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Deciphering the effect of neutral and deterministic processes on community assembly is critical 45 to understand and predict diversity patterns. The information held in community trait 46 distributions is commonly assumed as a signature of these processes, but empirical and 47 modelling attempts have most often failed to untangle their confounding, sometimes opposing, 48 impacts. Here, we simulated the assembly of trait distributions through stochastic (dispersal 49 limitation) and/or deterministic scenarios (environmental filtering, niche differentiation). We 50 characterized the shape of trait distributions through the skewness-kurtosis relationship. We 51 identified commonalities in the co-variation between the skewness and the kurtosis of trait 52 distributions with a unique signature for each simulated assembly scenario. Our findings were 53 robust to variation in the composition of regional species pools, dispersal limitation, and 54 environmental conditions. While ecological communities can exhibit a high degree of 55 idiosyncrasy, identification of commonalities across multiple communities can help to unveil 56 ecological assembly rules in real-world ecosystems.

(ranging from -3 to +3) to avoid edge effects (Denelle et al. 2019). We set "m" to either low or 188 high dispersal limitation as explained in the first simulation experiment.

189

The total number of individuals in the external species pool was set to 25,000. This pool 190 delineates the 'regional species pool' in our simulations. To evaluate how the richness of the 191 species pool influenced community assembly, the pool of immigrants varied from 10 to 500 192 species. Richness at the regional level was fixed for each simulation run. The total number of 193 individuals per community was set to 250 (Table S1), and we simulated 100 communities in 194 each run. We chose these parameter values to approximate "realistic" vegetation sampling in 195 the context of dryland (Gross et al. 2017, Table S1). Within communities, the number of 196 individuals per species could vary according to the simulated assembly processes. The trait 197 values of the regional species pool followed a uniform distribution, such that all trait values had 198 equal probability of being selected. We randomly assigned trait values to each species. During 199 this procedure, the model allowed different species to exhibit similar trait values, therefore 4, see also SKR plots in Fig. S1). The neutral and 255 stabilizing scenarios both generated weaker SKRs than the disruptive and directional scenarios 256 (significantly lower R², Fig. 4b). These first two scenarios produced distributions that clustered 257 in the skewness-kurtosis space, and tended to overall converge toward a single skewness-258 kurtosis coordinate as species richness in the regional pool increased (from dark to bright blue 259 dots, Fig. 4a). In contrast, both the directional and the disruptive scenarios yielded strong SKRs, 260 i.e. characterized by significantly higher R² than neutral and stabilizing scenarios (Fig. 4b).

F o r R e v i e w O n l y F o r R e v i e w O n l y 13 287
Furthermore, increasing dispersal limitation marginally influenced the Y-intercept of the SKRs.

288

The mean overlap among scenarios remained extremely low under high dispersal limitation (Y-289 intercept: Mo = 0.03, Fig. 4b). We observed significant differences between the stabilizing, 290 neutral and disruptive scenarios, although the directional scenario overlapped with the neutral 291 one (overlap = 0.18). These results suggested that the SKR approach is therefore able to 292 differentiate a neutral assembly scenario from the effect of environmental filtering (stabilizing 293 scenario) and niche differentiation (disruptive scenario) even under a high stochasticity. Changing environmental conditions across communities affected local mean trait value for all 297 the studied scenarios except the neutral one (Fig. S3). Furthermore, the variance was constant 298 and low for the stabilizing scenario while all moments varied under the disruptive scenario (Fig.

S3

). For the disruptive scenario, increasing the environmental constraint (by changing the Env 300 parameter from 0 to -2 or from 0 to +2) reduced the variance and increased the skewness and 301 the kurtosis (Fig. S3a). Nevertheless, the SKR parameters calculated across communities along 
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The SKR framework shifts our perspective to focus on commonalities in trait 329 distributions -rather than differences -to unveil assembly rules. For instance, the disruptive 
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Second, the distributions of trait values at large spatial scale (e.g. at the scale of the 399 regional species pool) are important drivers determining local assembly processes and trait 400 diversity (Carmona et al. 2016;Le Provost et al. 2017;Spasojevic et al. 2018). To evaluate 401 how regional trait pools influence SKR patterns, we conducted a sensitivity analysis using 402 different trait distributions at the regional scale (see Fig. S5 for details). Our results show that 403 the regional trait pool influenced the SKR parameters for each scenario. It supports the need to 404 account for the regional trait pool to provide reliable predictions on trait diversity within and 405 across communities (Carmona et al. 2016;Spasojevic et al. 2018). Nevertheless, we also 406 observed that the relative differences among contrasting assembly scenarios remained 407 consistent despite variation in the composition of the regional trait pool, highlighting the 408 robustness of the SKR approach.

409

Third, downscaling from a global / regional trait pool to the local community scale may 410 require the development of a spatially-explicit framework, as contrasting assembly processes 586 Zhang, D., Peng, Y., Li, F., Yang, G., Wang, J., Yu, J., et al. (2019) We examined whether the relationship between the skewness and the kurtosis of trait 600 distributions (Fig. 1a) can help deciphering the signatures of contrasting assembly processes.
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The approach is inspired by optimization procedures increasingly used in physics, climatology 602 and economy (e.g. Cristelli et al. 2012). We apply the approach to diagnose assembly rules 
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  allowing functional redundancy to occur among species(Munoz et al. 2018). For simplicity,201we did not consider intraspecific trait variability in our simulations. Conspecific individuals 202 thus displayed the same trait value. ,000 communities: 500 runs where species richness varied from 10 to 500 206 species in the species pool × 100 communities per run × 4 scenarios × 2 levels of dispersal 207 limitation (low vs. high) × 2 environmental contexts (a fixed environment vs. an environmental 208 gradient). For each run, we recorded the total number of species in a given community (species 209 richness). We quantified species relative abundance as the relative frequency of each species in 210 each community (i.e., the number of individual of a species divided by the total number of 211 individual in the community).

  four moments of the trait distribution associated to each simulated 213 community: the mean, variance, skewness and kurtosis. Then, we calculated the parameters of 214 the SKRs across the 100 simulated distributions obtained from each run (R², slope, Y-intercept 215 and the distance to the lower boundary; see Box 1). For each community, we also computed 216 classical indices of trait diversity using the dbFD function in the "FD" package in R [functional 217 dispersion (FDis), the Rao index, functional evenness (FEve); Laliberté and Legendre 2010]. 218 The four distribution moments and all trait diversity metrics were abundance-weighted. While 219 the SKR parameters were estimated across the 100 communities generated by each simulation 220 run, the four distribution moments, and taxonomic and trait diversity indices were calculated at 221 the community level, and thus generated 100 values for each run. 222 We evaluated whether the parameters of the SKRs, the four distribution moments and 223 all diversity metrics can be used to discriminate assembly processes from trait distributions. For 224 instance, lower variance, FDis and Rao values compared to the neutral scenario are expected 225 for the stabilizing and directional filtering, i.e., trait convergence. Conversely, higher variance, 226 FDis and Rao values compared to the neutral scenario are expected for the disruptive filtering, 227 i.e., trait divergence. To test for significant differences among scenarios, we used the "overlap" 228 package in R (Ridout & Linkie 2009). For each diversity metric, we calculated the overlap 229 between each pair of scenarios and the mean overlap considering all scenarios together. Overlap 230 values ranged from 0 to 1. An overlap < 0.05 indicated that the metric under consideration 231 significantly discriminate assembly scenarios.
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  Fig.2b). Overall, our results showed limited ability of these metrics of trait diversity to identify
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  Fig.5b). The R² of the SKRs also differed among scenarios with the stabilizing scenario

  distributions across multiple communities unveil assembly rules 310 Our reference neutral scenario generated a wide range of trait diversity patterns, following the 311 view that "simple stochastic models can reproduce natural diversity patterns" (Hubbell 2005).

  assembly scenarios generated a wide range of trait distributions 313(Enquist et al. 2015; Le Bagousse-Pinguet et al. 2017). The ambiguity among scenarios further 314 increased in our simulations as stochasticity increased or when the environmental conditions 315 changed (e.g., sampling performed along environmental gradients). Therefore, our study 316 therefore demonstrates that distinguishing deterministic from purely neutral patterns based on 317 standard trait-based metrics, or by the four moments of trait distributions taken separately, is 318 particularly challenging. 319 The SKR framework provided far less ambiguous insights into underlying assembly 320 processes, as contrasting assembly scenarios exhibited distinct SKR patterns. The SKR 321 approach did not only well discriminate the neutral from trait-based filtering scenarios, but also 322 clearly differentiated each of the filtering scenarios from one another, irrespective of the degree 323 of dispersal limitation, environmental condition or the size of the species pool. The SKR 324 approach appears therefore as a promising tool to unveil assembly processes from trait 325 distributions, even under high stochasticity, a yet important limitation of existing approaches 326 aiming at interpreting trait diversity patterns of real-world communities (Weiher et al. 2011; 327 Münkemüller et al. 2020).

  330 filtering generated a set of symmetric and asymmetric distributions. Under this scenario, 331 increasing environmental constraints simultaneously reduced the variance and increased both 332 the skewness and the kurtosis of trait distributions (Enquist et al. 2015; Le Bagousse-Pinguet 333 et al. 2017), consistently with the environmental filtering hypothesis (Keddy 1992). However, 334 the trait distributions all aligned along a specific SKR. The observed SKR pattern thus described 335 a family of trait distributions, in which each single distribution represents an instance of a more 336 general trait distribution operating at larger spatial scale (e.g., at the biome scale in Gross et al.

  of skewness. Accounting for the SKR when assessing the impact of global change 363 on ecological communities should provide additional insights on how the ecological reassembly 364 under environmental change, and may provide a more robust validation of theoretical 365 predictions (e.g. the "Trait Driver Theory": Enquist et al. 2015, 2017). Focusing on the distance 366 to the lower boundary of the SKR (see Box 1) (Liu et al. 2020) or the deviation of individual 367 communities from empirical to random SKR (Gross et al. 2017) -rather than raw variations in 368 kurtosis -may help diagnosing shifts in community evenness and community disassembly 369 under ongoing environmental change.

  to empirical patterns of trait diversity 372 Our simulations suggest that niche differentiation and dispersal limitation jointly shape the trait 373 diversity in real-world communities. Combining the disruptive scenario with high dispersal 374 limitation was the only case that generated a strong family of trait distributions (i.e., a SKR 375 with a R² > 0.90). This family of trait distributions exhibited lower kurtosis than under the 376 neutral scenario, a pattern similar to the empirical SKRs observed in drylands worldwide (Gross 377 et al. 2017). When simulating along an environmental gradient, the disruptive scenario also 378 reproduced the impact of environmental filtering by reducing variance and increasing the 379 kurtosis within communities (Fig. S3), and the shift in dominance of contrasting functional 380 groups (e.g. the shrub-to-grass shift in dominance commonly observed in drylands; Fig. S4, 381 Bestelmeyer et al. 2018). Altogether, our results corroborate the view that dryland communities 382 are shaped by a combination of these multiple drivers. 383 The modelling platform ecolottery provides a simple and flexible environment to 384 simulate the effect of multiple stochastic and deterministic processes on trait distributions 385 (Munoz et al. 2018). Further implementations are needed to provide reliable and quantitative assembly processes have been shown to act differently on traits 389 describing contrasted axes of functional specialization (e.g. size vs. resource use related-traits, 390 Kraft et al. 2008; Cornwell & Ackerly 2009; Maire et al. 2012). On the one hand, the disruptive 391 scenario may well apply to resource-use traits as contrasting strategies for resources acquisition 392 and utilization may favor species coexistence (Maire et al. 2012). On the other hand, the 393 directional scenario could constitute a valuable hypothesis for size-related traits in light limited 394 environments where asymmetric competition predominates (Schamp et al. 2007; Gross et al. 395 2009). Considering the effect of multiple assembly processes acting on independent functional 396 dimensions would allow a more realistic representation of community assembly and species 397 coexistence (Maire et al. 2012).
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