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Abstract 

The proper solution of geotechnical boundary value problems requires robust constitutive 

models that can describe the mechanical behavior of geomaterials under various loading 15 

conditions, while also accounting as closely as possible for the different material scales of 

interest. This is even more relevant to granular media where the complexity of the mechanical 

behaviour is not limited to the nature of the contact law between grains, and instead originates 

from the multiplicity of contacts oriented along all the directions of the physical space to form 

distinctive mesostructures. This paper revisits the so-called H-model, which belongs to the 20 

broad family of micromechanical approaches whereby an intermediate scale (mesoscale) is 

explicitly introduced into the formulation. One great advantage of the model is that it can be 

extended by accounting for further multi-physical couplings, as for example the presence of 

capillary bridges between grains. This versatile model was implemented within an explicit finite 

difference based computational software (FLAC), and the present work demonstrates its ability 25 

to analyze engineering problems with a microstructural viewpoint, while also providing new 

insights in microstructural mechanisms of failure difficult to capture with standard 

phenomenological models. 

 

Keywords: Granular material, Homogenization, Multiscale approach, Multislip theory, 30 
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1. Introduction 

There has been a marked interest in granular matter in the last few years in materials 35 

engineering, including soil mechanics, among others. Granular materials are encountered in a 

variety of engineering applications such as pharmaceutical engineering, food particle storage, 

and civil engineering. They have captured the attention of researchers due to the wide spectrum 

of emergent features they exhibit (Tordesillas, 2007; Tordesillas and Muthuswamy, 2009). 

Many peculiar properties that distinguish granular materials from solids and fluids at the 40 

macroscopic level are absent at smaller scales, namely the contact scale or even larger scales 

involving a few grains, which highlight the multi-scale nature of granular assembly. As salient 

constitutive properties of granular materials, one can list for instance: i) the incrementally 

nonlinear character of the constitutive response (Darve, 1990a), ii) the non-associated character 

of granular plasticity (Darve, 1990b; Darve et al., 1995), iii) the existence of a plastic potential 45 

and its related flow rule that can be regular or irregular (Nicot and Darve, 2007a and 2007b), 

and iv) the existence of a bifurcation domain in which a variety of failure modes can be 

encountered (Nicot and Darve, 2011a). 

Historically, constitutive relations that capture these features were first proposed within a so-

called phenomenological approach where  models were developed in a proper, enriched 50 

mathematical framework to formulate the different observed phenomena directly at the 

specimen scale. Elastoplastic theories (e.g. Taylor, 1934 and 1938; Drucker and Prager, 1952; 

Hill, 1967a and 1967b; Rice, 1970 and 1975), generalized plasticity (Zienkiewicz and Mroz, 

1984; Pastor, 1990), endochronic models (Bazant, 1978), hypoplastic theories (Kolymbas, 1991 

and 1999), and incrementally nonlinear models (Darve, 1990 and 1995) belong to this class of 55 

approach. However, the accuracy of these models relies on a relatively large number of 

parameters that are often difficult to identify in practice and sometimes difficult to interpret 

from a microscale point of view (Wautier et al. 2019). The most popular of these models have 

been tested through a rigorous benchmark procedure, see for instance the proceedings of the 

workshop organized in Cleveland (Saada, 1989). 60 

In 1938, Taylor opened the way for a new class of constitutive models for polycrystalline 

metals marked by multiple coexisting plastic mechanisms. He postulated that the constitutive 

properties could be described by relations between stress and strain components on independent 

planes having various orientations, thus founding the so-called multislip theory (Taylor, 1938; 

Batdorf and Budianski, 1949). Later, the theory was adapted for geomaterials (Zienkiewicz and 65 

Pande, 1977; Pande and Sharma, 1981 and 1982; Bazant and Gambarova, 1984). As far as 
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concrete and cohesive geomaterials are concerned, the inelastic response stems mostly from 

damage mechanisms such as microcracking or microfracturing. The more general term 

"microplane model" was therefore suggested with such a fractured continuum in mind (Bazant 

and Oh, 1983 and 1985; Bazant, 1984). This approach lies clearly within the continuity of Hill’s 70 

multislip theory (Hill, 1965, 1966 and 1967b), which is a general type of cross coupling between 

glide and hardening on different slip systems, as observed in metals or alloys. Microplane 

models belong to the broader category of multiscale approaches where the macroscopic 

constitutive properties emerge from the collective response of the local behaviors at the micro 

or mesoscopic level.  75 

These specific aspects of multislip (or microplane) theory can be extended to  granular media 

with the exception that, granular materials are not characterized by micro-fractures embedded 

in a continuous matrix, but by a disordered packing including contact planes between grains 

oriented along various directions (Nemat-Nasser and Mehrabadi, 1984; Nemat-Nasser, 2000). 

Thus, contrary to the incremental multi-linearity of the constitutive relations of metals and 80 

alloys, geomaterials are characterized by the full incremental non-linearity of their constitutive 

relations that originates from coarse graining of the multiple interparticle interactions along 

different contact orientations. The granular feature is visible through geometrical aspects (such 

as grain contact opening, closure or sliding), and the existence of specific units of a few grains 

(such as force chains (Horne, 1965; Drescher and de Josselin de Jong, 1972; Radjai et al., 1999; 85 

Tordesillas and Muthuswamy, 2009) or grain clusters (Walker and Tordesillas, 2010, 

Tordesillas et al., 2010)). One of the greatest advantages of multiscale approaches is that the 

local behavior on the contact scale can be described via simple elastic–plastic contact laws, 

without resorting to any sophisticated ingredients. The complexity of the constitutive behavior 

of granular assemblies then naturally emerges from the multiplicity of such local interactions 90 

and the evolution of the interaction network. 

A thorough review of such multiscale approaches to the mechanics of granular media can be 

found in the seminal works of the past few decades; see for instance Nemat-Nasser and 

Mehrabadi, 1984; Jenkins and Strack, 1993; Mehrabadi et al., 1993; Balendran and Nemat-

Nasser, 1993a and 1993b; Nemat-Nasser, 2000 and 2002.  95 

In the continuity of microplane models (Zienkiewicz and Pande, 1977), the microdirectional 

model (Nicot and Darve, 2005) can be interpreted as a micromechanical application of the 

multislip theory to granular materials. From such a perspective, the microdirectional model 

describes the granular assembly as a collection of individual contacts oriented along various 
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directions of the physical space. Further research showed that leaping from contact level 100 

directly to macroscopic scale involves loss of information about local proximity of particles. 

As such, reducing the microstructure of granular materials to a distribution of contact 

orientations does not sufficiently account for their complex mechanical behavior. With the 

development of numerical simulations based on discrete element methods (DEM), it was 

established that mesostructures composed of a few grains could be used to satisfactorily explain 105 

the macroscopic behavior of granular materials. Among such mesostructures, one can cite force 

chains (Peters et al., 2005; Tordesillas, 2007; Tordesillas and Muthuswamy, 2009; Wautier et 

al., 2017; Liu et al., 2020) or grain loops in 2D (Zhu et al., 2016a, 2016b; Liu et al., 2018). 

Moreover, recent studies (Pouragha and Wan, 2016, 2017, 2018a; Pouragha et al., 2019) 

demonstrate that the evolution of contact network due to various dissipative and non-dissipative 110 

mechanisms introduces new sources of non-linearity that can only be considered within 

modelling frameworks that transcends the conventional elasto-plastic theories (Pouragha and 

Wan, 2018b). Thus, for granular media with rapidly changing internal structure, an accurate 

understanding of the global constitutive behavior inevitably requires the inclusion of meso-

scale interactions and their evolution at the intervening (meso) levels between single contact 115 

and macroscale. 

Along this vein, the H-model (Nicot and Darve, 2011b) offers a simple, yet effective 

approach to enrich the initial microdirectional modelling framework with mesoscale physics. 

The model was initially developed in 2D to describe dry cohesionless granular materials as a 

collection of hexagonal mesostructures of six grains oriented along different directions in the 120 

physical space. Such mesostructures can be regarded as two force chains forming a grain loop, 

which makes the model consistent with DEM findings. The model has been recently extended 

to 3D with mesostructures of ten grains consisting of two imbricated hexagons in perpendicular 

directions (Xiong et al., 2018). Once implemented  as suitable computational framework, such 

as FEM or Finite Difference based (FLAC), the model can be readily adopted to simulate a 125 

variety of geotechnical problems where multi-physical couplings can occur. Moreover, one 

main advantage of such approaches is to give access to a rich microstructural information at 

some given points of interest when dealing with a non-homogeneous boundary value problem. 

In essence, this information is out of reach for standard phenomenological models in which the 

microstructure is simplistically embedded as internal variables, and is not described in an 130 

explicit way. After a brief review of the standard 2D H-model, including comments of the recent 

3D and multi-physics extensions, the manuscript shows how this approach is relevant to address 
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boundary value problems in Geotechnics, and can effectively contribute to a better design of 

geotechnical structures. 

2. Multiscale framework: H-model 135 

2.1 Model concept 

Different from phenomenological approaches that operate directly at the material point scale, 

multi-scale approaches formulate the constitutive relation of a material by averaging its 

behavior at a much smaller scale as illustrated in Figure 1. Such an upscaling process is known 

as homogenization. It supposes that the local behavior as well as the microstructure geometry 140 

of the considered material are already known. Thus, the derivation of the macroscale 

constitutive behavior requires the detailed description of the material’s microstructure at the 

scale of a representative elementary volume (REV). 

 

 145 

Figure 1. Hierarchical scales in granular materials. Phenomenological approaches deal with 

the continuum scale directly, spatial homogenization with the REV scale and statistical 

homogenization with the contact scale (microdirectional model (Nicot and Darve, 2005)) or 

mesoscale (H-model (Nicot and Darve, 2011b)). 

Usually, homogenization is performed by spatial (volume) averaging over a representative 150 

elementary volume (REV). For instance, a cubical volume element of granular material can be 

modelled following a DEM approach as a collection of thousands of solid particles interacting 
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through contact laws. Then, the macroscopic constitutive behavior is derived by computing the 

mean stress and strain values over the cubical domain.  

The general idea behind the H-model is to replace the above spatial description of a granular 155 

material with a statistical view at the mesoscale. Instead of explicitly considering all the 

particles in the entire granular assembly, H-model proposes to model granular media as a 

collection of independent mesostructure units composed of a few grains and oriented in 

different directions, as illustrated in Figure 1. The homogenized behavior of the collection of 

H-cells is then obtained by directional averaging, and not spatial averaging as it is usually done 160 

in DEM simulations. 

For the 2D H-model, the unit mesostructure is a hexagonal cell composed of six grains 

interacting through elasto-frictional contacts and kept at mechanical equilibrium with ten 

external forces as illustrated in the following Figure 2. 

 165 

 

 

Figure 2. Hexagonal mesostructure as an assembly of six rigid disks in the H-model. 

External (red) and internal (blue) forces necessary to keep the H-cell at equilibrium. 

 170 

The choice to use mesostructures (and not simply independent contacts as done in the 

previous micro-directional model developed by Nicot and Darve (2005)) stems from the fact 

that the deformation of granular systems involves geometrical effects produced by the collective 

displacement of grains, which is consistent with strain definition in continuum mechanics. The 

particular choice of a hexagonal cell is based on the role played by grain loops of more than six 175 

grains as highlighted in recent micromechanical studies (Zhu et al., 2016a, 2016b; Liu et al., 

(2018)). Furthermore, this special mesostructured arrangement allows for an analytical 
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description of the cell behavior, as recalled in the Appendix. The H-model was first introduced 

by Nicot and Darve (2011b) in 2D, then extended to 3D by Xiong et al. (2018). Research on 

the H-model is ongoing with recent developments aimed at enriching the microscale physics to 180 

include the effects of a fluid phase such as capillary phenomenon (Xiong et al., 2020). 

Preliminary results have also been obtained to account for internal erosion processes.  

 

The general scheme of the standard 2D H-model is summarized in Figure 3 and reviewed in 

detail in the Appendix. The main features are listed as follows. 185 

 

 

Figure 3. Five steps homogenization scheme of the H-model. Additional variables for the 

three-dimensional case are shown in grey. Current developments on the enriched versions of 

the model are highlighted.  190 

 

1. The kinematic localization hypothesis consists of updating the H-cell dimensions of all 

the hexagons based on the macroscopic strain increment. 

2. The resulting relative displacement of the grains of each H-cell are then computed by 

enforcing two geometrical compatibility equations and one closure relation ensuring the 195 

static equilibrium of the six grains. 

3. Based on the incremental evolution of the H-cell geometry, the normal and tangential 

contact forces are updated. 

4. A mesostress is then defined based on the application of Love-Weber formula for each 

H-cell 200 



- 8 - 

5. The macroscopic stress is eventually obtained by statistical averaging of all the 

mesostresses. In this step, a weight function 𝜔(𝜃) depending on the orientation 𝜃 of the 

H-cells is used to account for potential anisotropy of the microstructure. 

2.2 Model parameters 

The 2D H-model relies on three contact scale parameters (𝑘𝑛, 𝑘𝑡, and 𝜑𝑔) and on the initial 205 

opening angle 𝛼𝑖𝑛𝑖𝑡(𝜃) (geometric parameter) of each H-cell. Additionally, the probability 

density function 𝜔(𝜃) describing the statistical distribution of unit H-cells is needed. Inspired 

by contact scale analyses (Oda et al., 1985; Bathurst and Rothenburg, 1992), the contact 

distribution is usually approximated with a second order harmonic expansion. As a result, it is 

assumed that the initial distribution of unit H-cells can be written in a similar form, i.e.  210 

𝜔(𝜃) =  
1

𝜋
[1 + 𝑎𝜔 𝑐𝑜𝑠 2(𝜃 − 𝛽𝜔)] (1) 

where 𝑎𝜔 is a parameter ranging from 0 to 1 describing anisotropy of the hexagonal cell 

distribution, and 𝛽𝜔 its major principal direction. In practice, the distributions are discretized 

in 𝑛𝜃 directions 𝜃𝑖.  

Note that Equation (1) does not exactly correspond to the contact distribution within a 215 

collection of unit H-cells. The contact distribution is rather a function of the probability density 

of the hexagonal cells described by 𝜔(𝜃) and the statistics of opening angles 𝛼(𝜃). 𝜔(𝜃) is set 

once for all hexagonal units, while 𝛼(𝜃) evolves with strain loading history through according 

to kinematical constraints (see Equations (A.6) and (A.7)).  

The initial value of the opening angle should be related to porosity. Recalling that the meso-220 

volume is assumed to be the bounding box of the inner hexagonal loop going through all grain 

centers, each of the six grains is half included in 𝑉𝑚𝑒𝑠𝑜 if 0 < 𝛼 < 𝜋/3 and 𝑉𝑠 = 6𝑉𝑔/2. 

However, for 𝜋/3 < 𝛼 < 𝜋/2 the lateral grains contribute less, i.e. only ¼ of their volume. 

Assuming the particles to be cylinders of diameter 𝐷 and unit height, the porosity reads  

𝜙𝑚𝑒𝑠𝑜 =
𝑉𝑚𝑒𝑠𝑜 − 𝑉𝑠
𝑉𝑚𝑒𝑠𝑜

= 1 −
3𝜋𝐷2

4𝑙1𝑙2
, for 𝛼 <

𝜋

3
 (2) 225 

which leads in the initial state where 𝑑1 = 𝑑2 = 𝐷 to 

𝜙𝑚𝑒𝑠𝑜
𝑖𝑛𝑖𝑡 = 1 −

3𝜋

8 sin 𝛼𝑖𝑛𝑖𝑡 (1 + 2 cos 𝛼𝑖𝑛𝑖𝑡)
, for 𝛼 <

𝜋

3
(3) 

For 𝜋/3 < 𝛼 < 𝜋/2, the analytical expression is more complicated, i.e.  

𝜙𝑚𝑒𝑠𝑜
𝑖𝑛𝑖𝑡 = 1 −

3𝜋 − (𝛽 − sin 𝛽)

8 sin 𝛼𝑖𝑛𝑖𝑡 (1 + 2 cos 𝛼𝑖𝑛𝑖𝑡)
, for 𝛼 >

𝜋

3
(4) 
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where 𝛽 = 2 cos−1(2 cos 𝛼𝑖𝑛𝑖𝑡). 230 

Combined with the probability density function 𝜔(𝜃), the macroscopic porosity 𝜙 is thus 

obtained as  

𝜙 = ∫ 𝜔(𝜃) 𝜙𝑚𝑒𝑠𝑜 d𝜃
𝜋

0

(5) 

The macroscopic void ratio is readily obtained as 𝑒 = 𝜙/(1 − 𝜙).  

Note that, at the scale of the H-cell, the expression of the local porosity 𝜙𝑚𝑒𝑠𝑜 depends on 235 

the definition of 𝑉𝑚𝑒𝑠𝑜,. Consequently, the definition of 𝑉𝑚𝑒𝑠𝑜 affects the macroscale 

interpretation of the model parameters 𝛼𝑖𝑛𝑖𝑡(𝜃) and 𝜔(𝜃). 

3 H-model implementation and calibration 

The H-model was implemented in FLAC, a finite difference method (FDM) based program, 

to solve boundary value engineering problems. The FDM formulates the problem at hand in the 240 

dynamic regime so that an explicit scheme can be adopted to solve the equations of motion at 

each time step. At a given time step, the nodal displacements in a mesh are interpolated to define 

a piecewise constant strain field. For each  element, the stress tensor is then estimated based on 

the material constitutive behavior. This is where the H-model is readily implemented following 

the scheme recalled in Figure 3 replacing classical phenomenological constitutive laws. From 245 

the piecewise constant stress field thus defined, nodal forces are calculated (this is done 

automatically in FLAC by integrating the stress vector along the edges of the mesh). Eventually, 

the mesh node positions are updated by integrating Newton’s equation over an additional time 

step. To address static problems, non-viscous damping forces 𝐹𝑑 are added at each integration 

point to avoid any oscillations. The i-th component of such forces reads 𝐹𝑖
𝑑 = −𝜅 𝐹𝑖

𝑢𝑛𝑣𝑖/‖𝑣‖ 250 

where κ is a damping ratio, 𝑭𝑢𝑛 the unbalanced force, and 𝒗/‖𝒗‖  returns the direction of the 

velocity. A typical value κ=0.8 is used.  

3.1 Calibration using plane strain drained experiments 

Before examining the 2D H-model for engineering structures in plane strain conditions, the 

present section evaluates the model performance at the material point scale. A careful attention 255 

is paid here to assess the extent to which the 2D version of the H-model can quantitatively 

capture salient features of the mechanical response of real sands under plane strain conditions1. 

                                                           
1 One of the intrinsic limitation of the model is that the out of plane stress component is not accounted for, as the stress tensor 

remains 2D by definition (see Equations (A.9) and (A.11)). 



- 10 - 

The experiment was carried out on RF Hostun sand along plane strain drained compression 

loading paths (Desrues and Viggiani, 2004).  

RF Hostun sand is a fine-grained, angular silica sand. The mean particle diameter 𝐷50 is equal 260 

to 0.35 mm whereas the particle size distribution has a coefficient of uniformity 𝐶𝑢 =

𝐷60/𝐷10 = 1.70 (Calvetti et al., 1997). The conventional minimum and maximum unit weights 

are 13.24 and 15.99 kN/m3, respectively, whereas the specific gravity 𝐺𝑠 is 2.65. Therefore, the 

maximum and minimum void ratios range  between 𝑒max = 0.963 and 𝑒min = 0.626. For later 

comparison, it is important to keep in mind that these void ratios are 3D, whereas those derived 265 

from the H-model are 2D (for 2D/3D comparisons it is thus more relevant to consider the 

relative densities). 

The tests on water-saturated RF Hostun sand were conducted at both dense and loose states 

with initial void ratio ranges of 𝑒0 ∈ [0.631 − 0.644] and 𝑒0 ∈ [0.850 − 0.865], respectively. 

The effective confining stress was 𝜎3
′ ∈ {100, 200, 400} kPa. The discussion of results makes 270 

use of the following stress invariants: 

{
𝑠′ = 

𝜎′1 + 𝜎
′
3

2

𝑡 =  
𝜎′1 − 𝜎

′
3

2

(6) 

where t and s' correspond to the so-called Roscoe’s deviatoric stress and mean effective stress, 

respectively. 

The calibration of the model was carried out using experimental results obtained at a 275 

confining pressure 𝜎′3 = 200 kPa. In the experiments, strain localization was observed with 

considerable softening, signaling shear band formation. As soon as a shear band forms, the 

sample does not behave homogeneously anymore. Therefore, the experimental stress-strain 

curves correspond to the response of a structure that should be modeled as such. Given that the 

H-model is formulated at the material point scale, its calibration is carried out based only on 280 

the pre-localization part of the experimental curve. 

The first step of the calibration refers to the elastic parameters, i.e. the material stiffness and 

compressibility in the small strain range. Then, the inter-granular friction angle is chosen to 

reproduce the peak value of the deviatoric stress. Eventually, the microstructural parameters are 

determined iteratively to calibrate the axial strain corresponding to the peak in the deviatoric 285 

stress. It goes without saying that the same contact law parameters are used for simulating both 

loose and dense samples. It should also be acknowledged that calibrating the volume response 
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curve was not attempted, given that the H-model is a 2D model, the volumetric behavior of 

which may be significantly different from those of 3D materials.  

Table 1 summarizes the parameters obtained from the calibration procedure. It can be seen 290 

that  parameters describing the inter-granular contact law correspond to values broadly used in 

DEM simulations.  

Table 1. Summary of the experimental program used for the model calibration and validation 

Parameter Symbol Loose Dense 

Normal contact stiffness 𝑘𝑛 150 MN/m 

Contact stiffness ratio  𝑘𝑡/𝑘𝑛 0.5 

Inter-granular friction angle tan𝜑𝑔 0.5 

Anisotropy of the distribution 𝑎𝜔 0.5 1.0 

Principal direction of anisotropy 𝛽𝜔 90° (hor.) 0° (vert.) 

Initial opening angle 𝛼0 60.0° 35.0° 

 

Referring to Table 1, one should notice that in the loose case, the initial opening angle is set 295 

to a large value representative of the maximum void ratio (see equations (3) and (4)). The 

hexagon distribution is slightly anisotropic and oriented horizontally. In the dense case, the 

initial opening angle is set close to the minimum opening angle (𝛼 = 30°) while the hexagonal 

unit cell distribution is much more anisotropic and oriented vertically as one could have 

expected for densely compacted specimens (vertical compaction direction in experimental 300 

procedure). The initial contact distributions for the dense and loose samples are shown in Figure 

4. These values have been deduced from information on the hexagon distribution function 𝜔(𝜃) 

and the opening angle 𝛼(𝜃) of the different H-cells. 

 

Figure 4. Initial contact distributions for the dense and loose sample parameters of Table 1. 305 
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3.2 Evaluation of the model performance 

To evaluate the predictive ability of the H-model, experimental curves at confining pressures 

(𝜎′3 = 100  and 400 kPa) were considered while the test with 𝜎′3 = 200 kPa has been used 

for calibration purposes. Figure 5 and Figure 6 show comparisons of numerical simulations and 

experimental results.  310 

In the dense case, the peak deviatoric stress values are evaluated reasonably well. However, 

the axial strains at these peaks are overestimated. In addition, the experimental curves present 

a rather sharp softening associated with shear band formation, which cannot be reproduced by 

the H-model used at the material point scale. The volumetric strain curves show an acceptable 

qualitative reproduction of the pre-peak experimental data. Although the initial contraction is 315 

underestimated, the estimates of dilation remain consistent with those measured in the 

laboratory. 

 

Figure 5. Comparison between experimental drained plane strain biaxial compression tests 

(Desrues and Viggiani, 2004) and H-model simulations on dense Hostun RF sand. The 320 

experimental curves are in dashed lines and the H-model curves in solid lines. Calibration is 

done for 200 kPa while predictions are shown for 100 and 400 kPa. 

 

In the loose case, the H-model calculations capture the general trend of the experimental 

stress-strain curves characterized by ultimate values of deviatoric stress. The H-model fails to 325 

reproduce the volumetric response as it underestimates the material’s contractancy. However, 

the influence of the confining pressure on the contractancy is well captured. 

For both dense and loose cases, we see that the model tends to overestimate the influence of 

the confining pressure on the small strain stiffness of the material. This suggests a nonlinear 
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dependency between the normal reaction and the interpenetration of the grains. This feature 330 

could constitute a possible improvement of the H-model. 

 

 

Figure 6. Comparison between experimental drained plane strain biaxial compression tests 

(Desrues and Viggiani, 2004) and H-model simulations on loose Hostun RF sand. The 335 

experimental curves are in dashed lines and the H-model curves in solid lines. Calibration is 

done for 200 kPa while predictions are shown for 100 and 400 kPa. 

 

We also note that the H-model is unable to reproduce critical state, characterized by constant 

shear strength and constant volumetric strain at large deformations. This is an intrinsic 340 

limitation of the H-model at the material point scale. Indeed, critical state is a steady state from 

a macroscale point of view, which arises from permanent microstructure transformations at the 

lower scales. The microstructure reaches equilibrium only from a statistical point of view while 

mesostructures are constantly being rearranged. Improvements of the H-model are currently 

being worked out to find a rational way to embed microstructure transformations in the model. 345 

The above-mentioned intrinsic limitation of the H-model, however, does not prevent its 

implementation and use in boundary value problems, even at large strain levels. At the structural 

scale, geometric effects arise in addition to material properties and could even become 

prominent. We therefore explored the predictive capacities of the calibrated H-model by 

considering the drained biaxial test as a boundary value problem using a non-homogeneous 350 

mesh domain. It is well known that the mesh size has an influence on the post-peak behavior of 

the modeled material. As a result, we have chosen the dimension corresponding to the width of 

the shear band, i.e. typically 10 𝐷50 (see Alshibli et al. (1999) for instance). This condition 

corresponds to a mesh of 30 x 100 elements. At the beginning of the simulation, the material 
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properties are homogeneous all over the mesh. The resulting stress and volumetric strain curves 355 

are shown in Figure 7 for one of the tests of Desrues and Viggiani (2004). Note that the material 

parameters used are those of Table 1 for all the mesh elements. 

 

Figure 7. Drained plane strain biaxial compression for 𝝈′𝟑 = 𝟐𝟎𝟎 𝐤𝐏𝐚 (Desrues and 

Viggiani, 2004) on dense Hostun RF sand. Comparison between experimental curve (dashed 360 

line) and numerical simulation for a 30 x 100 mesh (solid line). 

 

 

We can see that the pre-peak behavior is preserved (this test was used for calibration at the 

material scale). In particular, the volumetric strain curve predicted by the H-model tends to 365 

underestimate the dilatancy of the material. However, we note that the added structural 

dimension to the modeling makes it possible to account for a steady state beyond an axial strain 

of 𝜀1 ≈ 7%, close to the 5% observed experimentally.  

The emergence of a steady state in a boundary value setting demonstrates that the apparent 

softening observed experimentally is mostly linked to a transition from homogeneous states to 370 

strain localization. In this sense, experimental softening has more of a structural origin in the 

dense case than a material one (Sterpi, 1999). However, the material source of the softening 

cannot be disregarded since a small, yet critical material softening is embedded in the H-model 

(as seen in Figure 5 and Figure 6). 

 375 

 The structural response relies on the existence of minute numerical fluctuations in the local 

material properties, which act as a catalyzer for early strain localization and the associated 

deviatoric stress reduction. The prevalence of structural softening thus justifies the use of the 

H-model, even at large strain levels. It also justifies the priority that was given to improve the 
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H-model by extending it to 3D (Xiong et al., 2017) to better account for volume variations. 380 

These are relevant in the case of hydro-mechanical coupling, where volume variations control 

the pore water pressure under undrained conditions.  

Overall, the present analyses demonstrate that the H-model can reproduce the mechanical 

response of a sand as long as it is used within the framework associated with the hypothesis of 

homogeneity of the small strain field. The extension to non-homogeneous cases can be achieved 385 

by adopting numerical simulations with an appropriate mesh. The appropriate dimension of the 

mesh should be small enough to simulate the failure modes expected (localization of the strains 

for example) while being limited by the internal length of the material. In the present case, we 

may define an upper limit of the mesh size equal to 1/10th of the smallest dimension of the 

sample and a lower limit equal to 10 𝐷50 in order to guarantee the representativeness of the 390 

elementary volume. In the present case, the minimal mesh size of 10 𝐷50 was considered.  

3.3 Micromechanical inspection of the structure response 

One of the interesting features of the H-model is that it embeds meso-structure distributions 

in its formulation. As a result, some micromechanical statistical information can be readily 

extracted for each material point in structure scale computations2. For instance, while simulating 395 

the biaxial response of the dense sample and the shear band localization process in Figure 7, it 

is meaningful to analyze the mechanical state of the different H-cells inside and outside of the 

shear band. As seen in Erreur ! Source du renvoi introuvable., the proportion of H-cells in 

elastic, plastic or tensile deformation regimes are given in all the elements of the finite 

difference computation. Complementary to Erreur ! Source du renvoi introuvable., Erreur ! 400 

Source du renvoi introuvable. shows for two material points the different regimes 

corresponding to the directions of the H-cells.  

                                                           
2 Without paying the large computation costs of DEM simulations.  
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Figure 8. Proportion of hexagons in elastic (a), plastic (b) and tensile (c) regimes after the 

localization of deviatoric strains (ε1 = 0.08). 405 

 

 

 

Figure 9. Directional analysis of the contact regimes of hexagons outside (left) and inside 

(inside) the shear band (ε1 = 0.08). 410 

 

Figure 8 shows that most of the H-cells in which plasticity has been activated concentrate 

within the shear band domain while most of the H-cells located outside of the shear band 

domain remain within the elastic regime. In addition, the shear band domain contains a large 

proportion of H-cells in tension (in which contact loss has occurred). All these results are very 415 

consistent with DEM observations indicating that grain sliding and contact loss concentrates 

within the shear band (see for instance Liu et al., 2018 and Liu et al., 2020). Within the elastic 
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zone, a significant proportion of H-cells are in tension, which relates to the lateral expansion of 

the sample observed in drained biaxial loading.  

Figure 9 indicates that contact loss mostly occurs for H-cells oriented along the horizontal 420 

direction and thus compressed along their local 𝒕 direction (see Figure 2). As a result, contacts 

with grains 1 and 4 (see Figure 2) are lost, which corresponds to relatively horizontal contacts 

in the boundary value problem. Here again this observation is consistent with DEM results, 

showing that biaxial loading conditions induce horizontal contacts loss from the very beginning 

of the loading. This explains why contact loss also occurs in the elastic zone (Pouragha and 425 

Wan, 2017). In Figure 9, it should also be noted that the onset of the shear band breaks the 

symmetry for the regime distribution of the H-cells. This is linked to a local rotation of the 

principal stress and strain directions (observed through force chain rotation in Liu et al. (2020) 

for instance). 

As for the previous micromechanical observations, it should however be noted that only a 430 

limited number of directions does not undergo tension in Figure 9. This is also in relation to the 

aforementioned limitation of the H-model to account for microstructure dynamic 

reorganizations. However, the results presented in this section demonstrate that the H-model 

can be considered as a viable tool in the numerical modeling of engineering problems. 

4 Simulation of an engineering problem 435 

The purpose of this section is to illustrate the applicability of the H-model to engineering 

problems by considering the static liquefaction of an earth dam. A hydro-mechanical coupled 

simulation is performed using the FLAC software in which the soil constitutive behavior 

follows the H-model. The formulation of coupled fluid-mechanical processes is done within the 

framework of the quasi-static Biot’s theory. The fluid phase is defined by a volumetric weight, 440 

a bulk modulus and tension limit. The hydraulic properties of the solid phase is characterized 

by a Darcy permeability, irrespective of the microstructural variables used in the H model. No 

spatial heterogeneities are considered in the hydraulic properties of the material. 

 

4.1 Model set up 445 

A homogeneous dam built on a two layered foundation is considered. The dam body and the 

foundation geometry are described as shown in Figure 10, while the corresponding numerical 

values are summarized in Table 2. 
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 450 

Figure 10. Geometric view of the dam, reservoir and foundation, and the corresponding 

mesh. 

 

Table 2. Geometric parameters of the dam and its foundation. 

Parameter Symbol Value 

Dam height 𝐻𝑟  5 m 

Crest width  𝐿𝑐 4 m 

Slope 𝛽 2.5 

Layer 1 thickness 𝐻1 5 m 

Layer 2 thickness 𝐻2 2 m 

Water height 𝐻𝑤 [0, 𝐻𝑟] 

 455 

The foundation soil consists of two layers that are assumed to follow a standard elasto-plastic 

Mohr-Coulomb material while the dam body behaves according to the H-model. The material 

parameters used in this section are summarized in Table 3. 

Table 3. Material parameters for the two layers of the foundation and for the dam body. 

Material / type Parameter Symbol Unit Value (𝐿1 or 𝐿2) 

Layer 𝐿1or Layer 𝐿2 

Mohr-Coulomb 

Dry density 𝜌𝑑 kg/m3 1700 

Compressibility modulus 𝐾 MPa 200 

Shear modulus 𝐺 MPa 100 

Effective cohesion 𝑐′ kPa 0 

Friction angle 𝜑 Degrees 35 or 30 

Dilatancy angle 𝜓 Degrees 5 or 0 
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Permeability 𝑘 m/s 10−6 or 10−7 

Dam body 

H-model 

Dry density 𝜌𝑑 kg/m3 1600 

Normal stiffness 𝑘𝑛 MN/m 100 

Tangential stiffness 𝑘𝑡 MN/m 50 

Contact friction angle 𝜑𝑔 Degrees 30 

Initial opening angle 𝛼𝑖𝑛𝑖𝑡 Degrees 50 

Anisotropy coefficient 𝑎𝜔 - 0 

Principal direction of anisotropy 𝛽𝜔 Degrees 0 

 Permeability 𝑘 m/s 10−6 

 460 

The discretization of the dam and foundation comprises 1260 rectangular elements and 1341 

nodes (see Figure 10). The bottom of layer 𝐿1 is fixed while the lateral boundaries of 𝐿1 and 𝐿2 

are only constrained in the horizontal plane, but free to dilate in the vertical direction. In order 

to avoid any influence of the boundary conditions on the dam, the lateral extents of the problem 

are set to 3𝐻𝑟 and the thickness of 𝐿1 is set to 𝐻1 = 𝐻𝑟. For hydraulic part, impermeable 465 

boundaries are assigned to the bottom and lateral sides of the foundation. A zero water pressure 

value is applied on the downstream side of the dam and the foundation, while a hydrostatic 

water pressure is applied in the water reservoir.  

4.2 Simulation procedure 

Following an explicit numerical scheme, the dynamic equations of motion are solved at each 470 

time step. As a result, the numerical computation of the static equilibrium of the dam is based 

on a three-step procedure as follows, illustrated in Figure 11. 

1. The stress field in the dry foundation is initialized before the dam is built. This is done 

by turning on gravity such that the initial stress field satisfies a given value of lateral 

earth pressure at rest. This loading step is completed once convergence to equilibrium 475 

is achieved. 

2. The dam is built in lifts by activating gravity in successive layers of 0.50 m, which 

mimics the actual construction of a dam. Here again, the computations will move to the 

next lift only when convergence to equilibrium is ensured. 

3. The filling of the reservoir is modelled by raising the water level gradually. The hydro-480 

mechanical computation is conducted in an uncoupled way, except for the last raising 

of the water height to 𝐻𝑤 = 𝐻𝑟. First, the pore water pressure field is computed for a 

given dam geometry based on the material permeability 𝑘. Then, this pore water 
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pressure field is used to compute equivalent nodal forces based on local pressure 

gradients that act on the mesh nodes. These forces are in turn taken into account as 485 

external nodal forces in the mechanical computation. Both the dam and foundation 

deform, and the stress field is updated after a new equilibrium configuration is reached. 

If the computations do not converge, the dam is then deemed to fail. 

 

 490 

Figure 11. Simulation steps. 

 

4.3 Results 

Figure 12 shows the effective stress fields obtained at the end of the dam construction and 

after the water height reaches 𝐻𝑤 = 4.5 m. 495 
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Figure 12. Stress and strain fields at: (a) end of dam construction (top), (b) filling of dam 

when the water height reaches 𝑯𝒘 = 𝟒. 𝟓 𝐦 (bottom). The black solid line corresponds to the 

piezometric level. 500 

 

As expected, all stress fields satisfy the symmetry condition after the dam construction 

(Figure 12). The maximum displacement at the bottom right and left of the dam reaches a few 

centimeters laterally, i.e. about 1.4 cm around point B (location shown in Figure 10). The dam 

material dilates just after being put in place, before contracting as it is buried under successive 505 

layers of material (maximum contraction of about 0.1% at the base of the dam as shown in 

Figure 12). Such results are consistent with actual observations and standard numerical 

simulations.  

As the water level increases, the problem’s symmetry is broken due to pore-water pressure 

difference between upstream and downstream domains. The pore water pressure increases more 510 

in the upstream than in the downstream part of the dam, which results in a decrease/increase in 

the effective stress in the upstream/downstream side of the dam respectively (Figure 12, bottom 

left). At equilibrium, the horizontal displacements reach a maximum of 2.4 cm around point B 

(location shown in Figure 10). In this situation, the fraction of H-cells in which sliding activates 

remains equal to zero percent but the fraction 𝑓𝑜𝑝𝑒𝑛 of H-cells that are under tension (contact 515 
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opening) reaches 70 % on the dam surface and decreases with depth. Such a fraction is 

expressed as 𝑓𝑜𝑝𝑒𝑛 = ∫ 𝜔(𝜃)𝛿𝑙𝑜𝑠𝑠(𝜃) d𝜃
𝜋

0
 where the 𝛿𝑙𝑜𝑠𝑠 function equals to 1 if the contact 

loss condition is met for the H-cell in direction 𝜃 (𝑑1(𝜃) > 𝐷 or 𝑑2(𝜃) > 𝐷), 0 otherwise. 

Figure 13 shows the evolution of this ratio during the filling of the reservoir. 

 520 

 

Figure 13. Proportions 𝒇𝒐𝒑𝒆𝒏 of the H-cells in which contact has been lost after the end of 

the dam construction (left) and when the water height reaches 𝑯𝒘 = 𝟒.𝟓 𝐦 (right). The black 

solid line corresponds to the piezometric level. 

 525 

For the last incremental elevation of the water level (𝐻𝑤 = 𝐻𝑟), failure is observed. For this 

particular step, a fully coupled hydro-mechanical computation is performed, with an update of 

the pore water pressure field, at each time step. Figure 14 shows the time evolution of the 

displacements of points B and C (see Figure 10). 

 530 

 

Figure 14. Time evolution of the displacement of points B and C (see Figure 10) when 

𝑯𝒘 = 𝑯𝒓. 

 

After only 1.3 s, the displacement at point B reaches nearly 50 cm. Figure 15 shows the stress, 535 

strain and displacement fields at this time, while the proportion of sliding (𝑓𝑠𝑙𝑖𝑑𝑒) and opening 

(𝑓𝑜𝑝𝑒𝑛) H-cells at failure is given in  
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Figure 16. Similar to 𝑓𝑜𝑝𝑒𝑛, the sliding proportion of H-cells is expressed as 𝑓𝑠𝑙𝑖𝑑𝑒 =

∫ 𝜔(𝜃)𝛿𝑠𝑙𝑖𝑑𝑒(𝜃) d𝜃
𝜋

0
 where the 𝛿𝑠𝑙𝑖𝑑𝑒 function equals to 1 if the contact sliding condition is met 

for the H-cell in direction 𝜃 (|𝑇1(𝜃)| = 𝑁1(𝜃) tan𝜑𝑔), 0 otherwise. 540 

 

 

Figure 15. Stress ratio, deviatoric strain and displacement fields at failure (𝑯𝒘 = 𝑯𝒓 and 

𝒕 = 𝟏. 𝟑 𝐬). 

 545 

 

 
 

Figure 16. Proportions of the H-cells in which contact has been lost (𝒇𝒐𝒑𝒆𝒏, left) or sliding 

has occurred (𝒇𝒔𝒍𝒊𝒅𝒆, right) at failure (𝑯𝒘 = 𝑯𝒓 and 𝒕 = 𝟏. 𝟑 𝐬). The black solid line 550 

corresponds to the piezometric level. 

 

It can be noticed that failure on the downstream side of the dam does not correspond to a 

large proportion of sliding H-cell, but to a very large proportion of opening H-cells (nearly 100 

% on the downstream face of the dam). This shows that the failure mechanism does not 555 

correspond to sliding (when the plastic limit criterion is reached) but to a static liquefaction 

(massive loss of inter-granular contacts) which is confirmed in Figure 17 by looking at the 

loading path followed by the material located in the bottom right of the dam (“zone a” in Figure 

10). The results demonstrate the ability of the H-model to capture this particular type of failure 

mechanism, which is often overlooked in standard mechanical stability analysis of such 560 

engineering structures. This also shows how the H-model can be used to account for some of 
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the most relevant mesoscale features as well as to pinpoint the local scale failure mechanisms 

in a boundary value engineering problems at a cheap computational cost (much cheaper than 

DEMxFEM computations for instance ; Guo and Zhao, 2014). 

 565 

 

Figure 17. Loading path followed by the material located in zone a (see Figure 10) during 

the dam construction and the increase of the water height up to 𝑯𝒘 = 𝟒. 𝟓 𝐦 (black line) and 

after the water height has increased to 𝑯𝒘 = 𝑯𝒓 (blue line). The states corresponding to 

mobilized frictions of 20° and 32° are given as dotted and solid lines for the sake of 570 

illustration. 

 

In order to better demonstrate the benefits of using the H-model as compared to more 

standard constitutive models, the numerical simulation was repeated by considering the non-

associated elastoplastic Mohr-Coulomb model with zero dilatancy, as commonly used in 575 

engineering practice. The density of the material has been taken to be the same while a friction 

angle of 32° has been adopted for the dam material in order to remain consistent with the results 

displayed in Figure 17. The corresponding FLAC simulation of the dam construction and filling 

showed that failure is observed for an upstream water level 50 cm lower than in the previous 

case. The displacement field and the strain field observed at failure with Mohr-Coulomb 580 

constitutive model are shown in Figure 18. 
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Figure 18. Displacement and deviatoric strain fields obtained with Mohr-Coulomb model 585 

 

The failure mode corresponds to a conventional circular sliding of the downstream facing 

crossing the toe of the slope. The comparison between the two simulation cases and the failure 

patterns of Figure 15 and Figure 18 suggests that the H-model captures the dilatancy more 

realistically, leading to a higher strength value. For a similar internal friction angle, failure is 590 

observed with the H-model at a higher water level. This, together with the more important 

capability of capturing the evolution of the microstructure, demonstrates the superiority of the 

H-model over the simple elastoplastic models. 

 

5 Conclusion 595 

Inspiring ideas from the multislip theory have been combined with modern multiscale 

modelling of granular materials to construct the H-model, capable of spanning physics across 

multiple scales. The developed model represents the granular assembly by a collection of 

idealized hexagonal (or 3D double-hexagonal) units whose kinematics and statics properties 

can be readily analyzed at the meso-scale. Further upscaling of these meso-structures results in 600 

a macroscopic constitutive model, capable of capturing many salient characteristics of granular 

media within different deformational regimes.  

The eventual model resorts to only 6 material parameters, which are calibrated for Hostun 

sand. The comparisons with experimental results demonstrate that the model is indeed capable 

of predicting both stress-strain trends and volumetric responses with an acceptable accuracy. 605 

Of note is the model’s tendency to underestimate the contraction of both loose and dense 

samples.  

The H-model is next implemented into a FDM solver to study structural scale boundary value 

problems. FDM simulation of a biaxial test reveals a more realistic depiction of post-peak 

softening and a quicker approach to the steady state which can be directly related to the 610 

inhomogeneities due to shear banding. 

Following the validation at the laboratory scale, the FDM model is used to perform a stress 

analysis for an earth dam as the upstream water level gradually increases. Despite the 

inhomogeneity of the soil layers and the non-trivial geometry of the domain, the H-model is 
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seen to be capable of consistently capturing the typical stress distribution and effective stress 615 

dependency of deformation fields. 

Moreover, due to its multi-scale nature, the H-model also provides access to micromechanical 

properties of geomaterials that often fall beyond the reach of continuum models. In this regard, 

the simulation provides access to the fields of micro- and mesoscopic events such as contact 

loss and interparticle sliding. As aninteresting new observation, the boundary value problem 620 

reveals that, despite what is intuitively expected, the shear failure at the downstream is not 

associated with the frictional sliding at the particle scale, but rather with opening of cell due to 

loss of contacts. Such rapid contacts loss events can be associated with the increase of pore 

water pressure in the dam body (hence the local decrease of effective mean stress) which can 

eventually lead to liquefaction. Direct comparison with the Mohr-Coulomb elastoplastic model 625 

shows how such failure mechanisms falls beyond the reach of simpler constitutive model.  

While the detail of such correlations with continuum level behaviors certainly requires more 

complete analyses, the current study successfully demonstrates the capabilities of H-model in 

bridging between the particle scale notions on one hand and the structural scale problems on 

the other. Through the proper incorporation of microstructural state variables into the 630 

constitutive model, the H-model provides a method to coherently investigate the macroscopic 

repercussions of the otherwise inaccessible micromechanical properties such as anisotropy and 

contact network evolution in a boundary value setting.  

The H-model is versatile and it easy to build in new features by merely introducing new 

physics in an additive manner at the lower scale, a process much more tricky in 635 

phenomenological approaches. The nature of the inter-granular contacts can be enriched to 

address other physics such as capillarity, cohesion or even erosion processes (as illustrated in 

Figure 3). These ongoing developments will make it possible to account for additional failure 

mechanisms at the engineering scale. 

 640 
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Appendix: Detailed review of the H-model 

 Constitutive behavior of a unit H-Cell 

In the H-model, the microstructure of granular materials is assumed to be described by a 

collection of hexagonal cells in 2D composed of grains idealized as disks of equal radii and 

distributed in space with different orientations. Figure 2 illustrates one of these cells in static 820 

equilibrium under the action of external forces. 

As shown in Figure 2, each H-cell is described by only three geometrical parameters: the 

opening angle 𝛼, and the inter-granular distances 𝑑1 and 𝑑2. These relate to the unit cell 

dimensions 𝑙1 and 𝑙2 as  

{
𝑙1 = 𝑑2 + 2𝑑1 cos 𝛼
𝑙2 = 2𝑑1 sin 𝛼

 (𝐴. 1) 825 

 

For dry frictional granular materials, the local mechanical behavior is an elastic-frictional 

contact law. Such a contact law relies on three parameters: a normal stiffness 𝑘𝑛, a tangential 

stiffness 𝑘𝑡, and an inter-granular friction angle 𝜑𝑔. If a contact 𝑖 persists during an incremental 

evolution, the normal and tangential contact forces can be expressed in incremental form as 830 

{

𝛿𝑁𝑖 = 𝑘𝑛𝛿𝑢𝑛
𝑖

𝛿𝑇𝑖 = {
𝑇𝑖 + 𝑘𝑡𝛿𝑢𝑡

𝑖 ,                              if |𝑇𝑖 + 𝑘𝑡𝛿𝑢𝑡
𝑖 | < tan𝜑𝑔 (𝑁𝑖 + 𝛿𝑁𝑖)

𝜉 tan𝜑𝑔 (𝑁𝑖 + 𝛿𝑁𝑖) − 𝑇𝑖      if |𝑇𝑖 + 𝑘𝑡𝛿𝑢𝑡
𝑖| ≥ tan𝜑𝑔 (𝑁𝑖 + 𝛿𝑁𝑖)

(𝐴. 2) 

 

where 𝜉 is the sign of 𝑇𝑖, and 𝑢𝑛
𝑖  and 𝑢𝑡

𝑖  are the normal and tangential relative displacements of 

the grains at contact 𝑖. Given the symmetries in the H-cell, we only need to consider the contact 

forces 𝑁1, 𝑁2 and 𝑇1, and the corresponding incremental displacements are obtained by 835 

differentiating the expression of the branch vector joining the grains in contact: 

{

𝛿𝑢𝑛
1 = −𝛿𝑑1

𝛿𝑢𝑛
2 = −𝛿𝑑2

𝛿𝑢𝑡
1 = 𝑑1𝛿𝛼

(𝐴. 3) 

 

As a result, the incremental evolutions of the contact forces are given as 

{
 

 
𝛿𝑁1 = −𝑘𝑛𝛿𝑑1
𝛿𝑁2 = −𝑘𝑛𝛿𝑑2

𝛿𝑇1 = {
𝑇1 + 𝑘𝑡𝑑1𝛿𝛼,                                  if |𝑇1 + 𝑘𝑡𝑑1𝛿𝛼| < tan𝜑𝑔 (𝑁1 − 𝑘𝑛𝛿𝑑1)

𝜉 tan𝜑𝑔 (𝑁1 − 𝑘𝑛𝛿𝑑1) − 𝑇1       if |𝑇1 + 𝑘𝑡𝑑1𝛿𝛼| ≥ tan𝜑𝑔 (𝑁1 − 𝑘𝑛𝛿𝑑1)

 (𝐴. 4) 840 
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where 𝜉 is the sign of 𝑇1. 

By differentiating equation (A.1), the incremental evolutions 𝛿𝑙1 and 𝛿𝑙2 can be related to 

𝛿𝑑1, 𝛿𝑑2 and 𝛿𝛼 (geometrical compatibility). It should be noted that the relative evolutions of 

𝑑1, 𝑑2 and 𝛼 are also constrained by the static equilibrium of the grains in the cell. Such 845 

equilibrium gives for grain 2 the third compatibility equation between (𝛿𝑙1, 𝛿𝑙2) and 

(𝛿𝑑1, 𝛿𝑑2, 𝛿𝛼) (closure relation) 

𝑁2 = 𝑁1 cos 𝛼 + 𝑇1 sin 𝛼 + 𝐺2 = 𝑁1 cos 𝛼 + 𝑇1(1 + sin 𝛼) (𝐴. 5) 

 

that can be differentiated into  850 

𝑘𝑛 cos 𝛼 𝛿𝑑1 − (1 + sin 𝛼)𝛿𝑇1 − 𝑘𝑛𝛿𝑑2 + (𝑁1 sin 𝛼 − 𝑇1 cos 𝛼)𝛿𝛼 = 0 

 

Two cases should be distinguished, depending on whether sliding occurs in the H-cell. 

Depending on the expression for 𝛿𝑇1, the compatibility equation reads: 

 855 

{
 
 

 
 

𝑘𝑛 cos 𝛼 𝛿𝑑1 − 𝑘𝑛𝛿𝑑2 + [𝑁1 sin 𝛼 − 𝑇1 cos 𝛼 − 𝑘𝑡𝑑1(1 + sin 𝛼)]𝛿𝛼 = 0
                                                                                                                        (if no sliding occurs)

[𝑘𝑛 cos 𝛼 𝛿𝑑1 + 𝜉𝑘𝑛 tan𝜑𝑔 (1 + sin 𝛼)]𝛿𝑑1 − 𝑘𝑛𝛿𝑑2 + [𝑁1 sin 𝛼 − 𝑇1 cos 𝛼]𝛿𝛼 =

𝜉(1 + sin 𝛼)(tan𝜑𝑔𝑁1 − 𝑇1)                                                            (if sliding occurs)

 

 

In the end, the incremental evolutions 𝛿𝑙1 and 𝛿𝑙2 can be conveniently related to 𝛿𝑑1, 𝛿𝑑2 

and 𝛿𝛼 in matrix form as  

𝑨 [
𝛿𝑑1
𝛿𝑑2
𝛿𝛼

] = [
𝛿𝑙1
𝛿𝑙2
𝜆

] (𝐴. 6) 860 

 

where 𝜆 is non-zero only when sliding activates (𝜆 = 𝜉(1 + sin 𝛼)(tan𝜑𝑔 𝑁1 − 𝑇1)). This 

relationship completes the constitutive behavior of the unit H-cell by relating the geometric 

evolution (𝛿𝑙1, 𝛿𝑙2) to the contact force evolutions (𝛿𝑁1, 𝛿𝑁2, 𝛿𝑇1). 

 Homogenization scheme 865 

The objective is to arrive by way of directional homogenization at a stress-strain relationship 

for a REV endowed with a microstructure that consists of a collection of unit H-cells distributed 

in space with different orientations. 
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The general homogenization scheme of the H-model starts from the macroscale to zoom into 

the mesoscale, and to thereafter upscale back to the macroscale following the strategy proposed 870 

in Figure 3. 

The first stage of the homogenization scheme is known as the kinematic localization 

hypothesis (inherited from the microdirectional model (Nicot and Darve (2005)). It assumes 

that any macroscopic incremental strain 𝜹𝜺 is transferred to all contacts of the H-cells at the 

lower scale (i.e. homogeneous strain). By introducing the local frame (𝒏, 𝒕) of a given unit H-875 

cell of dimensions (𝑙1, 𝑙2), kinematic localization translates into: 

{
 

 
𝛿𝑙1
𝑙1
= 𝒏𝑻. 𝜹𝜺. 𝒏

𝛿𝑙2
𝑙2
= 𝒕𝑻. 𝜹𝜺. 𝒕

(𝐴. 7) 

 

where 𝒏𝑻 stands for the transpose of vector 𝒏. In the 2D case, the orientation of the unit H-cell 

in the global frame is characterized by a single angle 𝜃 ∈ [0, 𝜋] such that 𝒏 = [cos 𝜃 sin 𝜃]𝑇 880 

and 𝒕 = [−sin 𝜃 cos 𝜃]𝑇.  

Subsequent stages 2, 3 and 4 in Figure 3 involve applying the constitutive equation of the 

unit H-cell that was worked out in the previous subsection. Finally, in the last stage, the 

macroscopic stress tensor 𝝈 of the REV is calculated by a directional averaging of all contact 

forces acting in a collection of unit H-cells. This is done in two steps by first defining a meso-885 

stress 𝝈𝒎𝒆𝒔𝒐 for each H-cell and then averaging all the meso-stresses of the H-cell collection. 

Here and below, the meso-stress tensor is defined at the scale of the unit H-cell using the 

Love-Weber formula (Love, 1892; Christoffersen et al., 1981; Mehrabadi et al., 1982; De Saxcé 

et al., 2004): 

𝝈𝒎𝒆𝒔𝒐 =
1

𝑉𝑚𝑒𝑠𝑜
∑ 𝒇𝒄⊗ 𝒍𝒄

𝑐∈𝑉𝑚𝑒𝑠𝑜

(𝐴. 8)   890 

 

where 𝒇𝒄 is the contact force at contact 𝑐, 𝒍𝒄 the branch vector joining the centers of the two 

grains in contact and 𝑉𝑚𝑒𝑠𝑜 = 𝑙1𝑙2 the volume of the unit H-cell.  

Expressed in the local frame (𝒏, 𝒕), equation (A.8) gives with soil mechanics conventions 

(positive compressions) 895 

{

𝑉𝑚𝑒𝑠𝑜𝜎𝑛𝑛
𝑚𝑒𝑠𝑜 = 4𝑁1𝑑1 cos

2 𝛼 + 4𝑇1𝑑1 cos 𝛼 sin 𝛼 + 2𝑁2𝑑2
𝑉𝑚𝑒𝑠𝑜𝜎𝑡𝑡

𝑚𝑒𝑠𝑜 = 4𝑁1𝑑1 sin
2 𝛼 − 4𝑇1𝑑1 cos 𝛼 sin 𝛼

𝑉𝑚𝑒𝑠𝑜𝜎𝑛𝑡
𝑚𝑒𝑠𝑜 = 𝑉𝑚𝑒𝑠𝑜𝜎𝑡𝑛

𝑚𝑒𝑠𝑜 = 0

(𝐴. 9) 
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It should be noted that equation (A.9) assumes that contacts 1 and 2 exist (𝑁1 > 0 and 𝑁2 > 0), 

and that grain pairs 2-6, 3-5 and 1-4 in Figure 2 are not in contact. In case, contact 1 or 2 is lost 

(𝑑1 > 𝐷 or 𝑑2 > 𝐷), the meso-stress is set to 𝝈𝒎𝒆𝒔𝒐 = 𝟎 instead. In case additional contacts 900 

create, additional terms have to be accounted for in equation (A.8). Such terms contribute to 

𝜎𝑛𝑛
𝑚𝑒𝑠𝑜 if contact 1-4 forms or to 𝜎𝑡𝑡

𝑚𝑒𝑠𝑜 if contacts 2-6 and 3-5 forms. The meso-stress computed 

from equation (A.9) is then updated with the following correction term 

𝑉𝑚𝑒𝑠𝑜𝝈𝑐𝑜𝑟𝑟
𝑚𝑒𝑠𝑜 = {

   𝑘𝑛(𝐷 − 𝑙1)𝑙1 𝒏⊗ 𝒏        if 𝑙1 < 𝐷 

2𝑘𝑛(𝐷 − 𝑙2)𝑙2 𝒕 ⊗ 𝒕          if 𝑙2 < 𝐷
 

 905 

Finally, the macroscopic stress tensor for the REV can be determined as an integration 

of all meso-stresses of individual unit H-cells, knowing their statistical distribution via the 

probability density function 𝜔(𝜃). Thus, for the entire collection of unit H-cells, 

𝝈 =
1

𝑉
∫ 𝜔(𝜃)

π

𝜃=0

𝑉𝑚𝑒𝑠𝑜(𝜃) 𝝈𝒎𝒆𝒔𝒐(𝜃) d𝜃 (𝐴. 10) 

such that 910 

𝑉 = ∫ 𝜔(𝜃)

π

𝜃=0

𝑉𝑚𝑒𝑠𝑜(𝜃) d𝜃  𝑎𝑛𝑑 ∫ 𝜔(𝜃)

π

𝜃=0

d𝜃 = 1.  

If 𝝈𝒎𝒆𝒔𝒐 is expressed as a matrix in the local frame (𝒏, 𝒕), the stress matrix 𝝈 in the global 

frame (𝒆𝟏, 𝒆𝟐) is readily obtained by conversion from local to global configurations, i.e. 

𝝈(𝒆𝟏,𝒆𝟐) =
1

𝑉
∫ 𝜔(𝜃)

π

𝜃=0

𝑉𝑚𝑒𝑠𝑜(𝜃) 𝑷
−1 𝝈𝒎𝒆𝒔𝒐

(𝒏,𝒕) (𝜃) 𝑷 d𝜃 (𝐴. 11) 

where 𝑷  is the transformation matrix, i.e. 915 

𝑷 = (
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)  

It is noteworthy that the volumetric change of the meso-volume chosen as the bounding box of 

the inner hexagonal loop (𝑉𝑚𝑒𝑠𝑜 = 𝑙1𝑙2) leads to the trace of 𝜹𝜺 when using the 

localizationhypothesis, i.e.  

𝛿𝑉𝑚𝑒𝑠𝑜
𝑉𝑚𝑒𝑠𝑜

=
𝛿𝑙1
𝑙1
+
𝛿𝑙2
𝑙2
= Tr(𝜹𝜺)  920 

Statistical averaging then evidently gives 𝛿𝑉 = ∫ 𝜔(𝜃)
π

𝜃=0
𝛿𝑉𝑚𝑒𝑠𝑜(𝜃) d𝜃 = Tr(𝜹𝜺)𝑉, which is 

consistent with the classical interpretation of Tr(𝜹𝜺) at macroscale.  
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While 𝑉𝑚𝑒𝑠𝑜 is selected here as the bounding box of an inner hexagonal loop, it should be 

underlined that the choice of 𝑉𝑚𝑒𝑠𝑜 is not unique as long as the strain localization equation (A.7) 

is updated accordingly to ensure that 
𝛿𝑉𝑚𝑒𝑠𝑜

𝑉𝑚𝑒𝑠𝑜
= Tr(𝜹𝜺).  925 

 


