differ in terms of days to ma-turity
(90 to 128 days for maturity), height (120 to 450 cm height), response to inputs (hy-brid
vs. open pollinated varieties caudatum or guinea), and yield (2 to 4.5 t ha−1). These
varieties are widely cultivated by the farmers due to their adaptability and agronomic
characteristics [36–39].

Table 1. Characteristics of the varieties used in this study and their origin.

Variety Code Type Maturity
(days)

Height
(cm)

Potential
Yield (t/ha)

Panicle
Form

Photoperiod-
Sensitivity

Isohyet
(mm) Origin

Fadda V1 Guinea
(hybrid) 128 200–300 4.5 non

compact moderate 700–1000 Mali
(IER/ICRISAT)

NIELENI V2 Guinea
(hybrid) 115 300 4 semi

compact low 700–800 Mali
(IER/ICRISAT)

IS15401 V3 Guinea-
Caudatum 115 400–450 2 semi

compact high 900–1200 Mali
(IER/ICRISAT)

PABLO V4 Guinea
(hybrid) 125 400 4 non

compact moderate 700–1000 Mali
(IER/ICRISAT)

CSM63E V5 Guinea 90 400 2 non
compact low 600–1000 Mali

(IER/ICRISAT)

SK5912 V6 Caudatum 170 200 2.5–3.5 semi
compact high 700–900 Nigeria

GRINKAN V7 Caudatum 90 120 4 semi
compact non 500–800 Mali

(IER/ICRISAT)

SOUMBA V8 Caudatum 115 250 2.5 semi
compact low 600–1000 Mali

(IER/ICRISAT)

621B V9 Caudatum 105 175 2.5–3 semi
compact non 600–900 Senegal (ISRA)

F2-20 V10 Caudatum 110 210 3–5.3 semi
compact low 600–900 Senegal (ISRA)

2.2. Experimental Design and Field Trials

The experimental design consisted of a randomized complete block design with three
replicates and two water treatments (well-watered and drought stress). Rows were spaced
by 60.0 cm and the replicates by 100 cm. The experiments were conducted in a sandy soil
(Sand = 94.2%, silt = 3.5%, clay = 2.3%) in 2018 and 2019 during the dry season. Water
supply was ensured by a sprinkler irrigation system from sowing until physiological
maturity (on average 50 mm of water per week in two supplies). It was calculated to
cover the weekly average evapotranspiration of sorghum that varied between 26 to 44 mm
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with an average of 37.2 mm (data not shown). Fertilizers were applied as NPK and urea
following standard recommendation i.e., 150 kg ha−1 of NPK (15-15-15) after sowing and
100 kg ha−1 of urea before the panicle initiation. Plots in the drought stress (ds) treatment
were applied a withholding of irrigation from the 30th day after sowing (DAS) and during
three (3) weeks before being re-watered at the level of the well-watered (ww) treatment.
The quantity of irrigated water was measured using rain gauges distributed over the test.

Figure 1. Field experiment and UVA with its accessories used in this study. (A) Google Earth map of experimental field
location on 31 March 2018 (45th days after sowing), (B) picture depicting the overview of varieties under well-watered (ww)
and drought stress (ds) conditions at the 76th days after sowing in 2018 field trial, (C) Drone and sensors. ww: well-watered;
ds: drought stress.

2.3. Data Collection and Processing
2.3.1. Data Collection

Morphological measurements were performed each week on three randomly tagged
plants from the crop emergence (25 DAS) to flowering-maturity stage (89 DAS) in the field
trial 2018 (Figure 1B). Seven sampling weeks of data were used for LAI (LAI, m2·m−2), and
biomass (g per plot) and five weeks of data were recorded for the plant height (PHT, cm).
LAI was measured using the sunscan septometer (Delta-T Devices, Cambridge, England)
and PHT using a ruler. Non-destructive measurements (LAI, PHT) were performed just
before UAV flights. Then plants were sampled and let dry outdoors for two weeks and
oven for 3 days before biomass measurements using adventurer pro precision balance
(OHAUS Corporation, Pine Brook, Parsippany, NJ, USA).
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UAV flights were performed once or twice a week at the altitude of 25 m and a constant
speed of 2.2 m s−1 with hexacopter drone (FeHexaCopterV2, MikroKopter Company,
Moormerland, Germany). Nine grey colored ground control points (GCPs) were uniformly
distributed over the entire field area with fixed position for all the flights throughout the
experiment and were surveyed using Precis BX305 Real Time Kinematics (RTK) GNSS
unit (Tersus GNSS Inc., Shanghai, China). They were made of painted PVC disks of
60 cm diameter where the central 40 cm diameter disk was 20% gray level and was
surrounded by a 60% gray level color external crown. These gray levels were selected to
avoid saturation and allow automatic target detection on the images. The UAV system
(Figure 1C), equipped with six motors, can perform user-defined waypoint flights with a
differential global navigation satellite system (GNSS) receiver. The UAV support software
(Mikrokopter tools, Mikrokopter Company, Moormerland, Germany) that implements
a flight plan, monitors the flight and allow information’s including drone position. We
perform a flight with an RGB ILCE-6000 digital camera (Sony Corporation, New York,
NY, USA) with a 6000 × 4000 pixel sensor equipped with a 60 mm focal length lens.
To minimize the blurring effect and noise in the images, the camera was set on speed
priority (1/1250 s) and auto ISO mode. Then after, we perform another flight with an
Airphen multispectral camera (hiphen, Avignon, France, https://www.hiphen-plant.com/,
accessed on 15 December 2020) equipped with an 8 mm focal length lens and acquiring
1280 × 960 pixel images). The Airphen comprises six individual cameras equipped with
filters centered on 450, 530, 560, 675, 730 and 850 nm, with a spectral resolution of 10 nm.
For each camera (RGB and MS), the flight lasted about 15 min with around 10 min of
preparing the second flight. The cameras captured images at one-second intervals and
recorded them in JPG and Tiff format on the SD memory card. The drone did round trip
spaced of 4 m that allow a side and forward overlapping fraction of 0.75. To reduce effects
of ambient light condition, we limited flight to clear and cloudless days between 10:00 to
12:00 A.M. (Greenwich Mean Time, GMT) that allowed to reduce the plants shadow effect
as its contribution between rows in mature stages can greatly affect spectral measures.

2.3.2. Extraction of Vegetation INDICES and Height Estimation at Plot Scale

An automatic image-processing pipeline was designed to generate radiometrically
calibrated and geometrically corrected multiband orthoimages using Agisoft PhotoScan
digital photogrametric software version 1.4.0 (Agisoft LLC, St. Petersburg, Russia, https:
//www.agisoft.com/downloads/installer/, accessed on 15 December 2020). Radiometric
calibration included automatic correction of vignetting effects [40]. Real reflectances were
computed using a reference target positioned to the ground during UAV flights. This target
was previously spectrally characterized in controlled conditions. Geometric correction
involved, firstly, multiband co-registration to modify and adjust the images’ coordinate
system to decrease geometric distortions and make pixels in different pictures coincide
with the corresponding map-grid points. The co-registration process was based upon
the internal GNSS from raw image metadata. Orthorectification was then performed
using GCPs to increase the accuracy of the generated orthoimage. As agisoft photoscan
manages multilayer images, we used the 450 nm band for tie point searching. For a
better plots segmentation, we uploaded the RGB orthoimage in QGIS (Geographical
Information SYSTEMS, version 3.10.0, QGIS Development Team, open source 2019, https:
//www.qgis.org/fr/site/forusers/download.html, accessed on 15 December 2020) and
designed the plots boundaries (Figure 2A). The created shapefile with the GNSS coordinates
of each plot was exported as spatial vector data. The extraction of the average values of
vegetation index in each plot of a variety was performed according to the GNSS coordinates
of plots, extracted on QGIS and MS orthoimage. The computation was performed using
R software (version 3.6.0) libraries (sf, raster, rgdal, RSToolbox and uavRst) [41]. Five
vegetation indices were used to estimate LAI and biomass during the dry-season 2018 and
2019 (Table 2). These vegetation indices are single value computed by grid calculation.
They are invariant to the difference in illumination conditions, slope, seasons, etc. They

https://www.hiphen-plant.com/
https://www.agisoft.com/downloads/installer/
https://www.agisoft.com/downloads/installer/
https://www.qgis.org/fr/site/forusers/download.html
https://www.qgis.org/fr/site/forusers/download.html
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represent a quick way to distinguish green leaves from other objects and estimate the
relative biomass present in the image, therefore, distinguish stressed vegetation from
non-stressed one [25,42–44].

Figure 2. An overview of images analysis process in the 2018 sorghum field trial under well-watered and drought stress
conditions. (A) RGB (Red Green Blue) orthomosaic showing field design with plots segmentation at the 76th days after
sowing; (B) DSM (Digital Surface Model) map. ww: well-watered; ds: drought stress.

Table 2. Vegetation indices used in this study.

Vegetation Indices Formulas Ref.

Normalized Difference Vegetation Index NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) [45]
The Corrected Transformed Vegetation Index CTVI = [(NDVI + 0.5)/ABS(NDVI + 0.5)] × [

√
ABS(NDVI + 0.5)] [46]

Green Normalized Difference Vegetation Index GNDVI = (ρNIR − ρGreen)/(ρNIR + ρGreen) [47]
Modified Soil-Adjusted Vegetation Index 2
model MSAVI2 = [(2 × ρNIR + 1 −

√
((2 × ρNIR+1)2 − 8(ρNIR − ρRed))]/2 [48]

Simple Ratio SR = ρNIR/ρRed [49]

NDVI, CTVI, GNDVI, MSAVI2 and SR are the index value; ρNIR (850nm) and ρRed (675 nm) are respectively the Near Infrared and Red
band reflectance from the UAV sensor; ABS is the absorbance; ref. stand for references.

The digital surface model (DSM) data were constructed from images taken by the
UAV with the geographic coordinates of GCPs. The structure- from-motion algorithm has
some advantages in feature point matching and generating point clouds. In the algorithm,
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feature point matching is performed by taking into account the correspondence between
overlapping images estimated from their geographic coordinates. As a result, spatial skew
hardly occurs. In the generation of point clouds, all pixels were analyzed to detect matching
points. This decreased the number of missing matches and prevented point clouds from
being sparse. The derivation of digital terrain model (DTM) approach is based on the
extraction of ground points from the dense point cloud and interpolation between them to
generate the DTM. The phenotyping platform was split into 13 m × 13 m cells with a 75%
overlapping (in both x and y directions) [50]. The size of the cell is a compromise between
a small one that allows to get of finer description of digital terrain model variations, and
a large one that will ensure to get at least few background points from the dense cloud
points. DSM and DTM values were calculated based on the World Geodetic System 1984
and a resolution about 1.09 cm/pixel. Overall, the plants height estimation was obtained
by subtracting the digital terrain model (DTM) from the digital surface model (DSM)
(Figure 2B).

2.4. Statistical Analyses

Statistical analyses were performed in R version 3.6.0 [41] using tydiverse and caret
packages. Ordinary least squares linear regression models were applied. Regression models
were developed to predict LAI, Biomass and PHT using vegetation indices and UAV height
proxy. Data from the first trial in 2018 were used to calibrate the image-based models
and data from the second trial for validation. The performance of regression models in
estimating LAI, biomass and PHT were evaluated by calculating the root mean squared
error (RMSE), the coefficient of determination (r2) and p-values at 0.05 level of probability.

An analysis of variance (ANOVA) was performed after testing normality on residuals
using R (agricolae and Rcmdr packages) [41] for the ground measured LAI and biomass; the
calculated LAI and biomass and the vegetation indices (NDVI, CTVI, MSAVI2, GNDVI and
SR) studied. The combined analysis of variance was performed to test the effect of variety,
water regime and the interaction between variety and water regime (variety × water
regime) using the method of ANOVA over combined locations suggested by Mcintosh [51].
The homogeneity between residual variances was tested using Bartlett’s test [52]. Treatment
means were compared using the Least Significant Difference (LSD) at the 5% level of
probability.

3. Results
3.1. Calibration of LAI and Biomass Using UAV-Derived Spectral Indices

Results presented in Table 3 show the relationship between LAI, biomass and vege-
tation indices. Non-linear and linear regression models were fitted using the 2018 field
data set (n = 390, calibration data). Regression analysis revealed good relationship between
LAI or biomass with NDVI, CTVI, GNDVI, MSAVI2 and SR. To assess the performance
of vegetation indices to estimate LAI and biomass, we compared the coefficients of de-
termination (r2) of the relationships between NDVI, CTVI, GNDVI, MSAVI2, SR and LAI
that were respectively of 0.83, 0.82, 0.82, 0.76 and 0.77 with highly significant p values.
However, the r2 for biomass estimation using the same indices were comparatively lower
(0.6, 0.6, 0.6, 0.57, and 0.47 respectively). Figure 3 shows the different plots of VIs with
the corresponding LAI and biomass. The LAI and biomass values varied from 0.3 to
5.7 m2 m−2 and 0.6 to 101.7 g per plant respectively among genotypes, treatments and
developmental stages in 2018 trial. A saturation of the different vegetation indices observed
above LAI and biomass values upper than 4 m2 m−2 and 75 g per plant, respectively. To
test the variance of calibration models, anordinary least squares linear regressions between
calculated and measured LAI and biomass revealed an r2 values of 0.8 and 0.5 for LAI and
biomass respectively (Figure 4).
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Table 3. Regression between sorghum LAI and shoot biomass values and vegetation indices using data in 2018 field trial
(n = 390).

Vegetation Indices Regression Models r r2 p-Value

NDVI LAI = 0.3732 × exp (2.9648 × NDVI) 0.91 0.83 <0.001
CTVI LAI = 0.0069 × exp (5.5322 × CTVI) 0.9 0.82 <0.001
MSAVI2 LAI = 0.3392 × exp (2.7498 ×MSAVI2) 0.9 0.82 <0.001
GNDVI LAI = 0.1841 × exp (4.9761 × GNDVI) 0.87 0.76 <0.001
SR LAI = 0.4438 × SR + 0.0126 0.87 0.77 <0.001

NDVI Biomass = 3.1153 × exp (3.7021 × NDVI) 0.77 0.6 <0.001
CTVI Biomass = 0.0206 × exp (6.9446 × CTVI) 0.77 0.6 <0.001
MSAVI2 Biomass = 2.7357 × exp (3.4587 × GNDVI) 0.77 0.6 <0.001
GNDVI Biomass = 1.3612 × exp (6.0606 ×MSAVI2) 0.72 0.52 <0.001
SR Biomass = 6.0128 × SR + 0.8947 0.68 0.47 <0.001

NDVI, CTVI, GNDVI, MSAVI2 and SR are vegetation indices; r and r2 are the coefficients of correlation and determination respectively;
LAI is the leaf area index; exp: exponential.

Figure 3. Calibration of LAI and biomass prediction models from vegetation indices using data from 2018 trial. Relationship
between LAI and NDVI (A), CTVI (C), MSAVI2 (E); biomass and NDVI (B), CTVI (D), MSAVI2 (F). NDVI, CTVI and
MSAVI2: vegetation indices; the green line in plots is the regression line; r2: coefficient of determination.
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Figure 4. Calibration of measured and calculated (using vegetation indices) LAI (m2 m−2) and shoot biomass (g per plant)
in 2018 field trial. Relationship between measured and calculated LAI from NDVI (A), CTVI (C), MSAVI2 (E); and calculated
biomass from NDVI (B), CTVI (D), MSAVI2 (F). NDVI, CTVI and MSAVI2: vegetation indices; LAI: leaf area index; r2:
coefficient of determination; the blue line is the regression line; the dashed dark red line in the graph is the 1:1 line; the
dashed light red lines represent the 95% confidence interval of the regression.

3.2. Validation LAI and Shoot Biomass Predictive Models

The models developed were evaluated using the data acquired at the end of stress
period in 2019, i.e., when variability among genotypes and treatments was the highest.
Figure 5 presents the linear regressions between predicted and measured LAI and shoot
biomass, respectively. The relationship between LAI and VIs was highly significant with
stronger r2 values for NDVI, CTVI and MSAVI2 (p < 0.001, r2 = 0.92, rmse = 0.3) and SR
(p < 0.001, r2 = 0.89, RMSE = 0.37) (Table 4). However, the GNDVI index was the less able
to predict LAI (p < 0.001, r2 = 0.80, RMSE = 0.44). An overestimation of small LAI values
and an underestimation of higher LAI values could be highlighted for all indices although
more significant with GNDVI. In the same way, results obtained in validating biomass
prediction models were also satisfactory (r2 ranged from 0.77 for GNDVI to 0.92 for CTVI
and MSAVI2 while the rmse ranged from 7.06 for GNDVI to 4.4 g per plant for MSAVI2)
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with high significant linear regression (p < 0.001). The rmse for LAI and biomass represent
about 18 and 22% of the grand mean of varieties respectively.

Figure 5. Validation of LAI and biomass prediction models from vegetation indices using 2019 field trial data. Relationship
between measured and predicted LAI from NDVI (A), CTVI (C), MSAVI2 (E); biomass from NDVI (B), CTVI (D), MSAVI2
(F). NDVI, CTVI, MSAVI2, GNDVI and SR: vegetation indices; LAI: leaf area index (m2 m−2); r2: coefficient of determination
and RMSE: root mean square error; the blue line is the regression line; the dashed dark red line in the graph is the 1:1 line,
the dashed light red lines represent the 95% confidence interval of the regression.

3.3. Assessment of UAV-Based Plant Height

Plant height is an important selection target since it is associated with yield potential,
stability and particularly with lodging resistance in various environments. Rapid and cost-
effective estimation of plant height from UAVs using a digital surface model integrated
academic research and practical sorghum breeding programs. Regression analysis per-
formed in this study showed the relationship between UAV and ground-based plant height
dynamic (p < 0.001, r2 = 0.83, rmse = 9.88 cm, Figure 6). The average of varieties over time
in measured height comprised between 9 to 125 cm while the UAV based height comprised
between 7 to 128 cm. Moreover, the results presented in Figure 7 showed similar dynamics
of PHT between observed and estimated across the two water treatments (well-watered
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and drought stress). The PHT increase gradually after emergence with a weaker growth in
stressed plants.

Table 4. Correlations accuracies between predicted Leaf area index (m2 m−2) and shoot biomass (g
per plant) using calibration models and the measured data in the 2019 validation field trial (n = 60).

LAI Biomass

Vegetation Indices r2 RMSE Signif. r2 RMSE Signif.

NDVI 0.92 0.31 *** 0.91 4.96 ***
CTVI 0.92 0.30 *** 0.92 4.50 ***

MSAVI2 0.92 0.30 *** 0.92 4.40 ***
GNDVI 0.80 0.44 *** 0.77 7.06 ***

SR 0.89 0.37 *** 0.88 5.26 ***

NDVI, CTVI, MSAVI2, GNDVI and SR: vegetation indices; LAI: leaf area index (m2 m−2); r2: coefficient of
determination; RMSE: root mean square error; signif.: significativity; *** significant at p < 0.001.

Figure 6. Regression plots between UAV-based and ground measurements plant height measured
along crop cycle in 2018 field trial. r2: coefficient of determination and RMSE: root mean square error;
*** significant at p < 0.001; exp: exponential; the dashed red line in the graph is the 1:1 line. dashed
red lines represents the 95% confidence interval of the regression.

3.4. Monitoring Plant Development by UAV Based Vegetation Indices (VIs)

Table 5 presents the ANOVA of assessed UAV vegetation indices. The combined
analysis of variance revealed highly significant differences (p ≤ 0.05) between varieties,
water regime and the interaction between both for all Vis. This is in line with that observed
for field measurements of LAI (Table 6) and biomass (Table 7). The water deficit led
to a reduction of growth rate and biomass accumulation which induced a decrease in
vegetation. In the drought treatment, variety V3 recorded the highest values for all Vis
as well as calculated LAI and biomass while V10 exhibited the lowest one. Moreover, the
varieties V3 and V1 recorded the highest measured LAI and biomass while V4 and V10
had the lowest one, respectively (Tables 6 and 7). Indeed, under well-watered conditions,
variety V6 had the lowest values of VIs as well as calculated LAI and biomass while V8
and V3 recorded the highest vegetation indices and calculated LAI respectively. In the
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field measured traits, V8 and V7 revealed the highest LAI and biomass respectively while
V4 exhibited the lowest LAI and biomass. Figure 8 shows the dynamics of vegetation
indices during plant growth in both well-watered and drought stress conditions. The
vegetation indices of non-stressed plants gradually increased to reach maximum values at
the 60th day after sowing (flowering time) before dropping slightly. In the stressed plots,
the vegetation indices initially recorded a slight increase but then water deficit induced
a reduction and despite of an increase after re-watering, the VIs values did not recover
values of non-stressed plants.

Figure 7. Dynamics of UAV and ground-based plant height in well-watered (ww) and drought stress
(ds) treatments in 2018 field trial. Each point is the average of the 10 studied sorghum varieties with
standard error.

Table 5. ANOVA of the vegetation indices of varieties under well-watered and drought stress.

NDVI CTVI MSAVI2 SR
V ww ds ww ds ww ds ww ds

V1 0.63 0.38 1.06 0.92 0.71 0.46 6.83 3.00
V2 0.68 0.37 1.08 0.91 0.76 0.44 6.77 3.00
V3 0.73 0.59 1.11 0.94 0.81 0.66 7.97 4.02
V4 0.70 0.33 1.09 0.89 0.77 0.40 7.53 2.71
V5 0.71 0.39 1.10 0.94 0.79 0.47 7.91 2.85
V6 0.62 0.36 1.05 0.89 0.70 0.42 5.69 3.24
V7 0.74 0.28 1.11 0.88 0.81 0.35 8.59 2.20
V8 0.74 0.45 1.11 0.94 0.81 0.53 8.17 4.46
V9 0.70 0.40 1.09 0.94 0.78 0.49 6.99 2.92

V10 0.67 0.20 1.08 0.83 0.75 0.25 7.33 1.74
Mean 0.69 0.37 1.08 0.90 0.76 0.44 7.37 3.01

V ** ** *** *
W *** *** *** ***

V ×W * * * *
V: variety; W: water regime; NDVI, CTVI, GNDVI, MSAVI2 and SR: vegetation indices (VIs); ww: well-watered;
ds: drought stress; *** significant at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; the bold indicate
the highest and lowest value measured.
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Table 6. ANOVA of leaf area index measured (LAIm) and calculated from vegetation index
(LAI_NDVI and LAI_CTVI) of varieties under well-watered and drought stress.

LAI_NDVI LAI_CTVI LAI_m
V ww ds ww ds ww ds

V1 1.50 0.62 1.53 0.62 1.90 0.60
V2 1.56 0.61 1.59 0.61 1.90 0.80
V3 2.09 0.70 2.12 0.72 1.57 0.90
V4 1.60 0.58 1.63 0.57 1.40 0.45
V5 1.95 0.56 1.97 0.56 2.23 0.60
V6 1.39 0.70 1.43 0.70 1.63 0.57
V7 2.01 0.53 2.03 0.52 1.90 0.47
V8 1.93 0.68 1.96 0.69 2.63 0.80
V9 1.78 0.64 1.81 0.65 1.53 0.67

V10 1.74 0.48 1.77 0.47 1.57 0.53
Mean 1.75 0.61 1.78 0.61 1.83 0.64

V * * **
W *** *** ***

V ×W * * *
V: variety; W: water regime; ww: well-watered; ds: drought stress; CTVI and NDVI: vegetation index; *** sig-
nificant at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; the bold indicate the highest and lowest
value measured.

Table 7. ANOVA of the measured biomass per plant (biomass_m) and calculated from vegetation
index (biomass_MSAVI2 and biomass_SR) under well-watered and drought stress.

Biomass_MSAVI2 Biomass_SR Biomass_m
V ww ds ww ds ww ds

V1 17.62 5.53 21.12 9.69 18.30 15.70
V2 18.27 5.38 22.08 9.54 22.55 10.79
V3 25.85 6.65 27.56 10.50 19.11 12.36
V4 18.73 4.96 22.38 9.01 17.38 7.90
V5 23.94 4.73 26.10 8.93 29.82 11.84
V6 15.77 6.62 20.49 10.49 23.87 11.39
V7 24.47 4.35 28.25 8.57 35.72 8.00
V8 23.59 6.32 26.84 10.36 27.32 9.21
V9 21.52 5.76 24.51 9.87 22.49 18.88

V10 21.00 3.75 24.55 7.91 18.28 5.86
Mean 21.08 5.42 24.39 9.50 23.48 11.31

V * * ***
W *** *** ***

V ×W * ** ***
V: variety; W: water regime; ww: well-watered; ds: drought stress; MSAVI2 and SR: vegetation indices; *** sig-
nificant at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; the bold indicate the highest and lowest
value measured.
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Figure 8. Dynamics of estimated vegetation indices under well-watered and drought stress conditions. Box plots gather
estimations for the 10 studied sorghum varieties at a given stage. NDVI, CTVI, MSAVI2 and SR: vegetation indices; DAS:
days after sowing; W: water regime, ds: drought stress, ww: well-watered.

4. Discussion

Recent advances in high throughput field phenotyping have boosted the capacity of
introducing physiological information into the breeding process [27,53–55]. Currently, UAV
technology is an alternative to the manual collection of crop data, offering information on
traits and factors affecting crop development and productivity with relatively shorter time
and lower cost [56,57]. In this study, the moderate to strong significant correlations (r varied
from 0.68 to 0.91; p < 0.001) found between the UAV-derived spectral vegetation indices and
the sorghum LAI, shoot biomass temporal dynamics indicate that these methods can be
deployed for phenotyping extremely large genetic and phenotypic diversity as encountered
within African sorghum genotypes. This huge variability contributed to the performance
of the model and explained the relatively good r2 values obtained between calculated and
measured traits. However, a drawback to the empirical models used in this study is that
they strictly depend to the ground truth data collection and quality. Thus, errors could
occur in both ground truth measurements and UAV estimates [58]. The saturation of NDVI
observed at high LAI (LAI > 4 m2 m−2) and shoot biomass (biomass > 75 g per plant) was
previously reported by many studies [31,59–61] and could be caused by the post flowering
slight decrease of the vegetation observed in well-watered treatment, where plant have
grown up enough. In this kind of situations, Mutanga et al. [62] reported that other indices
like NDRE could be more efficient than NDVI, after canopy closure due to the saturation in
the red spectral band at the mid to late growth stages.

In our study biomass prediction was less good than LAI. The complexity of biomass
traits, which is not necessarily linked to vegetation dragged to a fairly good correlation
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(r2 = 0.6). Challenges remain also in dealing with the large variability among genotypes
and their response under drought conditions. Indeed, some varieties of caudatum sorghum
race have much biomass with a low vegetation cover, big size or small size. Moreover, the
breeding program allowed much diversity in the collection that constitute a lot of challenge
for technologist but the rise of analysis at collection level drive to face this challenge.
Thus, the rapid development of GPU and machine learning technologies in recent years
could improve the model capabilities [63]. However, it could be interesting to develop
vegetation indices that care about plant height, vegetation cover quantity and the type of
leaves for biomass estimation. Therefore, the biomass calibration model found in this study
allowed a moderate relationship between predicted and measured data and could distort
the prediction accuracy. Thus, further research are necessary to improve biomass prediction
through the inclusion of additional morphological traits such as stem diameter, leaves
thickness and additional or customized spectral bands [64]. Varela et al. [65] demonstrated
the ability to increase the biomass estimation accuracy when combined with manually
measured stem diameter on the UAVs-derived plant height. This approach allowed to
significantly increase (r from 0.56 to 0.93) the biomass prediction using a volumetric
cylinder equation in corn. The combination of hyperspectral canopy reflectance and plant
height improved the accuracy of estimating winter wheat biomass (r from 0.73 to 0.91) [66].
Chen et al. [67] observed a significant difference in NIR reflectance in barley plants under
drought conditions as NIR reflectance can be influenced by leaf thickness in addition to leaf
water content [68]. Neilson et al. found that leaf thickness was the primary factor behind the
differences observed between two sorghum varieties tested in a drought experiment [10].
Thus, our next challenge will be to implement such additional traits to improve the model
estimation and validate it for the West African sorghum collection [5,69]. The moderate
correlations (r2 = 0.6) observed for biomass could be related also to the application of the
plot segmentation in this study. We could have improved plot segmentation accuracy
by enlarging the experiment plot size or using drones with higher resolution cameras.
This may not be a problem when dealing with large agronomic or agricultural fields. The
overestimation of the small values of LAI in younger plants and the underestimation
of high values of LAI and PHT in mature plants might be explained by many reasons.
Malambo et al. [70] stated that time lags between the UAV-based measurements and the
field-based measurements could cause over or under estimation, while others suggested
that biased estimation of height is more likely a result from inaccuracies in the point
cloud generation process and is, thus, likely to be related to a biomass increase during
the crop development, which could complicate the SfM processing [71,72]. In fact, the
RMSE (9.88 cm) of plant height model found in this study suggest a limited monitoring
of sorghum height since during the growing season you find relative height increase of
few centimeters along the same plant. Nevertheless, the plants height model approach
used to extract DTM and DSM was found to be efficient for comparison with ground ruler
measurements considering the spatial variability over each microplot. Noteworthy that
in terms of geometric quality, the accumulated horizontal and vertical error was 1.09 cm
pixel−1 in orthomosaic. UAVs based plants height estimation were studied in many crop
genotypes and different growing conditions [50,55,73–75]. We used here these different
technologies to compute prediction model that would interest in phenotyping for West
Africa sorghum genotypes breeding.

The results highlighted in this study testified the availability of VIs to capture the
difference induced by drought that occurs from the 30th to 54th days after sowing, thus
the capacities of such vegetation indices to monitor sorghum growth both under well-
watered and drought stress conditions. Hence, monitoring plants development at multiple
times demonstrates the potential of these methods to study canopy temporal dynamics.
Our result on Figure 8 showed the efficiency of VIs to phenotype sorghum because the
monitoring of plants growth in the two water regime reveled very promising. Previous
findings [62,76–78] have promoted VIs related to NDVI as an important multi spectral
index to track the agro-physiological temporal dynamics of key traits such as biomass,
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LAI, yield etc. However, breeders are not well aware and have less understanding about
the application of the different reflectance bands ratio on monitoring crops development.
Higher level of NDVI is associated with faster growth rate, higher biomass accumulation
during the vegetative stage and a longer grain filling period by delaying leaf senescence
during the ripening phase thereby increasing yield [79]. Moreover, monitoring crops
throughout the vegetation period is one prerequisite for precision agriculture [80,81]. This
study demonstrates the ability to estimate sorghum plant height, above ground biomass,
and canopy LAI using UAV RGB and multispectral images. These attempts benefitted
the phenotyping of sorghum breeding. However, there was one limitation that are worth
noting. It is that there were only three phenotypic parameters that were studied. This
is just a glimpse into phenotyping using a UAV technique. There are more phenotypic
parameters that should and can be estimated from UAV images [82,83] to mine the big
potential of UAV techniques and promote modern sorghum breeding development.

5. Conclusions

The use of UAVs high-throughput phenotyping systems imaging is widely regarded
as a key technology allowing scientists and breeders to develop crops with the ability to
perform well under diverse environmental conditions. Estimating above-ground biomass
helps to monitor crop vitality and to predict yield. The image-based traits and models-
derived parameters found in this study are promising and might be improved for subse-
quent genetic mapping to uncover the genetic basis of sorghum drought tolerance. The
results presented here will be useful to advance our views of phenotypic trait components
underlying plant development and their responses to environmental stress. We are investi-
gating data augmentation strategies to generate additional training data. Data from other
modalities like thermal and LiDAR will also be acquired in the future, and evaluated for
improving the models.
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