

Water interception and release of soluble carbon by mulches of plant residues under contrasting rain intensities

P. Thiébeau, Cyril Girardin, Sylvie Recous

► To cite this version:

P. Thiébeau, Cyril Girardin, Sylvie Recous. Water interception and release of soluble carbon by mulches of plant residues under contrasting rain intensities. Soil and Tillage Research, 2021, 208, pp.1-9. 10.1016/j.still.2020.104882 . hal-03261869

HAL Id: hal-03261869 https://hal.inrae.fr/hal-03261869v1

Submitted on 3 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Version of Record: https://www.sciencedirect.com/science/article/pii/S0167198720306644 Manuscript_566314a1caa8442a1ed067a678690ed6

1	Water interception and release of soluble carbon by mulches of plant residues under contrasting
2	rain intensities
3	
4	Pascal Thiébeau ^a , Cyril Girardin ^b , Sylvie Recous ^{a*}
5	
6	^a Université de Reims Champagne Ardenne, INRAE, FARE laboratory, Reims, France
7	^b AgroParisTech, INRAE, UMR ECOSYS, Thiverval-Grignon, France
8	
9	Corresponding author:
10	Sylvie Recous, +33 326 773 583; sylvie.recous@inrae.fr
11	
12	

13 Highlights

• Soluble C leaching from mulches by rain is an important pathway for soil C cycling

15 • Interception of water by mulches depends on the residue type and amount of rain applied

• Rain leached a large proportion of the initial residue water-soluble C

• High rainfall intensity was less effective than low intensity at displacing soluble C

18

19 Abstract

20 The presence of crop residues on the soil surface of no-till cropping systems has important 21 consequences on water flows between the atmosphere, litter layer (mulch) and soil. The consequences 22 of rainfall on the transport of soluble C from litter layers are poorly known, despite their importance 23 for soil carbon (C) and nutrient cycling. We quantified relationships among the rain amount and 24 intensity, the water retention by mulches and the soluble C loss from mulches under rainfall. Mulches 25 of residues from mature crops (maize, soybean and rice) and a cover crop (pea) were placed under 26 continuous simulated rains with intensities of 4, 11 and 24 mm h⁻¹ for 23 hours, and we measured the 27 water interception dynamics of the mulches and the water and soluble C flows under the mulches. The 28 maximal water contents of the pea, maize and rice mulches did not differ significantly from each other 29 (5.9 to 6.6 g H₂O g⁻¹ dry matter), while the soybean mulch retained much less water than the other 30 mulches at 3.5 g H₂O g⁻¹ dry matter (DM). The soluble C loss was 9.2 to 23.7 % (4 mm h⁻¹) and 19.3 31 to 55.2 % (24 mm h^{-1}) depending on the residue type after 7 hours of rain. With similar amounts of 32 received rain (500 mL), the soluble C loss was identical for intensities at 4 and 11 mm h⁻¹, and 33 significantly lower at 24 mm h⁻¹, suggesting inefficient rain transport at the high rain intensity. Finally, 34 this study highlights the importance of better characterizing the physical and water properties of 35 mulches and residue particles because of their significant effects on water and soluble C transport.

36

37 Key words (indexing terms)

38 carbon; crop residue; no-till; rain regime

39

40 **1. Introduction**

41

42 The development of no-till agricultural systems modifies the way crop residues are incorporated 43 back into the soil compared to conventional systems with ploughing. These residues form a layer, or 44 mulch, on the soil surface in no-till systems or are partially incorporated into the first few centimetres 45 of soil with reduced tillage. The presence of crop residues on the soil surface has very significant 46 consequences on water and heat flows between the atmosphere, mulch and soil, as well as on the 47 regulation and stratification of biological activity and organic matter in soil and mulch (Bussière and 48 Cellier, 1994; Baumhardt and Jones, 2002; Fuentès et al., 2012; Dietrich et al., 2019). However, the 49 determinants of water retention by crop residues and the consequences of rainfall on the transport of 50 soluble elements, particularly soluble carbon (C), are much less known, despite their importance for C 51 and nutrient cycling in soils (Lee et al., 2014; Iqbal et al., 2015). In particular, it has been shown that 52 plant litter-derived soluble C may constitute a significant pathway of C stabilization in soil (Cotrufo et 53 al., 2013). Soluble C can account for an important fraction of C in crop residues, varying from approximately 10 to 80 g 100 g⁻¹ total C for main crops and cover crops depending on the degree of 54 55 maturity and part of the considered plant (Trinsoutrot et al., 2000; Redin et al., 2014).

56 Although the amount of rainwater that can be intercepted and retained by mulches has received 57 little study, we know that this interception depends mainly on the amount and nature of crop residues 58 (Tuckey, 1970). Previous studies have shown that the maximum water content of these mulches can be 59 modulated according to the crop residue characteristics (Quemada and Cabrera, 2002; Iqbal et al., 60 2013) and their morphological, anatomical and chemical traits (Garnier and Laurent, 1994). Iqbal et al. 61 (2013) showed for stems of different annual species that the main explanatory characteristic of their 62 maximal ability to retain water was the density of the tissues of the stems (or its inverse, i.e., porosity), 63 whereas chemical characteristics were not directly related to water retention properties. A number of 64 studies have compared the effects of rainfall intensity on the water retention capacity of mulch on the 65 soil surface, mostly on forest systems with leaf litters (e.g., Sato et al., 2004; Schrumpf et al., 2006; 66 Dunkerley, 2015). More recently, the fact that residue mulch constitutes a "hot spot" of biological 67 activity and denitrification has led to interest in the water retention capacity of mulches (Kravchenko et al., 2017) but such study is still rare. To our knowledge, the transport of soluble C or nutrients under
the influence of rainfall carried out in an agricultural context are rare (Halvis and Alberts, 1983;
Schreiber, 1985; Schreiber and McDowell, 1985; Schreiber, 1999) despite the experimental
observation of residue-derived soluble C transport into soil (Coppens et al., 2006; Lee et al., 2014;
Iqbal et al. 2015).

The objective of this work was to understand the relationships among the rain regime (varying by the intensity and amount of water applied), water retention by mulch and soluble C loss from mulch under the influence of rain. Experimentally, mulch residues from four different crops were placed under simulated rains of realistic and contrasting intensities representing the conditions in temperate to tropical climates. We measured the dynamics of water interception by mulches and the leaching of soluble C from the mulch. To facilitate the dynamic and quantitative monitoring of soluble C extracted from the mulch by the rains, we did not place soil under the mulch.

80

81 **2. Materials and methods**

82 2.1 Crop residues

83 Maize (Zea mays L.), rice (Oriza sativa L.), and soybean (Glycine max L.) were harvested at the 84 mature stage, while pea (Pisum sativum L.) was harvested at flowering so that its residues represented 85 those of a cover crop. The crop residues were collected in the field in three areas, namely, an area of 86 intensive agriculture in northern France, a family farm in Cerados (Brazil) and upland rice cropping 87 systems in the Central highlands of Madagascar. We used all organs to compose the residues, except 88 for the grains and roots. Samples were dried at 40°C until they reached a constant weight and then 89 were stored in paper pockets. The chemical characteristics of the selected residues were determined 90 prior to the rainfall experiment and are given in Table 1. Briefly a sub-sample of each residue was 91 ground and analysed to determine the chemical and biochemical characteristics via a proximal analysis, 92 thus providing the relative proportion of the so-called "van Soest" fractions of the residue dry matter. 93 The soluble fraction was determined by extraction in hot water (100 °C) for 30 min followed by 94 extraction with a neutral detergent (100 °C) for 60 min. The hemicellulose, cellulose and lignin 95 fractions were subsequently determined via a proximate analysis (Goering and Van Soest 1970). The

96 cold water-soluble fraction of the residues was determined by extraction in deionised water over 30
97 min at 20 °C (plant material/water ratio 1/100). The total C and N contents of the plant residues were
98 determined via total combustion using an elemental analyser (NA 2000, Fisons Instruments, Milan,
99 Italy).

100 Physical characteristics were also determined. Residue-particle bulk density was calculated 101 using the immersion method in water (Iqbal et al., 2013). Mulch thickness was measured for 4 102 replicates per residue type, with 7 measures per replicate (Thiébeau, 2019). The bulk density of the 103 mulch layers was calculated from the thickness of the layers and the added mass of the residues for 104 each residue type.

105

106 Insert Figure 1

107 Insert Table 1

108

109 2.2 Simulated rainfall experiments

110 A similar residue quantity was used for the 4 types of crops to facilitate the comparison of results, with 12.4 g of dry residue, which is equivalent to 0.75 kg dry matter m^{-2} of residue, placed as a litter layer 111 112 (mulch) on a 1 mm nylon mesh in a PVC cylinder that was 14.5 cm in diameter (165 cm²) and four cm 113 in height. This amount of residue corresponded to the usual residue biomass in fields for the main 114 crops (Thiébeau and Recous, 2016; Thiébeau, 2019). The crop residue samples were cut into 115 fragments of two centimetres in length (Fig. 1) to reduce the heterogeneity of composition of the 116 mulches between replicates for each crop species. Indeed, the inherent biological variability in the 117 composition and morphology of plant organs for a given species prevent the replication of 12.4 g of 118 mulches on a 165 cm² surface and do not allow the results to be related to an initial residue 119 composition; thus, the particle size had to be reduced. Thus, the potential natural differences between 120 species were eliminated to some extent. Depending on the residue morphological characteristics and 121 density, the particles formed a layer with an initial thickness of 9.3 ± 0.8 mm for rice, 8.6 ± 1.3 mm for 122 maize, 12.8 ± 1.5 mm for pea and 6.7 ± 1.0 mm for soybean. Therefore, the mulch layers had initial 123 bulk densities of 81 ± 6.4 (rice), 87 ± 11.4 (maize), 59 ± 6.2 (pea) and 112 ± 14.5 kg m⁻³ (soybean).

Each experimental treatment consisted of three replicates per residue type (n=4) and per rain intensity (n=3). Drainage buckets were placed under each cylinder to collect the percolated water and were weighed and sampled periodically to characterize the drained water under the litter layer. The experiment was run under controlled temperature conditions at 20 ± 1 °C.

128 The drop-forming rainfall simulator, described earlier by Iqbal et al. (2015), consisted of 129 capillary tubes (inner diameter of 0.5 mm) that were equally distributed over the surface (186 cm^2) 130 using 72 needles (0.3 mm diameter x 13 mm long; "BD Microlance 3"; Becton Dickinson, Fraga, 131 Spain) separated from each other by 16 mm; the simulator released 3906 drops per m² (Fig. 2). The 132 rainfall simulator was fed with a flow of deionized water controlled by a Gamma L electromagnetic 133 pump (ProMinent, Heidelberg, Germany). Flow rates were adjusted to predetermined intensity 134 profiles and maintained at a constant value to achieve a constant rainfall intensity. Three rainfall 135 intensities were chosen to simulate different climatic scenarios consistent with the field conditions of 136 the studied crops: i) a low regular rainfall intensity of 4 to 5 mm h⁻¹ representative of temperate 137 climates; ii) an intermediate rainfall intensity of 11 to 12 mm h^{-1;} and iii) a strong rain intensity at 24 to 138 25 mm h⁻¹, representative of the intensity that occurs frequently in tropical conditions.

139

140 **Insert Figure 2**

141

142

143 2.3 Experimental protocol

144 The rain experiment was run for 24 hours. First, the rain simulations started one hour before the 145 positioning of the cylinders; then, each cylinder with a mulch layer was placed under one simulator for 146 23 hours. During the first 7 hours of rain, mulch layers and buckets were quickly removed every hour 147 and placed into a pre-weighed tray to record the weight of the water held in the litters and the 148 percolates in the buckets. These data were used to calculate the water interception by the litter and the 149 amount of leached water. Each sieve was immediately returned under the rain simulator until the next 150 measurement. After the homogenization of the bucket water content, an aliquot of water was sampled 151 and frozen until the determination of dissolved organic carbon (DOC). After 22 and 23 hours of 152 continuous rain, sieves and buckets were weighed again, and sub-samples of water were collected.
153 Notably, under the simulated rainfall intensity of 24 mm h⁻¹, a large volume of water had leached
154 through the samples between hour 7 and hour 22 and could not be quantitatively stored, so the above
155 measurement was not conducted.

156

157	2.4 Anal	vsis

158 At the end of experimentation (23 hours), the moist residues were first weighed, and then 159 samples were dried at 40 °C until they reached a constant weight, and the loss of mass was calculated. 160 The maximum water storage capacity (MaxWC) was calculated for each residue type and each rain 161 intensity as the difference in weight between the wet mulch and the mulch dried at 40°C, expressed 162 per g of residue dry matter (DM) at 40 °C. The residues were then dried at 120 °C until constant 163 weight. Minimum water storage capacity (MinWC) was calculated as the difference in weight between 164 the mulch dried at 120 °C and at 40 °C, expressed per g of residue DM at 40 °C (Iqbal et al., 2013). A 165 subsample of each crop residue was ground to a particle size of 80 microns, and the total C and N 166 contents were determined by total combustion using the elemental analyser NA 2000 (Fisons 167 Instruments, Milan, Italy). The DOC in the leached water was measured with a total organic carbon 168 (TOC) analyser (Shimadzu TOC-5050A, Shimadzu SAS, Marne la Vallée, France).

169

170 2.5 Calculations and statistical analysis

171 The characteristics of the interception storage capacity of the different residues as a function 172 of the total rain were calculated using a non-linear equation with two parameters (Iqbal et al., 2013):

173 $f = a. X^b$ (1)

174 where "a" is the water absorbed by the first mm of rain per g of residue and "b" is the propensity of 175 the residue to retain an additional mm of water until reaching the maximum retention value.

176 Statistical analysis was carried out with the Sigma-Plot 12 Statistics programme (*Systat Software*, 177 USA). The significance level chosen in our study was p < 0.05. Means were classified in a 178 homogenous group according to the results of ANOVA and the Newman-Keuls test. The statistical 179 model evaluation criteria were the root mean square error (RMSE) and coefficient of determination 180 (R^2) values.

- 181
- 182 **3. Results**
- 183
- 184 3.1 Rainfall assessment

The rainfall balance according to rain intensity and residue species showed that the objective of using the three rain intensities was achieved (Supplementary material SM1), with no statistically significant difference between crop treatments for each rain intensity. The cumulative amounts of water provided by the three rainfall regimes during the experiment were 105 ± 1 mm, 266 ± 7 mm and 560 ± 3 mm. The water flow, calculated from the bucket weight at each hour, showed the establishment of a regular flow of 72 mL h⁻¹ for 4 mm h⁻¹, 190 mL h⁻¹ for 11 mm h⁻¹ and 400 mL h⁻¹ for 24 mm h⁻¹ after 4 to 5 hours of rain (Supplementary material SM2).

192

193 *3.2 Water interception by crop residues*

From the evolution of the weight of mulches throughout the experiment, we inferred the dynamics of water uptake by the four residues under three rainfall intensities (Fig. 3). However, these uptake values were only "apparent" because the loss of crop residue matter under the rainfall was not determined, except for at the end of the experiment using destructive sampling of the residue layers.

198

199 Insert Figure 3

200

During the first 7 hours of rain, water uptake kinetics were fast for all residues. The kinetics of the 4 mm h⁻¹ rain intensity were markedly lower than those of the 11 and 24 mm h⁻¹ rain intensities, which did not differ from each other; this was true for all four types of residues. At the end of the experiment (measurements at +22 and +23 h of continuous rain), the water uptake values under the three rain intensities differentiated from each other for almost all residues, and the residues under the most intense rainfall absorbed the most water (24 mm h⁻¹ > 11 mm h⁻¹ > 4 mm h⁻¹). 207 The water storage of residue particles measured at the end of the experiment for each residue 208 type and each rain treatment varied depending on the residue type and the cumulative quantity of 209 water received (itself resulting from the rain intensity applied) (Fig. 4A). The rice and maize mulches 210 behaved very similarly, with high water retention under 100 mm of water. The soybean mulch retained 211 much less water than the rice and maize mulches. The pea mulch demonstrated intermediate water 212 retention, with a relatively low but continuous increase in water retention with increasing amounts of 213 rain. The relationships between MaxWC and cumulative rain were well fitted by the non-linear 214 equation with two parameters (Table 2). The water absorbed by the first mm of rain ("a" coefficient) 215 varied from 0.3 to 1.5 g H₂O g⁻¹ DM, with the lowest value for pea residues. Furthermore, the "b" 216 coefficient, which is the propensity of the residue to retain an additional mm of water until reaching 217 the maximum retention value, was quite constant (approximately 0.22) for the soybean, maize and rice 218 residues and was 0.46 for the pea residues. The modelled MaxWC confirmed that pea, maize and rice 219 residues contained large amounts of water, with values that were not significantly different from each 220 other (5.9 to 6.6 g H₂O g⁻¹ DM), while soybean retained much less water, with a value of 3.5 g H₂O g⁻¹ 221 DM (Table 2). Conversely, the measured MinWC was higher for pea residues (0.06 g H₂O g⁻¹ DM) 222 than for the three other residues.

223

224 Insert Table 2

225 Insert Figure 4

226

227 3.3 Loss of mulch DM under rain

Pea residues lost much more DM than the three other residues, losing 28.4% of their initial weight under the highest intensity/highest cumulative rain. In contrast, the soybean, maize and rice residues behaved similarly, losing 9.4, 10.7 and 8.3% of their initial weight under the highest rain intensity, respectively, which were not significantly different. (Fig. 4B, supplementary material SM3). This mass loss represented 16.7, 20.5, 31.9 and 29.5% of the initial mass of the "van Soest" soluble fraction for pea, soybean, maize and rice, respectively. The mass loss increased with increasing rain intensity, particularly for pea residues. The N concentration and C:N ratio of the remaining residues measured at the end of the experiment (Supplementary material SM4) showed that leaching affected the residue soluble N as expected. The initial and final C:N ratios did not change significantly for the pea and soybean residues, indicating that the C:N ratio of the residue fraction leached was similar to the C:N of the whole residue, except soybean at 24 mm h⁻¹ intensity. For maize, the final C:N ratio increased significantly for the three rain regimes compared to the initial C:N, thus indicating a larger loss of soluble residue-N compared to residue-C. Conversely, the C:N ratio slightly decreased for rice residue but the difference was not significant.

242

243 3.4 Dynamics of soluble C release

244 The soluble C concentration of the leached water varied according to residue type, with pea >> soybean > rice > maize, and varied greatly according to rain intensity (Fig. 5). The 11 mm h^{-1} rain 245 246 intensity resulted in high soluble C concentrations beginning in the first hour, while the 4 mm h⁻¹ led 247 to concentrations in the same range with a delay in the extraction of soluble C. This delay manifested 248 in an offset concentration peak at hours 3 to 6, except for in rice. For all residues, the soluble C 249 leaching was markedly lower under the 24 mm h⁻¹ regime than under the other two regimes, which 250 suggests that the leaching of soluble C by percolating water was not proportional to the rain intensity. 251 In all cases, except for the case of maize, the concentration of soluble C in the leached water decreased 252 over time and became similar under all treatments and rain intensities during the last time interval (22h 253 - 23 h).

254 Insert Figure 5

255

The cumulative soluble C leached, calculated from the volume of recovered leached water and its soluble C concentration at each sampling point of the experiment, showed an almost linear increase during the first 7 hours for all residues and rain intensities (Fig. 6). Strikingly, for all residues except for pea, similar amounts of soluble C were removed under the 24 mm h⁻¹ and 11 mm h⁻¹ intensities until hour 7, with different values at 22 h and 23 h, while the 4 mm h⁻¹ intensity removed markedly less soluble C from residues. In terms of the total amount of C released, the residue treatments were ranked as follows: pea > rice = soybean > maize (Fig. 6). However, when the soluble C leached by

10

263 rain was expressed as a function of the initial water-soluble C (20° C), the ranking of the crop residues 264 was different (Fig. 4C). While approximately 40% of the soluble C was removed by the 4 mm h^{-1} 265 intensity over 23 h for rice, maize and soybean, only 18% of the soluble C was lost from the pea 266 residues. The loss of soluble C increased to 90% for maize and rice at the maximal rate, while it was 267 53% of the initial water-soluble C for pea and soybean. A comparison of the soluble C losses under 268 the same total amount of water at the three rain intensities (Table 3) can clearly show the effect of rain 269 intensity on C transport. Under a total application of 500 mL of water, the soluble C loss was identical 270 at 4 and 11 mm h^{-1} (P = 0.940) and significantly lower for the 24 mm h^{-1} intensity relative to 4 mm h^{-1} 271 (P = 0.007) and 11 mm h⁻¹ (P = 0.005).

272 Insert Figure 6273 Insert Table 3

274

275 **4. Discussion**

276

277 The objective of this study was to quantify the extent of soluble C leaching from crop residues 278 depending on the nature of the residues and rainfall regime. The four types of residues were chosen 279 because of their agricultural importance and the diversity among their chemical compositions. Pea 280 plants sampled in the vegetative stage as a cover crop had a large soluble fraction compared to rice and 281 maize sampled at maturity, while soybean had intermediate values. Soybean had a high lignin content 282 compared to the other three crops due to the pods in the soybean residue mass (Liu et al., 2015). We 283 acknowledge that the differences in the physical characteristics of the litter layers were partially erased 284 by standardizing the average particle size by hand cutting but this reduction in particle length was 285 crucial for reducing the compositional variability of the mulch replicates, which is inherent to the 286 variability in composition of plant debris. However, the residue particles were not ground but hand 287 cut; therefore, the morphological integrity of the residue particles was not altered.

The experimental litter mulches used here fell within the lower ranges of bulk density and thickness described under natural conditions, particularly in conservation agriculture systems (Thiébeau, 2019) and natural forest systems (e.g., Dunkerley, 2015). The different mulch thicknesses measured in farmer plots by Thiébeau (2019) varied from 5 mm to 26 mm for residue masses ranging from 0.2 to 1.3 kg DM m⁻². Dietrich et al. (2019) measured sugarcane mulch thicknesses varying from 19 mm to 47 mm for residue masses ranging from 0.4 to 1.2 kg DM m⁻². Sato et al. (2004), using leaves of *Lithocarpus edulis*, an evergreen stand coppice, obtained a similar mulch thickness range (10-20 mm) for applications of 0.5 to 1 kg DM m⁻². Nevertheless, data on the thickness of mulches in agrosystems is still very rare, even in investigations of residue masses that were increased to 5 to 15 Mg maize residue ha⁻¹ (Schreiber, 1999).

Since the experimental duration was identical for all treatments, treatments with a high rain intensity also corresponded to increased amounts of rain, and the two factors could not be fully distinguished except by comparing treatments with the same amount of water received. In the literature, available studies with simulated rainfall fall within the precipitation intensity range of our study (e.g., 3.6 to 24.2 mm h⁻¹, Sato et al., 2004; 25 mm h⁻¹, Schreiber, 1985). For agricultural situations, the range investigated by Schreiber (1999) was larger (6 to 99 mm h⁻¹) as it aimed at including the simulation of storm events.

305

306 *4.1 Water dynamics under simulated rains*

307 Mulches of all four types of crop residues intercepted water, and the interception of water 308 (manifested by the weight gain of the moist mulches) depended on the rainfall regime. The 4 mm h^{-1} 309 rainfall accumulated water more slowly, while the 11 and 24 mm treatments behaved similarly. At the 310 end of the experiment, the MaxWC values (5.9 to 6.6 g H_2O g⁻¹ dry residue) obtained for pea, maize 311 and rice were significantly higher than the range (1 to 3 g H_2O g⁻¹ dry residue) previously reported by 312 several authors (Kreye et al., 2013; Dunkerley, 2015; Talhelm & Smith, 2018). Soybean mulches 313 retained less water, even at high cumulative rain amounts, than the other three residues, which cannot 314 be explained by the initial differences in the bulk density of these mulches, and we hypothesize that 315 this is due to the high proportion of high-density soybean material and low water retention of soybean 316 pods. Conversely, water interception by the pea mulches showed a very different response to 317 increasing rainfall application compared to that of rice, maize and soybean mulches and exhibited low 318 initial absorption (a parameter of the model) and high b values, thus reflecting the continual increase 319 in water interception as the amount of water received increased. This response is almost parallel to the

320 observed loss of mass of pea mulches with increasing amounts of water. We assume that the porosity 321 of pea residue tissues, which contain a very high proportion of leachable soluble compounds, 322 increased as the amount of rain received increased, thus promoting increased water retention by the 323 tissues. Iqbal et al. (2013) observed an increase in tissue porosity of maize stems with decomposition 324 in soil, and this finding was translated to an increased MaxWC of these stems. Dunkerley (2015) 325 highlighted the high porosity of mulch, which represented 75% to 95% of the total volume and 326 resulted in the high capacity of the litter layer to intercept and store rainwater. In the present study, pea 327 mulches had lower density than the three other mulch types, thus allowing for higher retention by the 328 mulch itself.

In terms of rain interception, the amount of water intercepted by the mulches after 7 hours represented 2 to 4 mm of rain and increased with rain intensity (Supplementary material SM5), confirming findings from Sato et al. (2004), who obtained a comparable range (0.8 to 3 mm rain intercepted), as well as results reported by Dunkerley (2015), while Schreiber (1999) did not find any significant differences between different rain intensities, with 0.7 to 0.9 mm rain intercepted by maize mulches under his experimental conditions.

335 Last, the excess water percolated under the mulch was directly influenced by the rainfall regime $(24 \text{ mm h}^{-1} > 11 \text{ mm h}^{-1} > 4 \text{ mm h}^{-1})$, and this percolate flow stabilized at the 2nd hour of rain. Walsh 336 337 and Voigt (1977) studied the percolation flows under simulated rain every 30 seconds and found that, 338 at the fine temporal scale, the percolate flow under a fixed rain intensity was not steady, revealing the 339 filling and emptying processes of litter porosity. At our time scale, this was obvious only at the onset 340 of the experiment where the percolate flow increased during the 0-2 h interval and then stabilized. 341 Therefore, the crop residue mulches behaved in a similar manner as forest litter mulches, showing a 342 high water retention capacity varying with crop species, with kinetics and maximum values that 343 depended on the intensity and duration of rainfall. These layers of litter, although intercepting rain, 344 quickly allowed the passage of a flow of solutes, even under the lowest rain duration and intensity 345 tested (e.g., 1 hour at 4 mm h^{-1}).

346

347

348 4.2 Effect of rain on residue C leaching

349 Along with water, soluble C was washed away for all residues and at all rainfall regimes as 350 expected. The loss of mass and C could only be attributed to the effect of rain because the loss of mass 351 by microbial decomposition can be considered negligible within one day (Trinsoutrot et al., 2000). 352 After 23 hours, the measured DM loss under rain varied significantly with residue type and was much 353 higher for the pea residue than for the other residues, which can be explained by the higher initial size 354 of the soluble fraction of pea residue (representing 55% of the initial DM). However, expressed as a 355 proportion of the initial soluble fraction, pea residues lost only 16% of the mass of the soluble pool, 356 while maize and rice lost approximately 30% of their soluble pool, suggesting that the soluble 357 compounds were less accessible to water leaching in the pea residue than in the other residues. Few 358 data are available on the transport of soluble fractions under the influence of rainfall. Uselman et al. 359 (2012) showed the high variability of the quantities involved from forest litter (leaves, branches, roots). 360 Coppens et al. (2006) measured a very transient peak of soluble C accumulation in the soil solution 361 after rain applied to mulch.

362 Expressed as a function of the initial water-soluble C pool, the cumulative loss of soluble C, at 363 t = 7 h, represented 9.2 to 23.7 % (4 mm h⁻¹) and 19.3 to 55.2 % soluble C (24 mm h⁻¹). After 23 hours, 364 the loss of soluble C represented 15.2-36.0 % (4 mm h^{-1}) to 52.6-97.9% (24 mm h^{-1}) of the initial 365 water-soluble C. This finding indicates that although the cumulative quantities of water received in 23 366 h were unrealistic at high intensities (totalling more than 550 mm), there was a near-complete soluble 367 C leaching potential, which can occur in the context of very heavy rainfall events and/or with 368 successive but frequent rainfall over time. Schreiber (1999) investigated maize residues placed under 369 simulated rain and observed that 0.5 to 1% of the total soluble C was leached with 25 mm of rain 370 applied at different intensities, i.e., in the range of values obtained in the early phase of our study. The 371 differences in the loss of DM and water-soluble C resulted from other nutrients (as suggested by the 372 final C:N ratio of leached residues in the present study), particularly soluble organic and inorganic N, 373 being leached down with water, and this was most likely the case for pea residues rich in nitrogen, 374 thus explaining the large difference observed between % soluble DM and % soluble C lost under rain.

375 The hourly monitoring of the C concentration of the leached water revealed that the 24 mm h⁻¹ 376 intensity had a higher water flow but a much lower C concentration than the 11 mm h⁻¹ intensity, 377 which is indicative of a higher soluble C dilution. This is also highlighted by the amounts of leached 378 soluble C collected, which were almost identical for the two highest intensities throughout the kinetics 379 of all residue types except for soybean. The dilution of leachates under a higher rain intensity was 380 previously shown by Schreiber (1999) in the range 6 to 99 mm h⁻¹ rain applied to 10 Mg ha⁻¹ of maize 381 residues. Thus, at high rain intensities, not all the rain efficiently leached down the soluble fraction of 382 the residue; therefore, there is a rain intensity threshold below which soluble C is not completely 383 entrained and beyond which water can pass through the mulch without entraining more soluble 384 compounds. This hypothesis is also supported by the observed increase in the C concentration of the 385 leached water during the 0-4 h period (for all residues except rice), which then decreased slightly, 386 under the 4 mm h⁻¹ rainfall intensity. This finding suggests that at a low rain intensity, a longer contact 387 time between the rainfall and the residue before the beginning of leaching allowed for the 388 displacement of soluble C, as observed by Schreiber (1999).

389

390 5. Conclusions

391

392 Rainfall washed away significant quantities of soluble C from plant residue mulches, and the 393 results depended on the nature of the residues and the duration of the rainfall and its intensity. As 394 expected, the soluble pool and soluble C leaching was increased for pea residues, which have a high 395 initial proportion of soluble compounds, because they were collected in the vegetative stage to mimic 396 cover crop residue. C leaching also increased with increasing rainfall intensity from 4 to 11 mm h^{-1} 397 and then decreased at 24 mm h⁻¹, suggesting a maximum intensity threshold, after which the water 398 would percolate through the mulch without leaching more soluble C. The magnitude of the observed 399 fluxes suggests that crop-soil models should incorporate soluble C transport from mulches to soils by 400 rainfall, which is not, to our knowledge, rarely the case. This work was performed using a single 401 standardized particle size and a single mass for each species; however, the effect of rain on C loss for 402 mulches of residues of different particle sizes or different masses should be better understood because

403	these factors can be modified by management. Lastly, this study emphasized the importance of better
404	characterizing the physical properties (thickness, density, and water properties) of mulches and residue
405	particles in the future to better understand their interactions with water dynamics, which is a key factor
406	of mulch decomposition and the environmental impacts of residue management.
407	
408	Acknowledgements
409	
410	This work was supported by INRAE (French National Research Institute for Agriculture, Food and
411	Environment) and ANR (National Research Agency), the PEPITES project (ANR-08-STRA-10). We
412	thank Olivier Delfosse and Gonzague Alavoine for their technical assistance with crop residue
413	chemical characterization; Dr S. J. Giacomini and Dr B. Chabbert for their helpful comments on an
414	earlier version of this manuscript; and two anonymous referees for their comments that contributed to
415	improving this work.
416	
417	
418	Conflict of Interest Statement
419	The authors have no conflict of interest to declare
420	
421	Authorship
422	Study concept and design: SR and PT; Acquisition and statistical analysis of the data: PT and CG;
423	Writing of the manuscript: PT, CG, and SR. Obtained funding and performed study supervision: SR
424	
425	Data availability statement
426	The data that support the findings of this study are available at Data INRAE,
427	https://doi.org/10.15454/KQS5EK
428	
429	
430	

431

432 **References**

- Baumhardt, R.L., Jones, O.R., 2002. Residue management and tillage effects on soil-water storage and
 grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil Tillage Res. 68, 71-82.
- 435 DOI : 10.1016/S0167-1987(02)00097-1
- Bussière, F., Cellier, P., 1994. Modification of the soil temperature and water content regimes by a
 crop residue mulch: experiment and modeling. Agr.Forest Meteorol. 68, 1-28.
 DOI : 10.1016/0168-1923(94)90066-3
- 439 Coppens F., Garnier P., De Gryze S., Merckx R., Recous S., 2006. Soil moisture, carbon and nitrogen
 440 dynamics following incorporation and surface application of labelled residues in soil columns.
- 441 Eur. J. Soil Sci. 57, 894-905. DOI : 10.1111/j.1365-2389.2006.00783.x
- Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial
 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with
 soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global
 Change Biol. 19, 988-995. DOI : 10.1111/gcb.12113
- Dietrich, G., Recous, S., Pinheiro, P.L., Weiler, D.A., Schu, A.L., Rambo, M.L.R., Giacomini, S.J.,
 2019. Gradient of decomposition in sugarcane mulches of various thicknesses. Soil Tillage Res.
 192, 66-75. DOI : 10.1016/j.still.2019.04.022
- Dunkerley, D., 2015. Percolation through leaf litter: What happens during rainfall events of varying
 intensity? J. Hydrol. 525, 737-746. DOI : 10.1016/j.jhydrol.2015.04.039
- Fuentès, M., Hidalgo, C., Etchevers, J., De Leon, F., Guerrero, A., Dendooven, L., Verhulst, N.,
 Govaerts, B., 2012. Conservation agriculture, increased organic carbon in the top-soil macroaggregates and reduced soil CO₂ emissions. Plant Soil 355, 183-197. DOI: 10.1007/s11104011-1092-4
- Garnier, E., Laurent, G., 1994. Leaf anatomy, specific mass and water content in congeneric annual
 and perennial grass species. New Phytol. 128, 725-736. DOI: 10.1111/j.14698137.1994.tb04036.x

- Goering, H.K, Van Soest, P.J. 1970. Forage Fiber Analysis (apparatus, reagents, procedures and some
 applications). In: USDA Agricultural Handbook, vol. 379.
- Halvis, R.N., Alberts, E.E., 1983. Nutrient leaching from field-decomposed corn and soybean residue
 under simulated rainfall. Soil Sci. Soc. Am. J. 56: 211-218.
 DOI:10.2136/sssaj1993.03615995005700010037x.
- 463 Iqbal, A., Beaugrand, J., Garnier, P., Recous, S., 2013. Tissue density determines the water storage
 464 characteristics of crop residues. Plant Soil 367, 285-299. DOI : 10.1007/s11104-012-1460-8
- 465 Iqbal, A., Aslam, S., Alavoine, G., Benoit, P., Garnier, P., Recous, S., 2015. Rain regime and soil type
- 466 affect the C and N dynamics in soil columns that are covered with mixed-species mulches. Plant

467 Soil 393, 319-334. DOI : 10.1007/s11104-015-2501-x

- Kravchenko, A.N., Toosi, E.R., Guber, A.K., Ostrom, N.E., Yu, J., Azeem, K., Rivers, M.L.,
 Robertson, G.P., 2017. Hotspots of soil N₂O emission enhanced through water absorption by
 plant residue. Nat. Geosci. 10, 496–500. DOI : 10.1038/ngeo2963
- Kreye, J.K., Varner, J.M., Hiers, J.K., Mola, J., 2013. Toward a mechanism for Eastern North
 American forest mesophication: differential litter drying across 17 species. Ecol. Appl. 23,
 1976-1986. DOI : 10.1890/13-0503.1
- 474 Quemada, M., Cabrera, M.L., 2002. Characteristic moisture curves and maximum water content of
 475 two crop residues. Plant Soil 238, 295-299. DOI : 10.1023/A:1014404003851
- 476 Lee, H., Fitzgerald, J., Hewins, D.B., McCulley, R.L., Archer, S.R., Rahn, T., Throop, H.L., 2014.
 477 Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled
 478 environment assessment. Soil Biol. Biochem. 72, 123–132. DOI : 10.1016/j.soilbio.2014.01.027
- Liu, Z., Cao, Y., Wang, Z., Ren, H., Amidon, T.E., Lai, Y., 2015. The utilization of soybean straw. I.
 Fiber morphology and chemical characteristics. Bioresources 10, 2266-2280.
- 481 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/6300 (18/12/2019)
- Redin, M., Recous, S., Aita, C., Dietrich, G., Skolaude, A.C., Ludke, W.H., Schmatz, R., Giacomini,
 S.J., 2014. How the chemical composition and heterogeneity of crop residue mixtures

484 decomposing at the soil surface affects C and N mineralization. Soil Biol.Biochem. 78, 65-75.

485 DOI : 10.1016/j.soilbio.2014.07.014

- Sato, Y., Kumagai, T., Kume, A., Otsuki, K., Ogawa, S., 2004. Experimental analysis of moisture
 dynamics of litter layers—the effects of rainfall conditions and leaf shapes. Hydrol. Process. 18,
 3007-3018. DOI : 10.1002/hyp.5746
- Schreiber, J.D., 1985. Leaching of nitrogen, phosphorus, and organic carbon from wheat straw
 residues: II. Loading rate. J. Environ. Qual. 14, 256-260. DOI:
 10.2134/jeq1985.00472425001400020020x
- 492 Schreiber, J.D., Mc Dowell, L.L., 1985. Leaching of nitrogen, phosphorus, and organic carbon from
 493 wheat straw residues: I. Rainfall intensity. J. Environ. Qual. 14, 251-256. DOI:
 494 10.2134/jeq1985.00472425001400020019x
- Schreiber, J.D., 1999. Nutrient leaching from corn residues under simulated rainfall. J. Environ. Qual.
 28, 1864-1870. DOI: 10.2134/jeq1999.00472425002800060024x
- 497 Schrumpf, M., Zech, W., Lehmann, J., Lyaruu, V.C., 2006. TOC, TON, TOS and TOP in rainfall,
 498 throughfall, litter percolate and soil solution of a montane rainforest succession at Mt.
 499 Kilimanjaro, Tanzania. Biogeochem. 78, 361-387. DOI : 10.1007/s10533-005-4428-4
- Talhelm, A. F., Smith, A.M.S., 2018. Litter moisture adsorption is tied to tissue structure, chemistry,
 and energy concentration. Ecosphere 9, e02198. DOI : 10.1002/ecs2.2198
- 502 Thiébeau, P., 2019. Measuring the thickness of crop residues on the soil surface to estimate their
 503 biomass. Cah. Agric. 28, 11. DOI : 10.1051/cagri/2019011
- 504 Thiébeau, P., Recous, S., 2016. A method to quantify crop residue biomass left on soil surface after
 505 harvesting. Cah. Agric 25, 45001. DOI : 10.1051/cagri/2016027
- 506 Trinsoutrot, I., Recous, S., Bentz, B., Linères, M., Cheneby, D., Nicolardot, B., 2000. Relationships
- 507 between biochemical quality of crop residues and C and N mineralisation kinetics under non-
- 508 limiting N conditions. Soil Science Soc. Am. J. 64, 918-926.
- 509 DOI : 10.2136/sssaj2000.643918x

- 510 Tukey, H.B., Jr., 1970. The leaching of substances from plants. Annu. Rev. Plant Physiol. 21, 305-
- 511 324. DOI : 10.1146/annurev.pp.21.060170.001513
- 512 Uselman, S.M., Qualls, R.G., Lilienfein, J., 2012. Quality of soluble organic C, N, and P produced by
- 513 different types and species of litter:root litter versus leaf litter. Soil Biol. Biochem. 54, 57-67.
- 514 DOI: 10.1016/j.soilbio.2012.03.021
- 515 Walsh, R.P.D., Voigt, P.J., 1977. Vegetation litter: an underestimated variable in hydrology and
- 516 geomorphology. J. Biogeogr. 4, 253-274. DOI : 10.2307 / 3038060
- 517
- 518

519

- 520 Figure captions
- 521 Figure 1: Mulches composed of pea, soybean, maize and rice residue particles
- 522 Figure 2: Rain simulator and leachate collection experimental design
- 523 Figure 3: Inferred evolution of the wet mulch weight (g /mulch) for pea, soybean, maize and rice
- residues under rain intensities of 4, 11 or 24 mm h⁻¹. Values are the means of 3 replicates with their
 standard errors.
- 526 Figure 4: Mulch water content (A), weight loss (B) and leached soluble C (C) of pea, soybean, maize
- 527 and rice mulches measured after 23 hours of rain and expressed against the total rain received for 4, 11
- 528 and 24 mm $h^{\text{-1}}$ rain intensities. Soluble C is expressed as the % of the initial water-soluble C at 20°C
- 529 (WSC). Values are the mean \pm standard error (n=3).
- 530 Figure 5 Soluble C concentration of the leached water under different rain intensities (4, 11 and 24
- 531 mm h^{-1}) for the 4 crop residues. Values are the means of 3 replicates per treatment and per date (±
- 532 standard error).
- 533 Figure 6: Cumulative soluble C in the leached water (mg/sample) as a function of rain intensity (4, 11
- and 24 mm h^{-1}) for the 4 crop residues. Values are the means of 3 replicates (± standard error).

Figure 2

FIGURE 3

FIGURE 4:

FIGURE 5

Table 1: Initial chemical characteristics of the pea, soybean, maize and rice residues. Values are the mean of 3 replicates (± standard error of the mean) for chemical analysis and 8 replicates for measurement of bulk density of particles.

Residue :	Реа	Soybean	Maize	Rice
Total C <i>(g/kg)</i>	449.8 ±2.8	448.3 ±4.0	431.8 ±2.7	393.2 ±3.8
Total N <i>(g/kg)</i>	30.6 ±0.2	6.1 ±0.1	5.6 ±0.2	4.1 ±0.1
C : N ratio	14.7 ±0.1	73.5 ±1.5	77.1 ±3.0	95.9 ±1.6
Water soluble C at 20°C <i>(g/kg)</i>	141.0 ±4.0	45.0 ±1.0	24.0 ±1.0	26.0 ±1.0
Van Soest fractions (q/kq)				
Soluble ¹	555.0 ±2.0	295.7 ±10.2	168.0 ±0.7	228.0 ±0.9
Hemicellulose	174.6 ±0.5	207.5 ±2.2	361.6 ±0.7	324.4 ±1.3
Cellulose	231.0 ±0.9	385.6 ±6.9	423.9 ±1.8	411.3 ±1.9
Lignin	39.4 ±0.6	111.2 ±1.5	46.4 ±0.5	36.3 ±0.3
Particle Bulk density (kg/m ³)	29.3 ±1.0	47.9 ±1.9	25.0 ±1.3	21.3 ±0.9

¹ Van Soest soluble fraction includes water soluble C

TABLE 2: MinWC and MaxWC of crop residues measured at the end of the experiment (after 23 hours of rain). Values are the mean of 3 replicates with the standard error and are classified in homogeneous groups according to the ANOVA results (p < 0.05).

Estimated parameters of the model: f = a. X^b fitted to the water kinetics of the experimental data where "a" is the water absorbed by the first mm of rain/g residue, and "b" is the propensity of the residue to retain an additional mm of water until reaching the maximum retention value.

Residue	MinWC	MaxWC	а	b	<i>R</i> ²	RMSE
	$(g H_2 O g^{-1} DM)$	$(g H_2 O g^{-1} DM)$	$(g g^{-l})$			
Pea Soybean Maize Rice	0.067 ±0.001 ^b 0.043 ±0.002 ^a 0.038 ±0.002 ^a 0.041 ±0.001 ^a	6.62 ±0.40 ^b 3.53 ±0.04 ^a 5.96 ±0.41 ^b 5.89 ±0.48 ^b	0.364 0.950 1.544 1.426	0.460 0.215 0.221 0.231	0.973*** 0.985*** 0.963*** 0.937***	0.415 0.176 0.481 0.630

*** *P* < 0.001

TABLE 3 Soluble C extracted by the first 500 mL of precipitated water for pea, soybean, maize and rice residues under rain of 4, 11 or 24 mm h^{-1} intensities. Values are the mean of 3 replicates with their standard error. The exact duration of rain application (in minutes) needed to reach 500 mL cumulated rain was calculated by intrapolation between two sampling dates for each rain intensity and residue type.

Rain intensity	4 mm h ⁻¹		11 mm h ⁻¹			24 mm h ⁻¹			
	Time Soluble C leached		Time	Soluble C leached		Time	Soluble C	leached	
Residue	min	mg	% initial	min	mg	% initial	min	mg	% initial
Pea	421	169.6±10.6 a,A	23.0	146	152.2±13.8 a,A	20.6	78	69.7±11.8 a,B	9.4
Soybean	403	88.1±5.8 b,A	38.3	166	90.4±2.7 b,A	38.9	77	32.9±5.4 b,B	14.2
Maize	442	57.8±3.7 b,A	44.6	175	62.3±1.6 b,A	48.3	80	25.6±3.9 b,B	19.8
Rice	430	80.6±12.2 b,A	59.2	182	87.7±10.7 b,A	64.5	77	43.4±5.6 b,B	31.8

P (rain intensity) = A, B p < 0.01

P (crop residue type) = a, b p < 0.05