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Bacteria adapt to the different environments encountered by rapid and tightly controlled
regulations involving complex networks. A first line of control is transcriptional with
regulators such as two-component systems (TCSs) that respond to physical and
chemical perturbations. It is followed by posttranscriptional regulations in which small
regulatory RNAs (sRNAs) may affect RNA translation. Streptococci are opportunistic
pathogens for humans and farm animals. The TCS CiaRH is highly conserved among
this genus and crucial in bacterial survival under stressful conditions. In several
streptococcal species, some sRNAs belong to the CiaRH regulon and are called
csRNAs for cia-dependent sRNAs. In this review, we start by focusing on the
Streptococcus species harboring a CiaRH TCS. Then the role of CiaRH in streptococcal
pathogenesis is discussed in the context of recent studies. Finally, we give an overview of
csRNAs and their functions in Streptococci with a focus on their importance in bacterial
adaptation and virulence.

Keywords: Streptococci, regulation, CiaRH, regulatory RNAs, csRNAs

INTRODUCTION

Due to their importance in the regulation of gene expression, small non-coding regulatory RNAs
(sRNAs) are present in all kingdoms of life. The sRNAs were discovered in prokaryotes long before
the first short interfering RNAs (siRNAs) and microRNAs (miRNAs) in eukaryotes. Adaptation to
the environment involves a complex regulatory network in which sRNAs play an essential role.
A decade ago, the high number of sRNAs discovered in various bacterial species was surprising
(Brantl, 2009). Interestingly, these sRNAs differ in length, structure, and mode of action (Gottesman
and Storz, 2011). However, sRNAs, 50–500 nucleotides long molecules, are often involved in the
regulation of several cellular pathways and allow bacteria to adapt and survive under stressful
conditions. All sRNAs are classified in several groups according to their location in the genome
and their modes of action (Storz et al., 2011). In 1984, the first chromosomally encoded sRNA
was discovered in Escherichia coli: MicF. This sRNA inhibits the translation of OmpF messenger
RNA (mRNA) encoding the major membrane porin, OmpF (Mizuno et al., 1984). To respond to
environmental changes, bacteria must first sense these changes, and two-component regulatory
systems (TCS) are known to perform this function (Stock et al., 2000).

Frontiers in Microbiology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 669396

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.669396
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.669396
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.669396&domain=pdf&date_stamp=2021-05-25
https://www.frontiersin.org/articles/10.3389/fmicb.2021.669396/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-669396 May 25, 2021 Time: 13:3 # 2

Jabbour and Lartigue csRNAs in Streptococci

Streptococcal species infect humans and farm animals.
Although some of them are commensal, other are responsible
for severe infections in humans (Krzyściak et al., 2013). In
Streptococci, many TCSs have been found. The TCS CiaRH
was identified to be involved in natural competence and
general virulence (Patenge et al., 2013). It is widespread
among Streptococci but not found in another bacterial genus.
Interestingly, it controls the expression of sRNAs called cia-
dependent sRNAs (csRNAs) (Halfmann et al., 2007). This
review concerns csRNAs identified in streptococci. It starts by
highlighting the most important streptococcal species harboring
a CiaRH and then analyzes the CiaRH TCS roles. Finally,
this review focuses on all csRNAs identified until now and
their functions.

STREPTOCOCCUS SPECIES
HARBORING A TCS CIARH

The Streptococcus genus is composed of chain-forming
gram-positive bacteria including a large number of species
(>100). Although this genus includes beneficial species such
as Streptococcus thermophilus, used in the food industry for
the production of yogurt (Blomqvist et al., 2006), streptococci
are opportunistic pathogens, often involved in severe diseases
in humans and farm animals. The major species in human
infections are Streptococcus pneumoniae, S. pyogenes, and
S. agalactiae (Krzyściak et al., 2013). S. pneumoniae is the main
cause of community-acquired pneumonia, meningitis, and
acute otitis media. S. pyogenes (Group A Streptococcus), an
exclusively human pathogen, is involved in mild (pharyngitis,
skin infections) to severe fatal invasive infections, such as
necrotizing fasciitis and streptococcal toxic shock syndrome.
Groups C and G Streptococci, such as Streptococcus dysgalactiae
subsp. equisimilis and Streptococcus equi, are microbiologically
similar to S. pyogenes (Baracco, 2019). S. agalactiae (Group B
Streptococcus), a commensal bacterium of the gastrointestinal
and genitourinary tracts, is the leading cause of neonatal
infections, causing pneumonia, bacteremia, and meningitis via
maternal transmission. As S. pneumoniae, Streptococcus mutans,
Streptococcus sanguinis, Streptococcus gordonii, Streptococcus
mitis, Streptococcus oralis, and Streptococcus infantis belong to
the physiological flora in the human oral cavity. S. mutans is
an opportunistic commensal species responsible for biofilm
formation causing dental caries but also infective endocarditis.
Conversely, S. gordonii and S. sanguinis are non-cariogenic
colonizers. Streptococcus gallolyticus (and less frequently
Streptococcus lutetiensis), an opportunistic bacterium inhabiting
the gastrointestinal tract, is one of the main causes of infective
endocarditis and is strongly associated with colorectal cancer
(Pasquereau-Kotula et al., 2018). Among Streptococci, including
S. agalactiae and S. equi mentioned above, some species can
also infect animals, as Streptococcus suis, responsible for severe
invasive, and often lethal diseases in swine and humans and
Streptococcus uberis, main agent of mastitis in dairy cows
(Keane, 2019). These bacteria must colonize, invade, and persist
in the host. But above all, they must adapt to environmental

changes and the various types of stress they encounter. One
of the mechanisms that bacteria use to adapt and survive is
the regulation of gene expression through the sRNA-mediated
two-component regulatory systems.

CIARH: A STREPTOCOCCAL
TWO-COMPONENT REGULATORY
SYSTEM

TCS CiaRH was first identified in S. pneumoniae while selecting
for cefotaxime resistance in spontaneous laboratory mutants.
CiaH is a histidine protein kinase anchored in the cytoplasmic
membrane that receives information from the environment.
It transmits the information to CiaR, a cytoplasmic response
regulator that translates the signal into a cellular response by
regulating the expression of targeted genes (Figure 1; Guenzi
et al., 1994). The amino-acid sequence identity of CiaH and
CiaR from different species ranges between 48–71 and 77–85%,
respectively (Riani et al., 2007). In several species, CiaRH is
involved in biofilm formation. In fact, the presence of SpeA
(streptococcal pyogenic exotoxin A) in S. pyogenes leads to down-
regulation of CiaRH expression genes and attenuates the biofilm-
forming capacity, suggesting a link between TCS expression
and biofilm formation (Babbar et al., 2019). In S. sanguinis,
the deletion of the ciaR gene up-regulates the expression of
arginine biosynthesis genes resulting in the formation of a
fragile biofilm (Zhu et al., 2017). In S. gordonii, the inactivation
of SdbA, a thiol-disulfide oxidoreductase, up-regulates CiaRH,
which in turn leads to enhanced biofilm formation (Davey et al.,
2016a). In S. mutans, the inactivation of CiaH gene affects the
dental biofilm formation, abolishes bacteriocin production and
competence development, suggesting the involvement of CiaRH
in these phenotypes (Qi et al., 2004). Actually, the up-regulation
of CiaRH in sdbA mutant S. gordonii strain leads to bacteriocin
expression shutdown whereas inactivation of CiaRH restores
bacteriocin production. Involvement of the TCS in bacteriocin
expression indicates its importance in bacterial competition in
order to colonize the host (Davey et al., 2016b). CiaRH is
also known to influence streptococcal stress tolerance. TCS is
involved in tolerance to acid and thermal stress in S. mutans
(Liu and Burne, 2009b). In S. gordonii, mutation of the TCS
leads a greater susceptibility of the mutant to low pH and
oxidative stress than the wild type (Liu and Burne, 2009a).
Moreover, CiaRH is involved in resistance to the immune
system, intracellular survival, and virulence. Actually, in CiaR-
deficient S. agalactiae strains, resistance to the immune system
and intracellular survival are affected (Quach et al., 2009; Mu
et al., 2016). The deletion of CiaRH in S. suis enhances the
bactericidal activity of macrophages and attenuates bacterial
virulence in animal models (Li et al., 2011; Zaccaria et al.,
2016). Furthermore, the transcription level of the TCS is
significantly higher in virulent than in strains of low virulence
(Dong et al., 2015). As for S. pneumoniae, the CiaRH system
prevents autolysis triggered by different conditions and allows
the maintenance of a stationary growth phase (Mascher et al.,
2006). In S. pyogenes, a ciaH mutant strain binds more efficiently
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FIGURE 1 | Regulation of csRNAs expression by TCS CiaRH after exposure of the cell to extracellular stimuli. First, the sensor CiaH detects extracellular stimuli such
as pH variation and antibiotics exposure. CiaH transduces the signal to the regulator CiaR that interacts with promotor and allows csRNA expression. Then, csRNA
interacts with target mRNA and allows or represses the translation. For example, in S. sanguinis, the csRNA1-1 interacts with the PilT mRNA and represses the
translation of PilT protein inducing the reduction of biofilm formation. In S. pneumoniae, csRNA1 combined with csRNA2 and csRNA3 allows the repression of
ComC translation, which reduces the natural competence of bacteria.

to HEp-2 epithelial cells than the wild type. The internalization
rate of the mutant is increased within the same range (Riani
et al., 2007). Conversely, the deletion of CiaRH in S. suis
exhibits a decrease in adherence to HEp-2 epithelial cells (Li
et al., 2011). These conflicting results could be explained in two
different ways. First, CiaRH-mediated regulation can be different
between streptococcal species and under different conditions.
Second, inactivation of only one gene of the TCS (ciaH) does
not allow for obtaining the same phenotype as when both
are inactive. In fact, when ciaH is inactive, ciaR may respond
to other regulators whereas when only ciaR is inactive, ciaH
may regulate other sensors. To summarize, CiaRH is involved
in many cellular processes, including β-lactam resistance, lytic
processes, biofilm formation, bacteriocin production, natural
competence, virulence, and resistance to the immune system
(Dagkessamanskaia et al., 2004; Sebert et al., 2005; Quach
et al., 2009; Li et al., 2011). In S. pneumoniae, a direct
repeat sequence, TTTAAG-N5-TTTAAG, has been identified
by in vitro and in vivo transcriptional mapping as essential
for the binding of CiaR. Fifteen promoters are controlled by

CiaR, five of them (the strongest) drive the expression of
sRNAs, which are designated csRNAs for cia-dependent sRNAs
(Halfmann et al., 2007).

INVENTORY OF CSRNAS IDENTIFIED
SO FAR

The sRNAs are classified into four major groups: CRISPRs
(clustered regulatory interspaced, short palindromic repeats),
riboswitches, protein-binding RNAs, and trans-acting RNAs.
And the csRNAs belong to the trans-acting class and more
precisely to the trans-encoded subclass. Trans-encoded RNAs
are often expressed by genes located at a different locus
from their target genes and thus share only a short and
imperfect complementarity sequence with their target mRNAs.
This imperfect complementarity allows trans-encoded RNAs to
control more than one target mRNA and, therefore, to be part of
complex regulatory networks. Trans-encoded RNAs, by forming
a base association, affect the translation or the stability of the
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TABLE 1 | csRNAs predicted in streptococcal species.

Species Strain csRNA Screening
method

Confirmed by Length (nt) Direct
target

Mechanism of
action

Regulatory
function

References

S. pneumoniae R6
D39

csRNA1 PredictRegulon
server

Northern blot 93 comC,
spr0081,
spr0159,
brnQ, and
spr1097

Translational
repression by
base pairing

Autolysis and
competence
modulation

Halfmann et al., 2007;
Marx et al., 2010; Tsui
et al., 2010; Schnorpfeil
et al., 2013

csRNA2 96

csRNA3 98

csRNA4 92

csRNA4 148

csRNA5

S. agalactiae NEM316 csRNA10 Non-coding
RNA gene

finder

RNA-seq,
Northern blot

145 ND ND ND Marx et al., 2010;
Pichon et al., 2012;
Rosinski-Chupin et al.,
2015

csRNA11 96

csRNA12 118

csRNA13 218

S. mitis B6 csRNA1 Non-coding
RNA gene

finder

Northern blot 94 ND ND ND Marx et al., 2010

csRNA2 97

csRNA3 99

csRNA4 96

csRNA5 146

S. mitis SF100 csRNA2 Non-coding NC 98 ND ND ND Marx et al., 2010

csRNA6 RNA gene
finder

200

S. oralis Uo5 csRNA1 Non-coding
RNA gene

finder

Northern blot 95 ND ND ND Marx et al., 2010

csRNA2 98

csRNA3 100

csRNA4 93

csRNA6 200

S. sanguinis SK36 csRNA1-1 Non-coding
RNA gene

finder

Northern blot 89 pilT Putative
translational

repression by
base pairing

Inhibition of
biofilm

formation

Marx et al., 2010; Ota
et al., 2017

csRNA1-2 Non-coding 93 ND ND ND Marx et al., 2010

csRNA1-3 RNA gene Northern blot 87

csRNA2 finder 96

csRNA7 85

csRNA8 176

S. pyogenes MGAS315 csRNA14 Non-coding RNA seq 68 ND ND ND Marx et al., 2010;

csRNA15 RNA gene
finder

142 Le Rhun et al., 2016

csRNA25 129

S. gordonii str. Challis
substr. CH1

csRNA1 Non-coding
RNA gene

finder

NC 87 ND ND ND Marx et al., 2010

csRNA2-1 96

csRNA2-2 94

csRNA7 90

csRNA21 58

csRNA22 202

(Continued)
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TABLE 1 | Continued

Species Strain csRNA Screening
method

Confirmed by Length (nt) Direct
target

Mechanism of
action

Regulatory
function

References

S. mutans UA159 csRNA23-1 Non-coding
RNA gene

finder

NC 79 ND ND ND Marx et al., 2010

csRNA23-2 81

csRNA24 152

S. gallolyticus UCN34 csRNA9 Non-coding
RNA gene

finder

NC 63 ND ND ND Marx et al., 2010

csRNA18 66

csRNA38 138

csRNA39 118

csRNA40-1 65

csRNA40-2 71

S. dysgalactiae subsp. Equisimilis GGS_124 csRNA14 Non-coding
RNA gene

finder

NC 68 ND ND ND Marx et al., 2010

csRNA15 141

csRNA16 127

csRNA17 117

S. equi subsp. equi 4047 csRNA18 Non-coding
RNA gene

finder

NC 50 ND ND ND Marx et al., 2010

csRNA17 105

S. equi subsp. zooepidemicus MGCS10565 csRNA18 Non-coding
RNA gene

finder

NC 67 ND ND ND Marx et al., 2010

csRNA19 105

csRNA20 108

S. suis 05ZYH33 csRNA26 Non-coding
RNA gene

finder

NC 172 ND ND ND Marx et al., 2010

csRNA27 73

csRNA28 58

S. uberis 0140J csRNA29 Non-coding
RNA gene

finder

NC 84 ND ND ND Marx et al., 2010

csRNA30 83

csRNA31 67

csRNA32 140

S. thermophilus St0
plasmid pSt0

csRNA9 Non-coding
RNA gene

finder

NC 60 ND ND ND Marx et al., 2010

S. thermophilus CNRZ1066 csRNA33 Non-coding
RNA gene

finder

NC 66 ND ND ND Marx et al., 2010

csRNA34 85

csRNA35 64

csRNA36 97

csRNA37 127

S. lutetiensis 033 csRNA9 BLAST analysis NC 63 ND ND ND Denapaite et al., 2016

csRNA18 66

csRNA38 137

csRNA39 119

S. infantis GTC849 csRNA2 BLAST analysis NC 98 ND ND ND Denapaite et al., 2016

csRNA3 100

csRNA4 93

csRNA6 200

NC, Not confirmed; ND, Not determined.
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FIGURE 2 | (Continued)

mRNAs. The interaction between an sRNA and its target mRNA
leads to the inhibition of protein translation by blocking the
ribosome binding site (RBS) or by inducing the degradation of
the sRNA-mRNA duplex by RNases (Hui et al., 2014). Trans-
encoded RNAs can also prevent mRNA degradation or activate
mRNA translation by preventing the formation of an inhibitory

structure that hides the RBS (Prévost et al., 2007). The FasX
sRNA of S. pyogenes allows bacterial dissemination through two
different mechanisms: first, by increasing ska mRNA stability,
allowing the overexpression of streptokinase, and second, by
hiding the RBS and decreasing pilus mRNA translation (Ramirez-
Peña et al., 2010; Danger et al., 2015).
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FIGURE 2 | (Continued)

The five csRNAs, discovered in S. pneumoniae and validated
by Northern blot analyses, are between 87 and 151 nucleotides
long and have a high degree of similarity to each other. The
presence of sequences complementary to RBS in these csRNAs
indicates that they may control the initiation of translation.
csRNA1 was shown to be a negative regulator of competence
development (Tsui et al., 2010). The deletion of csRNA4 and
csRNA5 revealed their role in autolysis control (Halfmann
et al., 2007), and a mutant of csRNA5 was defective in a lung
infection (Mann et al., 2012). The targets of these csRNAs
were investigated by computational predictions with targetRNA
and IntaRNA (Tjaden et al., 2006; Busch et al., 2008). Thirty-
three predicted genes were tested by translational fusion, and
six of them are possibly regulated by S. pneumoniae csRNAs

(Schnorpfeil et al., 2013). The spr0081, spr0371, spr0551, and
spr1097 genes encode membrane-spanning proteins that belong
to different transporter families. The spr0159 gene encodes a
protein harboring a DNA-binding domain and therefore is most
likely to be a transcriptional regulator. The last one, spr2043
(ComC), encodes the competence-stimulating peptide precursor
(CSP), suggesting a link between CiaRH and competence
control, mediated by csRNAs (Figure 1; Håvarstein et al.,
1995; Schnorpfeil et al., 2013). It has been shown that each of
the csRNAs down-regulates the comC gene, but they are not
as effective alone as they are all together (Schnorpfeil et al.,
2013). However, the combination of three csRNAs, csRNA1, 2,
3, or csRNA1, 2, 4, is sufficient to decrease the competence
of S. pneumoniae (Laux et al., 2015). Interestingly, duplicated
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FIGURE 2 | (Continued)

csRNA was observed in Hungarian S. pneumoniae serotype 19A
isolate. Indeed, an internal sequence duplication is the cause
of the carriage and expression of longer version of csRNA5
(Brantl and Brückner, 2014).

In the study of Marx et al. (2010), the presence of the
CiaR binding site located in the intergenic regions and
followed by transcriptional terminator was investigated in 14
streptococcal genomes. Thus, 61 candidate genes potentially
express csRNAs. Among them, four were predicted in all
S. agalactiae strains: csRNA10, csRNA11, csRNA12, and
csRNA13. Their expression was confirmed in NEM316 by
RNA sequencing and the first three were also validated by

Northern blot. The genes were renamed srn015, srn024,
srn070, and srn085, respectively. The corresponding csRNAs
were overexpressed at low pH (5.2), suggesting they could
contribute to acid stress resistance (Rosinski-Chupin et al.,
2015). However, no function and no targets have been
assigned to them yet.

In S. sanguinis SK36, six csRNAs were predicted (csRNA1-
1, csRNA1-2, csRNA1-3, csRNA2, csRNA7, and csRNA8) and
confirmed by Northern blot (Marx et al., 2010). Target prediction
and a luciferase reporter assay allowed the identification of
the pilT gene, a constituent of the type IV pilus gene cluster,
to be the target of S. sanguinis csRNA1-1. The interaction
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FIGURE 2 | (Continued)

between csRNA1-1 and the pilT mRNA was proved by RNA-
RNA electrophoretic mobility shift assay (EMSA). Furthermore,
csRNA1-1 and csRNA1-2 arranged in tandem in S. sanguinis
genome are probably duplicated genes that negatively regulate
biofilm formation (Ota et al., 2017; Figure 1). This observation
suggests the implication of csRNAs in the host colonization
by this species and provides further evidence concerning the
involvement of csRNAs in bacterial adaptation.

The csRNA genes in S. pyogenes MGAS315 (csRNA14,
csRNA15, and csRNA25) were also predicted, and the expression
of csRNA15 and csRNA25 was confirmed by RNA sequencing
(Marx et al., 2010; Le Rhun et al., 2016).

Five csRNAs in S. mitis B6 (csRNA1, csRNA2, csRNA3,
csRNA4, and csRNA5) and five other csRNAs in S. oralis
Uo5 (csRNA1, csRNA2, csRNA3, csRNA4, and csRNA6) were
predicted and confirmed by Northern blot (Marx et al., 2010).
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FIGURE 2 | Alignments of csRNAs sequences by species by MultAlin. Nucleotides in red correspond to highly conserved sequences. Nucleotides in blue
correspond to conserved sequences. Nucleotides in black correspond to non-conserved sequences.

Other csRNAs have been predicted in S. mutans UA159,
S. suis 05ZYH33, S. gordonii, S. gallolyticus, S. dysgalactiae,
S. equi, S. uberis, and S. thermophilus but not confirmed so
far (Marx et al., 2010; Table 1 and Supplementary Table 1).
The identification of csRNAs of new viridans streptococci
obtained from primates indicates that all csRNAs predicted
previously in S. mitis, S. gallolyticus, S. gordonii, and S. oralis are
present in the new strains studied. Two species with unknown
csRNAs contain csRNAs from other species. Indeed, S. infantis
harbors four of the five S. oralis Uo5 csRNAs, and S. lutetiensis
harbors the S. gallolyticus UCN34 csRNAs except for csRNA40
(Denapaite et al., 2016).

Except for S. pneumoniae and S. sanguinis, few studies
regarding the role and targets of these csRNAs in other

streptococci were conducted, although the importance of
RNAs is highlighted.

DISCUSSION

The aim of this review is to carry out an inventory of the
sRNAs regulated by the two-component regulatory system
CiaRH present in streptococci. CiaRH TCS is conserved in
all streptococci and controls many cellular processes including
natural competence, virulence, and resistance to the immune
system (Dagkessamanskaia et al., 2004; Sebert et al., 2005;
Quach et al., 2009; Li et al., 2011). The csRNAs increase the
regulatory networks of CiaR, which already directly controls
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more than 20 other genes (Halfmann et al., 2007). Promoters
that drive the expression of the five csRNAs of S. pneumoniae
are strongest in the CiaR regulon (Halfmann et al., 2007).
The high proportion of sRNAs compared with other genes
controlled by CiaRH indicates the importance of these csRNAs
in bacterial regulation. Although csRNAs are predicted in various
Streptococcus species and their importance highlighted, for most
of them, no role or target has been identified until now. So
far, only the csRNAs of S. pneumoniae and S. sanguinis have
been investigated (Schnorpfeil et al., 2013; Laux et al., 2015;
Ota et al., 2017). The study of csRNAs in those species has
allowed the identification of different metabolic pathways in
which csRNAs may be involved. Indeed, S. pneumoniae harbors
five csRNAs, all implicated in competence development and
thus, probably in horizontal transfer (Halfmann et al., 2007; Tsui
et al., 2010). Moreover, two S. pneumoniae csRNAs (csRNA4 and
csRNA5) seem to control bacterial autolysis (Halfmann et al.,
2007). The involvement of csRNA5 in lung infection as well
shows that each csRNA may be involved in different regulatory
pathways (Mann et al., 2012). In this case, csRNA5 is on the
one hand involved in competence development and on the other
hand in virulence.

The investigation of S. pneumoniae csRNAs targets also
allowed identifying different regulation pathways. According to
the competence regulation previously mentioned, one target
(ComC), encoding the competence-stimulating peptide precursor
(CSP) was identified. This identification adds a proof concerning
the involvement of S. pneumoniae csRNAs in horizontal
transmission pathways. The Spr0159 target is most likely a
transcriptional regulator: this suggests the involvement of the
csRNAs in complex regulatory networks. Other identified targets
(spr0081, spr0371, spr0551, and spr1097), encoding membrane
spanning, belonging to different transporter families, indicate the
possible involvement of csRNAs in stress resistance (Schnorpfeil
et al., 2013). The four csRNAs identified in S. agalactiae NEM316
strain (srn015, srn024, srn070, and srn085) are overexpressed
at low pH (5.2), suggesting their role in acid stress resistance
(Rosinski-Chupin et al., 2015). Thus, the possible implication of
csRNAs in stress tolerance in S. pneumoniae and S. agalactiae
reveals a new regulation pathway in which csRNAs may
play a role. In S. sanguinis, csRNAs are involved in host
colonization by biofilm formation (Ota et al., 2017). This
regulation of colonization by csRNAs has not yet been observed
in other streptococcal species. Analysis of S. pneumoniae, S.
agalactiae, and S. sanguinis csRNAs demonstrates that they
are involved in a wide range of regulatory pathways. Indeed,
the colonization, the virulence, the horizontal transfer, and
maybe the resistance to environmental stress is affected by
csRNAs. The various regulatory pathways in which csRNAs
are involved can be explained by the diversity of csRNAs in
each species and between streptococcus species. Moreover, as
observed in S. pneumoniae, one csRNA can be involved in
different regulatory pathways, thus increasing the complexity of
regulatory networks.

The diversity of csRNAs between streptococcus species is
remarkable (Table 1 and Supplementary Table 1). However,
some species contain csRNAs from other species (S. infantis

harbors csRNAs of S. oralis Uo5 and S. lutetiensis harbors
the S. gallolyticus UCN34 csRNAs) (Denapaite et al., 2016).
Moreover, S. oralis strains contain duplicated csRNAs genes.
A genetic island of four genes is present between them but absent
in strains without csRNAs gene duplication. Furthermore, this
genetic island is integrated in S. infantis DD18 between two
csRNAs (Denapaite et al., 2016). These data suggest that csRNAs
are not only involved in gene regulation but may also contribute
to horizontal gene transfers improving bacterial adaptation.

In some species, csRNAs display a high degree of similarity
to each other (Figure 2). This similarity is observed more
particularly in regions complementary to RBSs and AUG start
codons, suggesting that csRNAs bind to mRNA target and inhibit
translational initiation. This would be fully consistent with the
regulatory mechanism most commonly associated with sRNAs
(Gottesman and Storz, 2011; Storz et al., 2011).

Other bacterial regulators also control multiple sRNA genes.
For example, LuxO of Vibrio harveyi controls the expression
of five sRNA genes (Tu and Bassler, 2007). The presence
of regulators involved in sRNA regulation in various species
suggests the importance of these sRNAs in bacterial adaptation
and, beyond that, in bacterial survival.

Virulence and resistance to antibiotics and to the
immune system mediated by CiaRH are possibly carried
out through csRNAs. The discovery of Cbf1 protein that
stabilizes all csRNAs in S. pneumoniae provides additional
proof of the importance of csRNAs (Hör et al., 2020). In
conclusion, understanding the csRNA-dependent regulatory
network may contribute to the development of strategies
against bacterial infections by targeting these sRNAs
(Warner et al., 2018).
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