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43 ABSTRACT

44 Deciphering the effect of neutral and deterministic processes on community assembly is critical 

45 to understand and predict diversity patterns. The information held in community trait 

46 distributions is commonly assumed as a signature of these processes, but empirical and 

47 modelling attempts have most often failed to untangle their confounding, sometimes opposing, 

48 impacts. Here, we simulated the assembly of trait distributions through stochastic (dispersal 

49 limitation) and/or deterministic scenarios (environmental filtering, niche differentiation).  We 

50 characterized the shape of trait distributions through the skewness-kurtosis relationship. We 

51 identified commonalities in the co-variation between the skewness and the kurtosis of trait 

52 distributions with a unique signature for each simulated assembly scenario. Our findings were 

53 robust to variation in the composition of regional species pools, dispersal limitation, and 

54 environmental conditions. While ecological communities can exhibit a high degree of 

55 idiosyncrasy, identification of commonalities across multiple communities can help to unveil 

56 ecological assembly rules in real-world ecosystems.

57  

58 Key words: dispersal limitation, community assembly rules, environmental filtering, 

59 functional diversity, niche differentiation, skewness-kurtosis relationship, stochasticity, trait 

60 distributions
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61 INTRODUCTION

62 A basic tenet in community ecology is that trait diversity can reveal the influence of 

63 deterministic processes on species assemblages (e.g., competition and abiotic factors; McGill 

64 et al. 2006; Weiher et al. 2011). Central to this research agenda is the hypothesis that high trait 

65 diversity reflects niche differentiation processes, while low trait diversity reflects the effect of 

66 environmental filtering selecting for species with similar trait values (Cornwell & Ackerly 

67 2009; Maire et al. 2012; Keddy 1992; Grime 2006). Much research has been devoted to analyze 

68 how patterns of trait diversity vary within and among communities (e.g., convergence or 

69 divergence) with the aim to uncover general assembly rules that could apply across many 

70 ecosystems (Diamond 1975; Weiher & Keddy 2001). However, hypothesizing a direct and 

71 unequivocal linkage between patterns of trait diversity and assembly processes has proved too 

72 simplistic and fed much debate (Weiher et al. 2011; Götzenberger et al. 2012; Münkemüller et 

73 al. 2020).

74 Multiple assembly processes are likely to simultaneously influence local trait diversity, 

75 sometimes in opposite directions (Mayfield & Levine 2010; Maire et al. 2012), making trait 

76 diversity patterns often difficult to distinguish from randomness (Götzenberger et al. 2012; 

77 Munoz & Huneman 2016). The signature of deterministic processes can be blurred by stochastic 

78 processes such as demographic drift, or contingent variation in the regional species pool 

79 composition (Hubbell 2001; Spasojevic et al. 2018). Furthermore, most trait-based approaches 

80 have ignored the effect of species dispersal among communities (Spasojevic et al. 2014). 

81 Dispersal limitation can strongly reduce species richness (Ricklefs 1987), increasing the imprint 

82 of local demographic stochasticity (Leibold et al. 2004), and thereby yielding apparent 

83 randomness in community-level patterns (Götzenberger et al. 2012; Munoz & Huneman 2016). 

84 Deciphering how multiple stochastic and deterministic processes shape trait diversity is not 

85 only crucial to expand our fundamental understanding of biodiversity patterns, but also to better 

86 predict the response of communities and ecosystems to ongoing environmental changes.
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87 Trait diversity is usually assessed using synthetic indices derived from the distribution 

88 of trait values within communities (e.g., Mason et al. 2005; Laliberté & Legendre 2010; Enquist 

89 et al. 2015; Carmona et al. 2016). Most studies focus on the mean and variance/dispersion of 

90 trait distributions (Violle et al. 2012), or on related indices (e.g., FDis, Laliberté & Legendre 

91 2010). Considering that mean and variance suffice for describing trait diversity relies on the 

92 implicit assumption that trait values follow (approximately) a normal distribution. In essence, 

93 the normal distribution shows a bell shape, whose mean represents a local optimum that 

94 matches a given environment and the variance represents how trait values are constrained 

95 around this mean (Enquist et al. 2015, Fig. 1a). However, trait distributions often deviate from 

96 a normal distribution in real-world communities, and can exhibit asymmetric, flat, peaky or 

97 multimodal shapes (Fig. 1b) (Enquist et al. 2017; Le Bagousse-Pinguet et al. 2017). In such 

98 cases, further information on the shape of trait distributions is required to characterize trait 

99 diversity.

100 The shape of trait distributions can be quantified by the skewness and the kurtosis, which 

101 quantify the asymmetry and the evenness of the trait distributions, respectively. The skewness 

102 and the kurtosis are increasingly used in ecological research because they can provide insights 

103 on how species assemble within communities, and how they respond to ongoing environmental 

104 changes (Kraft et al. 2008; Enquist et al. 2015; Gross et al. 2017; Wieczynski et al. 2019). For 

105 instance, rapid environmental changes can simultaneously increase the skewness and kurtosis 

106 of trait distributions when a limited portion of the community with specific trait values benefit 

107 from the environmental change, and the recruitment of new species adapted to novel conditions 

108 is not immediate (see predictions in “Trait Driver Theory” in Enquist et al. 2015, 2017). 

109 Conversely, niche differentiation should decrease the kurtosis of trait distributions, yielding 

110 flatter or even bimodal distributions by promoting the coexistence of functionally contrasting 

111 species (Cornwell & Ackerly 2009; Maire et al. 2012) .
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112 The skewness and the kurtosis are mathematically constrained through the Skewness-

113 Kurtosis Relationship (SKR hereafter), which can be used to characterize a broad spectrum of 

114 distributions (Box 1) (Cullen & Frey 1999). Across a variety of dryland plant communities, 

115 Gross et al. (2017) reported that the distributions of plant height and specific leaf area followed 

116 non-random SKRs. These empirical SKRs suggested the existence of general assembly rules 

117 observable at the biome scale where traits organized according to specific families of trait 

118 distributions (see Box 1 and Fig. 1c;d for a definition of family of trait distributions). Yet, we 

119 do not know which ecological processes underpin such empirical assembly rules, how different 

120 deterministic and stochastic processes modulate SKR patterns, and whether the signature of 

121 these processes are distinguishable from one another. A theoretical evaluation of the SKR 

122 framework is therefore needed to assess the effects of multiple stochastic and deterministic 

123 assembly processes on trait distributions, and more generally, to advance our ability to identify 

124 assembly rules from patterns of trait distributions.

125 In a theoretical experiment, we simulated the effects of multiple stochastic and 

126 deterministic processes on trait diversity patterns. Using the ecolottery package in R language 

127 (Munoz et al. 2018), we generated 800,000 communities spanning a broad spectrum of 

128 ecological processes and of resulting trait distributions. Specifically, we considered four 

129 community assembly scenarios: (i) a purely neutral scenario including stochastic processes 

130 only; and (ii) three different “trait-based” scenarios, each combining stochastic processes with 

131 a distinct outcome of deterministic processes entailing either convergence or divergence in trait 

132 distributions (Loranger et al. 2018). Our goals were: 

133 (1) to assess the extent to which the SKR and standard metrics of trait diversity capture 

134 distinguishable signatures of assembly processes; 

135 (2) to evaluate how the importance of stochastic processes (through the manipulation of 

136 the regional species pool richness, and dispersal limitation among communities) and 
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137 environmental variations across communities affect our ability to identify unambiguous 

138 signatures of the four community assembly scenarios.

139

140 METHODS

141 Community assembly scenarios

142 ecolottery is a modeling platform simulating the assembly of ecological communities (Munoz 

143 et al. 2018). It relies on a spatially implicit framework in which communities are assembled 

144 from an external pool of potential immigrants (e.g., a regional species pool) through dispersal. 

145 Stochastic and deterministic processes can be parameterized in ecolottery. They both influence 

146 the establishment success of immigrants and survival of their descendants in the model 

147 (Loranger et al. 2018; Munoz et al. 2018). Stochastic processes influence local diversity 

148 through demographic drift, dispersal limitation, and species richness in the regional pool 

149 (Etienne & Alonso 2005). Deterministic processes modulate the success of immigrants based 

150 on how their trait values allow establishment and persistence in local environments.

151 We simulated three different outcomes of deterministic processes in ecolottery 

152 henceforth  “trait-based filtering”. The first trait-based filtering operates around a single optimal 

153 value defined by its matching with the local environmental conditions (“stabilizing filtering” 

154 hereafter), consistently with the classical view of the environmental filtering (Keddy 1992; 

155 Kraft et al. 2015). Stabilizing filtering typically generates normal or more leptokurtic 

156 distributions (e.g. hyperbolic distributions, Fig. 1 a,b), depending on the strength of the filtering 

157 (Enquist et al. 2015; Le Bagousse-Pinguet et al. 2017). The second trait-based filtering 

158 generates assemblages where alternative optimal trait values can confer greater species 

159 performance (“disruptive filtering”; Rolhauser & Pucheta 2017; Loranger et al. 2018). This 

160 trait-based filtering produces patterns that reflect either niche differentiation among 

161 functionally contrasting species (Cornwell & Ackerly 2009; Maire et al. 2012; Rolhauser & 

Page 7 of 34 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

8

162 Pucheta 2017). Disruptive filtering typically produces uniform or bimodal distributions (Fig. 

163 1b). Finally, the third trait-based filtering generates assemblages in which species performance 

164 varies monotonically with trait values (“Directional filtering”). This produces asymmetric trait 

165 distributions (Loranger et al. 2018) (e.g. exponential distribution in Fig. 1b), e.g. in the case of 

166 asymmetric light competition (Schamp et al. 2007) or directional environmental changes 

167 (Enquist et al. 2015).

168

169 In silico assembly experiment

170 We considered four theoretical scenarios to assemble communities: (i) a purely neutral scenario 

171 that only considers the effect of stochastic processes on assembly without influence of trait 

172 differences on species performance and on trait distribution in assemblages (Hubbell 2001); 

173 and (ii) three contrasting scenarios in which deterministic processes (aforementioned trait-

174 based filtering) are combined with stochastic processes. We modeled the four scenarios using 

175 different values of the parameter “filt” in ecolottery to represent the “neutral”, “stabilizing”, 

176 “disruptive” and “directional” scenarios (see R code in Appendix S1 in Supporting 

177 Information). In addition, we draw species trait values i between -3 to +3. 

178 In a first simulation experiment, we simulated all communities with the same 

179 environmental conditions (“fixed environment”, hereafter), under low or high dispersal 

180 limitation. Dispersal limitation was manipulated using a migration parameter “m” that was set 

181 to either low (m = 0.95) or high dispersal limitation (m = 0.05). In a second simulation 

182 experiment, we simulated communities along an environmental gradient. The environmental 

183 gradient was simulated by adjusting the parameter “Env” from -2 to + 2, corresponding to the 

184 two extremes of a gradient (e.g., from cold to hot environments), and where 0 represented the 

185 mild environment (see Table S1 for model parameters). We chose the range of environmental 

186 variation “Env” (ranging from -2 to + 2) to be lower than the range of possible trait values  
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187 (ranging from -3 to +3) to avoid edge effects (Denelle et al. 2019). We set “m” to either low or 

188 high dispersal limitation as explained in the first simulation experiment.

189 The total number of individuals in the external species pool was set to 25,000. This pool 

190 delineates the ‘regional species pool’ in our simulations. To evaluate how the richness of the 

191 species pool influenced community assembly, the pool of immigrants varied from 10 to 500 

192 species. Richness at the regional level was fixed for each simulation run. The total number of 

193 individuals per community was set to 250 (Table S1), and we simulated 100 communities in 

194 each run. We chose these parameter values to approximate “realistic” vegetation sampling in 

195 the context of dryland (Gross et al. 2017, Table S1). Within communities, the number of 

196 individuals per species could vary according to the simulated assembly processes. The trait 

197 values of the regional species pool followed a uniform distribution, such that all trait values had 

198 equal probability of being selected. We randomly assigned trait values to each species. During 

199 this procedure, the model allowed different species to exhibit similar trait values, therefore 

200 allowing functional redundancy to occur among species (Munoz et al. 2018). For simplicity, 

201 we did not consider intraspecific trait variability in our simulations. Conspecific individuals 

202 thus displayed the same trait value.

203

204 Analysis of simulated trait distributions

205 We generated 800,000 communities: 500 runs where species richness varied from 10 to 500 

206 species in the species pool × 100 communities per run × 4 scenarios × 2 levels of dispersal 

207 limitation (low vs. high) × 2 environmental contexts (a fixed environment vs. an environmental 

208 gradient). For each run, we recorded the total number of species in a given community (species 

209 richness). We quantified species relative abundance as the relative frequency of each species in 

210 each community (i.e., the number of individual of a species divided by the total number of 

211 individual in the community). 
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212 We calculated the four moments of the trait distribution associated to each simulated 

213 community: the mean, variance, skewness and kurtosis. Then, we calculated the parameters of 

214 the SKRs across the 100 simulated distributions obtained from each run (R², slope, Y-intercept 

215 and the distance to the lower boundary; see Box 1). For each community, we also computed 

216 classical indices of trait diversity using the dbFD function in the “FD” package in R [functional 

217 dispersion (FDis), the Rao index, functional evenness (FEve); Laliberté and Legendre 2010]. 

218 The four distribution moments and all trait diversity metrics were abundance-weighted. While 

219 the SKR parameters were estimated across the 100 communities generated by each simulation 

220 run, the four distribution moments, and taxonomic and trait diversity indices were calculated at 

221 the community level, and thus generated 100 values for each run.

222 We evaluated whether the parameters of the SKRs, the four distribution moments and 

223 all diversity metrics can be used to discriminate assembly processes from trait distributions. For 

224 instance, lower variance, FDis and Rao values compared to the neutral scenario are expected 

225 for the stabilizing and directional filtering, i.e., trait convergence. Conversely, higher variance, 

226 FDis and Rao values compared to the neutral scenario are expected for the disruptive filtering, 

227 i.e., trait divergence. To test for significant differences among scenarios, we used the “overlap” 

228 package in R (Ridout & Linkie 2009). For each diversity metric, we calculated the overlap 

229 between each pair of scenarios and the mean overlap considering all scenarios together. Overlap 

230 values ranged from 0 to 1. An overlap < 0.05 indicated that the metric under consideration 

231 significantly discriminate assembly scenarios.

232

233 RESULTS

234 Discriminating scenarios using functional diversity metrics

235 The neutral scenario generated a wide range of trait diversity patterns, which challenges the 

236 inference of ecological processes from trait distributions (Figs. 2, 3). Significant differences 
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237 among scenarios were observed under low dispersal limitation. For instance, we observed 

238 significant differences between the stabilizing and the neutral scenarios for FDis and for Rao 

239 under low dispersal limitation (Figs. 2, 3). However, under high dispersal limitation, all trait 

240 diversity indices - with the exception of the variance - simulated under the neutral scenario 

241 systematically overlapped with those of the deterministic scenarios, meaning a lack of 

242 differences among them.

243 The variance of trait distributions best discriminated assembly scenarios. We observed 

244 a low mean overlap (Mo) when dispersal limitation was low and under fixed environment (Mo 

245 = 0.01, Fig. 2a, left panel). The stabilizing and directional scenarios exhibited significantly 

246 lower variances than those of the neutral scenario. However, the variance could not discriminate 

247 the stabilizing from the disruptive and directional scenarios, and the neutral from the disruptive 

248 scenario along an environmental gradient combined with high dispersal limitation (Mo = 0.16, 

249 Fig. 2b). Overall, our results showed limited ability of these metrics of trait diversity to identify 

250 unambiguous signatures of the four community assembly scenarios.

251

252 SKR parameters simulated in a fixed environment

253 Each studied scenario generated contrasting SKR patterns under fixed environmental 

254 conditions and low dispersal limitation (Fig. 4, see also SKR plots in Fig. S1). The neutral and 

255 stabilizing scenarios both generated weaker SKRs than the disruptive and directional scenarios 

256 (significantly lower R², Fig. 4b). These first two scenarios produced distributions that clustered 

257 in the skewness-kurtosis space, and tended to overall converge toward a single skewness-

258 kurtosis coordinate as species richness in the regional pool increased (from dark to bright blue 

259 dots, Fig. 4a). In contrast, both the directional and the disruptive scenarios yielded strong SKRs, 

260 i.e. characterized by significantly higher R² than neutral and stabilizing scenarios (Fig. 4b). 

261 Specifically, the disruptive scenario generated SKRs with the highest R², ranging from 0.6 to 
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262 0.99 (Fig. 4b), indicating that all communities assembled under this scenario belong to a unique 

263 family of trait distributions (skew-bimodal distribution, Fig. 1c, d).

264 The SKRs generated from the four scenarios had also clear and significantly distinct Y-

265 intercepts (Fig. 4b). Therefore, the SKR not only discriminated the three scenarios containing 

266 deterministic processes from a purely neutral scenario, but also clearly differentiated these three 

267 scenarios from one another. The neutral scenario had a Y-intercept = 1.86 (Fig. 4b) suggesting 

268 that it converged toward uniform distribution (Fig. 1b). This pattern of trait diversity observed 

269 at the Y-intercept of the SKR thus mirrored the trait distribution of the regional pool. The 

270 stabilizing scenario produced communities that converged toward a normal distribution (Y-

271 intercept = 2.82 Fig. 4b). This scenario generated a peakier and therefore less even trait 

272 distribution than the neutral one. The directional scenario generated distributions that were 

273 mostly asymmetric, and that converged toward a skewness value ~1 as species richness 

274 increased (Fig. 4a) and a Y-intercept = 2.1 (Fig. 4b). The disruptive scenario had the lowest Y-

275 intercept = 1.33 (Fig. 4b). This scenario generated a family of trait distributions approaching 

276 the lower boundary of the skewness-kurtosis space, corresponding to highly platykurtic 

277 bimodal distributions (see the skew-bimodal distribution in Fig. 1c). Therefore, the disruptive 

278 scenario was the one with the highest trait diversity in our simulations.

279 Increasing the influence of stochasticity, through high dispersal limitation, reduced the 

280 species richness at the community level (Fig. S2). It consistently increased the asymmetry of 

281 trait distributions for all scenarios, thereby increasing the scatter of distributions in the 

282 skewness-kurtosis space (Fig. 4a). Higher scattering of skewness and kurtosis values produced 

283 SKRs with higher R² for all scenarios (Fig. 4b). For instance, the R² of the neutral scenario 

284 ranged from 0.25 to 0.75 (Fig. 4b), indicating that significant SKRs can be observed and 

285 produced by a high stochasticity even under a strictly neutral scenario. Yet, irrespective of the 

286 degree of stochasticity, the disruptive filtering always produced the strongest SKRs (Fig. 4b). 
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287 Furthermore, increasing dispersal limitation marginally influenced the Y-intercept of the SKRs. 

288 The mean overlap among scenarios remained extremely low under high dispersal limitation (Y-

289 intercept: Mo = 0.03, Fig. 4b). We observed significant differences between the stabilizing, 

290 neutral and disruptive scenarios, although the directional scenario overlapped with the neutral 

291 one (overlap = 0.18). These results suggested that the SKR approach is therefore able to 

292 differentiate a neutral assembly scenario from the effect of environmental filtering (stabilizing 

293 scenario) and niche differentiation (disruptive scenario) even under a high stochasticity.

294

295 SKR parameters simulated along an environmental gradient

296 Changing environmental conditions across communities affected local mean trait value for all 

297 the studied scenarios except the neutral one (Fig. S3). Furthermore, the variance was constant 

298 and low for the stabilizing scenario while all moments varied under the disruptive scenario (Fig. 

299 S3). For the disruptive scenario, increasing the environmental constraint (by changing the Env 

300 parameter from 0 to -2 or from 0 to +2) reduced the variance and increased the skewness and 

301 the kurtosis (Fig. S3a). Nevertheless, the SKR parameters calculated across communities along 

302 the gradient, and particularly the Y-intercept, consistently produced similar patterns than those 

303 observed under a fixed environment with significant differences among scenarios (Y-intercept 

304 Mo = 0.005 with low dispersal limitation, Y-intercept Mo = 0.04 with high dispersal limitation 

305 Fig. 5b). The R² of the SKRs also differed among scenarios with the stabilizing scenario 

306 showing the lowest range of R² and the disruptive scenario showing the highest R² (Fig. 5b). 

307

308 DISCUSSION

309 Commonalities in trait distributions across multiple communities unveil assembly rules

310 Our reference neutral scenario generated a wide range of trait diversity patterns, following the 

311 view that “simple stochastic models can reproduce natural diversity patterns” (Hubbell 2005). 
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312 Likewise, deterministic assembly scenarios generated a wide range of trait distributions 

313 (Enquist et al. 2015; Le Bagousse-Pinguet et al. 2017). The ambiguity among scenarios further 

314 increased in our simulations as stochasticity increased or when the environmental conditions 

315 changed (e.g., sampling performed along environmental gradients). Therefore, our study 

316 therefore demonstrates that distinguishing deterministic from purely neutral patterns based on 

317 standard trait-based metrics, or by the four moments of trait distributions taken separately, is 

318 particularly challenging.

319 The SKR framework provided far less ambiguous insights into underlying assembly 

320 processes, as contrasting assembly scenarios exhibited distinct SKR patterns. The SKR 

321 approach did not only well discriminate the neutral from trait-based filtering scenarios, but also 

322 clearly differentiated each of the filtering scenarios from one another, irrespective of the degree 

323 of dispersal limitation, environmental condition or the size of the species pool. The SKR 

324 approach appears therefore as a promising tool to unveil assembly processes from trait 

325 distributions, even under high stochasticity, a yet important limitation of existing approaches 

326 aiming at interpreting trait diversity patterns of real-world communities (Weiher et al. 2011; 

327 Münkemüller et al. 2020).

328 The SKR framework shifts our perspective to focus on commonalities in trait 

329 distributions - rather than differences – to unveil assembly rules. For instance, the disruptive 

330 filtering generated a set of symmetric and asymmetric distributions. Under this scenario, 

331 increasing environmental constraints simultaneously reduced the variance and increased both 

332 the skewness and the kurtosis of trait distributions (Enquist et al. 2015; Le Bagousse-Pinguet 

333 et al. 2017), consistently with the environmental filtering hypothesis (Keddy 1992). However, 

334 the trait distributions all aligned along a specific SKR. The observed SKR pattern thus described 

335 a family of trait distributions, in which each single distribution represents an instance of a more 

336 general trait distribution operating at larger spatial scale (e.g., at the biome scale in Gross et al. 
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337 2017). All distributions within this family shared a common property: trait distributions are 

338 bimodal (Fig. S5), thus reflecting the effect of niche differentiation processes promoting the 

339 coexistence of functionally contrasting species (Maire et al. 2012). In other words, even if 

340 different environmental conditions along a gradient (and stochastic processes) can affect the 

341 shape parameters of distributions by increasing the skewness and the kurtosis separately, a 

342 bimodality persists as the signature of niche differentiation. By characterizing commonalities 

343 in trait distributions, the SKR represents a critical step toward the identification of general rules 

344 governing the functional organization of species assemblages.

345 By identifying families of trait distributions, the SKR framework scales up trait 

346 distributions from the community to broader geographical scales (e.g. landscape / regional / 

347 continental / biome scales). The SKR framework differs from other trait-based approaches  

348 aiming at addressing biogeographical questions by aggregating trait patterns across spatial 

349 scales (Violle et al. 2014; Carmona et al. 2016). While the SKR framework scales up trait 

350 distributions from local to wider geographical scales, it also keeps the information on the shape 

351 of trait distributions observed at the community scale. In other words, the SKR framework 

352 increases the spatial extent by quantifying trait distributions at large spatial scale but does not 

353 reduce the grain size. Therefore, the SKR framework represents an opportunity to merge 

354 community ecology and biogeography and to “achieve a deeper understanding of biodiversity 

355 and its change across communities” (Chase et al. 2018).

356 The skewness and the kurtosis of trait distributions are increasingly used to detect the 

357 short term effects of global change on communities, and may be used as a signal of 

358 compositional changes (Enquist et al. 2017; Griffin-Nolan et al. 2019; Wieczynski et al. 2019; 

359 Zhang et al. 2019; Aguirre-Gutiérrez et al. 2020). Yet, variations in skewness and kurtosis are 

360 often considered independently, i.e. without accounting for their mathematical dependency 

361 (Box 1). Observing a decrease in trait evenness (higher kurtosis) may entirely rely on changes 
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362 in the degree of skewness. Accounting for the SKR when assessing the impact of global change 

363 on ecological communities should provide additional insights on how the ecological reassembly 

364 under environmental change, and may provide a more robust validation of theoretical 

365 predictions (e.g. the “Trait Driver Theory”: Enquist et al. 2015, 2017). Focusing on the distance 

366 to the lower boundary of the SKR (see Box 1) (Liu et al. 2020) or the deviation of individual 

367 communities from empirical to random SKR (Gross et al. 2017) – rather than raw variations in 

368 kurtosis - may help diagnosing shifts in community evenness and community disassembly 

369 under ongoing environmental change.

370

371 Linking theoretical predictions to empirical patterns of trait diversity 

372 Our simulations suggest that niche differentiation and dispersal limitation jointly shape the trait 

373 diversity in real-world communities. Combining the disruptive scenario with high dispersal 

374 limitation was the only case that generated a strong family of trait distributions (i.e., a SKR 

375 with a R² > 0.90). This family of trait distributions exhibited lower kurtosis than under the 

376 neutral scenario, a pattern similar to the empirical SKRs observed in drylands worldwide (Gross 

377 et al. 2017). When simulating along an environmental gradient, the disruptive scenario also 

378 reproduced the impact of environmental filtering by reducing variance and increasing the 

379 kurtosis within communities (Fig. S3), and the shift in dominance of contrasting functional 

380 groups (e.g. the shrub-to-grass shift in dominance commonly observed in drylands; Fig. S4, 

381 Bestelmeyer et al. 2018). Altogether, our results corroborate the view that dryland communities 

382 are shaped by a combination of these multiple drivers.

383 The modelling platform ecolottery provides a simple and flexible environment to 

384 simulate the effect of multiple stochastic and deterministic processes on trait distributions 

385 (Munoz et al. 2018).  Further implementations are needed to provide reliable and quantitative 
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386 predictions when comparing theoretical predictions with observed trait distributions in real-

387 world communities:

388 First, different assembly processes have been shown to act differently on traits 

389 describing contrasted axes of functional specialization (e.g. size vs. resource use related-traits, 

390 Kraft et al. 2008; Cornwell & Ackerly 2009; Maire et al. 2012). On the one hand, the disruptive 

391 scenario may well apply to resource-use traits as contrasting strategies for resources acquisition 

392 and utilization may favor species coexistence (Maire et al. 2012). On the other hand, the 

393 directional scenario could constitute a valuable hypothesis for size-related traits in light limited 

394 environments where asymmetric competition predominates (Schamp et al. 2007; Gross et al. 

395 2009). Considering the effect of multiple assembly processes acting on independent functional 

396 dimensions would allow a more realistic representation of community assembly and species 

397 coexistence (Maire et al. 2012).

398 Second, the distributions of trait values at large spatial scale (e.g. at the scale of the 

399 regional species pool) are important drivers determining local assembly processes and trait 

400 diversity (Carmona et al. 2016; Le Provost et al. 2017; Spasojevic et al. 2018). To evaluate 

401 how regional trait pools influence SKR patterns, we conducted a sensitivity analysis using 

402 different trait distributions at the regional scale (see Fig. S5 for details). Our results show that 

403 the regional trait pool influenced the SKR parameters for each scenario. It supports the need to 

404 account for the regional trait pool to provide reliable predictions on trait diversity within and 

405 across communities (Carmona et al. 2016; Spasojevic et al. 2018). Nevertheless, we also 

406 observed that the relative differences among contrasting assembly scenarios remained 

407 consistent despite variation in the composition of the regional trait pool, highlighting the 

408 robustness of the SKR approach.

409 Third, downscaling from a global / regional trait pool to the local community scale may 

410 require the development of a spatially-explicit framework, as contrasting assembly processes 
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411 may act simultaneously but at different spatial scale (Keddy 1992; Spasojevic et al. 2014; Le 

412 Provost et al. 2017). Such framework would allow evaluating how environmental filtering 

413 acting at broad spatial scale (Kraft et al. 2015; Le Bagousse-Pinguet et al. 2017) interacts with 

414 local biotic processes (Maire et al. 2012), e.g. by simulating the stabilizing and disruptive 

415 scenarios within a single framework but acting at contrasted spatial scale. In this context, further 

416 implementations of the model would allow for a more explicit representation of biotic 

417 interactions. For instance, the disruptive scenario considers a selection of two optima due to 

418 alternative suitable strategies (e.g., coexisting guilds, Cornwell & Ackerly 2009; Maire et al. 

419 2012). However, the disruptive scenario does not account for interactions among individual 

420 species trough density-dependent mechanisms (MacArthur & Levins 1967) as well as for other 

421 types of biotic interactions (e.g., facilitation and indirect interactions) that have been shown to 

422 impact trait diversity in plant communities (Gross et al. 2009; Saiz et al. 2019).

423

424 Conclusions

425 Here we show that the skewness-kurtosis relationship (SKR) offers a powerful mean to evaluate 

426 the effect of multiple stochastic and deterministic processes on the assembly of ecological 

427 communities. By focusing on the co-variation between the skewness and the kurtosis across 

428 multiple communities, the SKR framework identifies commonalities in the shape of the trait 

429 distributions that can serve as a basis to infer assembly processes. The SKR framework is robust 

430 to stochastic processes such as variation in regional species and trait pools, dispersal limitation. 

431 Finally, our simulations suggest that the joint effect of local-scale processes such as niche 

432 differentiation and regional-scale dispersal limitation can have key implications for shaping 

433 biodiversity. Our study offers promising avenue for identifying ecological assembly rules in 

434 real-world ecosystems.

435

Page 18 of 34Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

19

436 Acknowledgments

437 We thank the editor Brian Enquist and the three anonymous reviewers whose 

438 comments/suggestions helped improve and clarify this manuscript; Miguel Berdugo, Lucas 

439 Deschamps, Fernando T. Maestre, Pascal Monestiez and Caroline Tucker for fruitful 

440 discussions. YLB-P was supported by a Marie Sklodowska-Curie Actions Individual 

441 Fellowship (MSCA-IF) within the European Program Horizon 2020 (DRYFUN Project 

442 656035). PL received funding from the Czech Science Foundation (GACR 17-19376S) and the 

443 Czech Academy of Sciences (RVO 67985939). CV was supported by the European Research 

444 Council (ERC) Starting Grant Project ‘ecophysiological and biophysical constraints on 

445 domestication in crop plants’ (grant ERC-StG-2014-639706-CONSTRAINTS). This study was 

446 partly supported by the French Foundation for Research on Biodiversity (FRB; 

447 <www.fondationbiodiversite.fr>) and EDF in the context of the CESAB project ‘causes and 

448 consequences of functional rarity from local to global scales’ (FREE). N.G. was supported by 

449 the AgreenSkills+ fellowship programme which has received funding from the EU’s Seventh 

450 Framework Programme under grant agreement N° FP7-609398 (AgreenSkills+ contract).

451

452 REFERENCES

453 Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S.L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., et 

454 al. (2020). Long-term droughts may drive drier tropical forests towards increased 

455 functional, taxonomic and phylogenetic homogeneity. Nature communications, 11, 1–

456 10.

457 Bestelmeyer, B.T., Peters, D.P.C., Archer, S.R., Browning, D.M., Okin, G.S., Schooley, R.L., 

458 et al. (2018). The Grassland–Shrubland Regime Shift in the Southwestern United 

459 States: Misconceptions and Their Implications for Management. BioScience, 68, 678–

460 690.

Page 19 of 34 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

20

461 Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepš, J. (2016). Traits Without Borders: 

462 Integrating Functional Diversity Across Scales. Trends in Ecology & Evolution, 31, 

463 382–394.

464 Chase, J.M., McGill, B.J., McGlinn, D.J., May, F., Blowes, S.A., Xiao, X., et al. (2018). 

465 Embracing scale-dependence to achieve a deeper understanding of biodiversity and its 

466 change across communities. Ecology Letters, 21, 1737–1751.

467 Cornwell, W.K. & Ackerly, D.D. (2009). Community assembly and shifts in plant trait 

468 distributions across an environmental gradient in coastal California. Ecological 

469 Monographs, 79, 109–126.

470 Cristelli, M., Zaccaria, A. & Pietronero, L. (2012). Universal relation between skewness and 

471 kurtosis in complex dynamics. Phys. Rev. E, 85, 066108.

472 Cullen, A.C., Frey, H.C. & Frey, C.H. (1999). Probabilistic techniques in exposure 

473 assessment: a handbook for dealing with variability and uncertainty in models and 

474 inputs. Springer Science & Business Media.

475 Denelle, P., Violle, C. & Munoz, F. (2019). Distinguishing the signatures of local 

476 environmental filtering and regional trait range limits in the study of trait–environment 

477 relationships. Oikos, 128, 960–971.

478 Diamond, J.M. (1975). The island dilemma: lessons of modern biogeographic studies for the 

479 design of natural reserves. Biological conservation, 7, 129–146.

480 Enquist, B.J., Bentley, L.P., Shenkin, A., Maitner, B., Savage, V., Michaletz, S., et al. (2017). 

481 Assessing trait-based scaling theory in tropical forests spanning a broad temperature 

482 gradient. Global Ecology and Biogeography, 26, 1357–1373.

483 Enquist, B.J., Norberg, J., Bonser, S.P., Violle, C., Webb, C.T., Henderson, A., et al. (2015). 

484 Chapter Nine - Scaling from Traits to Ecosystems: Developing a General Trait Driver 

485 Theory via Integrating Trait-Based and Metabolic Scaling Theories. In: Advances in 

Page 20 of 34Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

21

486 Ecological Research, Trait-Based Ecology - From Structure to Function (eds. Pawar, 

487 S., Woodward, G. & Dell, A.I.). Academic Press, pp. 249–318.

488 Etienne, R.S. & Alonso, D. (2005). A dispersal-limited sampling theory for species and 

489 alleles: A dispersal-limited sampling theory. Ecology Letters, 8, 1147–1156.

490 Götzenberger, L., de Bello, F., Br\aathen, K.A., Davison, J., Dubuis, A., Guisan, A., et al. 

491 (2012). Ecological assembly rules in plant communities—approaches, patterns and 

492 prospects. Biological reviews, 87, 111–127.

493 Griffin-Nolan, R.J., Blumenthal, D.M., Collins, S.L., Farkas, T.E., Hoffman, A.M., Mueller, 

494 K.E., et al. (2019). Shifts in plant functional composition following long-term drought 

495 in grasslands. Journal of Ecology, 107, 2133–2148.

496 Grime, J.P. (2006). Trait convergence and trait divergence in herbaceous plant communities: 

497 mechanisms and consequences. Journal of Vegetation Science, 17, 255–260.

498 Gross, N., Kunstler, G., Liancourt, P., Bello, F.D., Suding, K.N. & Lavorel, S. (2009). 

499 Linking individual response to biotic interactions with community structure: a trait-

500 based framework. Functional Ecology, 23, 1167–1178.

501 Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N.J. & Maestre, F.T. 

502 (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature 

503 ecology & evolution, 1, 0132.

504 Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-

505 32). Princeton University Press.

506 Hubbell, S.P. (2005). Neutral theory in community ecology and the hypothesis of functional 

507 equivalence. Functional ecology, 19, 166–172.

508 Keddy, P.A. (1992). Assembly and response rules: two goals for predictive community 

509 ecology. Journal of vegetation science, 3, 157–164.

Page 21 of 34 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

22

510 Kraft, N.J., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015). 

511 Community assembly, coexistence and the environmental filtering metaphor. 

512 Functional ecology, 29, 592–599.

513 Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008). Functional Traits and Niche-Based Tree 

514 Community Assembly in an Amazonian Forest. Science, 322, 580–582.

515 Laliberté, E. & Legendre, P. (2010). A distance-based framework for measuring functional 

516 diversity from multiple traits. Ecology, 91, 299–305.

517 Le Bagousse-Pinguet, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R., et 

518 al. (2017). Testing the environmental filtering concept in global drylands. Journal of 

519 Ecology, 105, 1058–1069.

520 Le Provost, G., Gross, N., Börger, L., Deraison, H., Roncoroni, M. & Badenhausser, I. (2017). 

521 Trait�matching and mass effect determine the functional response of herbivore 

522 communities to land�use intensification. Funct Ecol, 31, 1600–1611.

523 Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., et al. 

524 (2004). The metacommunity concept: a framework for multi-scale community 

525 ecology: The metacommunity concept. Ecology Letters, 7, 601–613.

526 Liu, C., Li, Y., Zhang, J., Baird, A.S. & He, N. (2020). Optimal Community Assembly 

527 Related to Leaf Economic-Hydraulic-Anatomical Traits. Frontiers in plant science, 

528 11, 341.

529 Loranger, J., Munoz, F., Shipley, B. & Violle, C. (2018). What makes trait-abundance 

530 relationships when both environmental filtering and stochastic neutral dynamics are at 

531 play? Oikos, 127, 1735–1745.

532 MacArthur, R. & Levins, R. (1967). The limiting similarity, convergence, and divergence of 

533 coexisting species. The american naturalist, 101, 377–385.

Page 22 of 34Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

23

534 Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L. da S., et al. (2012). Habitat 

535 filtering and niche differentiation jointly explain species relative abundance within 

536 grassland communities along fertility and disturbance gradients. New Phytologist, 196, 

537 497–509.

538 Mason, N.W.H., Mouillot, D., Lee, W.G. & Wilson, J.B. (2005). Functional richness, 

539 functional evenness and functional divergence: the primary components of functional 

540 diversity. Oikos, 111, 112–118.

541 Mayfield, M.M. & Levine, J.M. (2010). Opposing effects of competitive exclusion on the 

542 phylogenetic structure of communities. Ecology letters, 13, 1085–1093.

543 McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community 

544 ecology from functional traits. Trends in ecology & evolution, 21, 178–185.

545 Münkemüller, T., Gallien, L., Pollock, L.J., Barros, C., Carboni, M., Chalmandrier, L., et al. 

546 (2020). Dos and don’ts when inferring assembly rules from diversity patterns. Global 

547 Ecology and Biogeography.

548 Munoz, F., Grenié, M., Denelle, P., Taudière, A., Laroche, F., Tucker, C., et al. (2018). 

549 ecolottery: Simulating and assessing community assembly with environmental 

550 filtering and neutral dynamics in R. Methods in Ecology and Evolution, 9, 693–703.

551 Munoz, F. & Huneman, P. (2016). From the Neutral Theory to a Comprehensive and 

552 Multiscale Theory of Ecological Equivalence. The Quarterly Review of Biology, 91, 

553 321–342.

554 Ricklefs, R.E. (1987). Community diversity: relative roles of local and regional processes. 

555 Science, 235, 167–171.

556 Ridout, M.S. & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera 

557 trap data. JABES, 14, 322–337.

Page 23 of 34 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

24

558 Rolhauser, A.G. & Pucheta, E. (2017). Directional, stabilizing, and disruptive trait selection 

559 as alternative mechanisms for plant community assembly. Ecology, 98, 668–677.

560 Saiz, H., Le Bagousse-Pinguet, Y., Gross, N. & Maestre, F.T. (2019). Intransitivity increases 

561 plant functional diversity by limiting dominance in drylands worldwide. Journal of 

562 Ecology, 107, 240–252.

563 Schamp, B.S., Chau, J. & Aarssen, L.W. (2007). Dispersion of traits related to competitive 

564 ability in an old-field plant community. J Ecology, 0, 071119203335008-???

565 Shmida, A. & Ellner, S. (1984). Coexistence of plant species with similar niches. Vegetatio, 

566 58, 29–55.

567 Spasojevic, M.J., Catano, C.P., LaManna, J.A. & Myers, J.A. (2018). Integrating species traits 

568 into species pools. Ecology, 99, 1265–1276.

569 Spasojevic, M.J., Copeland, S. & Suding, K.N. (2014). Using functional diversity patterns to 

570 explore metacommunity dynamics: a framework for understanding local and regional 

571 influences on community structure. Ecography, 37, 939–949.

572 Violle, C., Enquist, B.J., McGill, B.J., Jiang, L.I.N., Albert, C.H., Hulshof, C., et al. (2012). 

573 The return of the variance: intraspecific variability in community ecology. Trends in 

574 ecology & evolution, 27, 244–252.

575 Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J. & Kattge, J. (2014). The emergence and 

576 promise of functional biogeography. PNAS, 111, 13690–13696.

577 Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T. & Bentivenga, S. (2011). Advances, 

578 challenges and a developing synthesis of ecological community assembly theory. 

579 Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2403–

580 2413.

581 Weiher, E. & Keddy, P. (2001). Ecological assembly rules: perspectives, advances, retreats. 

582 Cambridge University Press.

Page 24 of 34Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

25

583 Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., et 

584 al. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. 

585 Proceedings of the National Academy of Sciences, 116, 587–592.

586 Zhang, D., Peng, Y., Li, F., Yang, G., Wang, J., Yu, J., et al. (2019). Trait identity and 

587 functional diversity co-drive response of ecosystem productivity to nitrogen 

588 enrichment. Journal of Ecology, 107, 2402–2414.

589

590  SUPPORTING INFORMATION 

591 Additional Supporting Information may be downloaded via the online version of this article at 

592 Wiley Online Library (www.ecologyletters.com). 

593 As a service to our authors and readers, this journal provides supporting information supplied 

594 by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, 

595 but are not copy-edited or typeset. Technical support issues arising from supporting information 

596 (other than missing files) should be addressed to the authors.

Page 25 of 34 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

26

598 BOX 1: The Skewness-Kurtosis Relationship (SKR)

599 We examined whether the relationship between the skewness and the kurtosis of trait 

600 distributions (Fig. 1a) can help deciphering the signatures of contrasting assembly processes. 

601 The approach is inspired by optimization procedures increasingly used in physics, climatology 

602 and economy (e.g. Cristelli et al. 2012). We apply the approach to diagnose assembly rules 

603 from trait distributions (the Skewness-Kurtosis Relationship [SKR] approach). While the mean 

604 and variance reflect the location and the scale of a distribution (the latter being the dispersion 

605 of trait values within a community), the skewness and kurtosis inform on its shape. The degree 

606 of skewness quantifies the asymmetry of a given distribution. For instance, a skew distribution 

607 indicates the dominance of extreme trait values (see exponential distribution in Fig. 1b), which 

608 can typically arise from asymmetric competition for light  (Schamp et al. 2007). The kurtosis 

609 quantifies the relative peakiness of a trait distribution and the relative density of its tails. Low 

610 kurtosis values reflect an even distribution of trait values within a given community, a definition 

611 of a high trait diversity (Gross et al. 2017). Low Kurtosis may reflect the coexistence of 

612 functionally contrasting species (see uniform and bimodal distributions in Fig. 1b) (Enquist et 

613 al. 2017; Gross et al. 2017). In contrast, peaked distributions characterized by high kurtosis 

614 value reflect a low trait diversity, and may typically occur under strong environmental filtering 

615 (sensu Keddy 1992) selecting for a limited range of trait value (see hyperbolic distribution in 

616 Fig. 1b). 

617 Skewness (S) and kurtosis (K) are related through the following inequality (Fig. 1b): 

618 K g h S^2 + j (1)

619 This inequality generates a mathematically constrained triangle in which all possible trait 

620 distributions can be represented and characterized (Gross et al. 2017), i.e. the skewness-kurtosis 

621 space. For instance, the normal distribution is defined by a unique combination of skewness 

622 and kurtosis values of 0 and 3 respectively. It can therefore be represented as a single coordinate 
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623 in the skewness-kurtosis space (red dot, in Fig. 1d). Families of trait distributions can also be 

624 represented by a skewness-kurtosis relationship (SKR, hereafter) with a slope h and a Y-

625 intercept j7 A SKR implies that when trait distributions become more skewed, they also become 

626 more peaked, resulting in a decrease in evenness. The slope h of the SKR measures the strength 

627 of the relationship, i.e., the extent to which evenness decreases as trait distributions become 

628 more skewed. The Y-intercept j indicates the lowest kurtosis value at skewness = 0, and 

629 corresponds to the highest trait diversity predicted by a given SKR. Distributions belonging to 

630 a family of distributions share common properties. For instance, in the case of a skew-bimodal 

631 distribution (Fig. 1c, green dashed line in Fig. 1d), all distributions are bimodal although their 

632 degree of skewness and kurtosis can vary across communities. This would be the case when 

633 two distinct functional groups coexist within communities (e.g. grass and shrub species) but 

634 their relative abundance can vary across communities.

635 The inequality (1) has a lower boundary that sets a limit to the minimal kurtosis value 

636 predicted for any degree of skewness, i.e. the potential maximum trait diversity for a given 

637 skewness (black dash line, K = S² + 1, Fig. 1b) (see Gross et al. 2017 for a mathematical 

638 demonstration). The distance to the lower boundary for a given distribution - exemplified with 

639 the black arrow in the case of the exponential distribution (Fig. 1b) - thus quantifies the extent 

640 to which trait diversity departs from the potential maximum trait diversity independently from 

641 the degree of skewness. Although skewness and kurtosis individually provide valuable 

642 information on community trait distributions, the SKR approach helps to diagnose complex 

643 trait distributions (Cullen & Frey 1999) and to reveal the extent to which trait diversity is 

644 maximized within communities. Applying the SKR framework to ecological communities may 

645 allow identifying assembly rules through the identification of commonalities in the shape of the 

646 trait distributions observed across multiple communities.

647
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648 Figures Legend:

649 Figure 1 Characterizing complex trait distributions using the Skewness-Kurtosis Relationship 

650 (SKR). (a) A trait distribution is a density function representing the relative frequency or 

651 abundance of trait values within a community. Examples of trait distributions include normal 

652 (panel a), uniform, bimodal, hyperbolic or exponential distributions (panel b). (c) Example of 

653 a family of distributions: a skew-bimodal distribution (see results, and Box 1). (d) The 

654 Skewness-Kurtosis space. Trait distributions are characterized by distinct skewness (S) - 

655 kurtosis (K) coordinates. Families of trait distributions can be characterized by a specific 

656 Skewness-Kurtosis Relationship (SKR) such as K = h&Y + j7 The distance to the lower boundary 

657 (i.e. potential minimum kurtosis value) of a given distribution (exemplified with the black arrow 

658 in the case of the exponential distribution) quantifies the extent to which trait evenness is 

659 maximized.

660

661 Figure 2 The four moments of the trait distributions simulated under the four theoretical 

662 scenarios (Neutral [Neu], Stabilizing [Sta], Disruptive [Dis], Directional [Dir]) under (a) fixed 

663 environment and varying species pools, (b) changing environment and fixed species pool, and 

664 under low / high dispersal limitation. We represent the mean, variance, skewness and kurtosis 

665 of the trait distributions simulated under each scenario using violin plots. For each panel, we 

666 provide the mean overlap (Mo) among the four moments of the trait distributions. Different 

667 letters indicate significant differences between scenarios (overlap < 0.05; NS for Not-

668 Significant).

669 k

670 Figure 3 Species richness (Sp. Rich.) and commonly-used trait diversity indices (FDis, Rao, 

671 FEve) simulated under the four theoretical scenarios (Neutral [Neu], Stabilizing [Sta], 

672 Disruptive [Dis], Directional [Dir]) in (a) Fixed environment varying species pools, (b) 
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673 changing environment fixed species pool, and under low / high dispersal limitation. We 

674 represent each predicted parameter using violin plots. For each panel, we provide the mean 

675 overlap (Mo) between the four-parameter distributions. Different letters indicate significant 

676 differences between scenarios (overlap < 0.05; but NS for Not-Significant).

677

678 Figure 4 Effect of the different assembly scenarios on the Skewness-Kurtosis Relationship 

679 (SKR) in a fixed environment and varying regional species pool. (a) Coordinates of the 

680 simulated communities in the skewness-kurtosis space under the different scenarios. We 

681 simulate 100 communities (number of run = 500) assembled in a constant environment under 

682 low / high dispersal limitation. Dark and light blue dots represent poor and rich regional pools, 

683 respectively. (b) We represent the parameters of the SKRs (R², Y-intercept (alpha), slope of the 

684 SKRs (beta), distance to the lower boundary) for each scenario using violin plots. We provide 

685 the mean overlap (Mo) among the four scenarios. Different letters indicate significant 

686 differences between scenarios (overlap < 0.05; but NS for Not-Significant).

687

688 Figure 5 Effect of the different assembly scenarios on the Skewness-Kurtosis Relationship 

689 (SKR) along an environmental gradient. (a) Coordinates of the simulated communities in the 

690 skewness-kurtosis space under the different scenarios. We simulated 100 communities (number 

691 of run = 500) assembled along an environmental gradient (from Env = -2 to Env = +2) and a 

692 fixed regional species pool (n = 150 species) under low / high dispersal limitation. Dark and 

693 light blue dots represent the environmental gradient ranging from -2 to +2. (b) We represent 

694 the parameters of the SKRs (R², Y-intercept (alpha), slope of the SKRs (beta), distance to the 

695 lower boundary) for each scenario using violin plots. We provide the mean overlap (Mo) among 

696 the four scenarios. Different letters indicate significant differences between scenarios (overlap 

697 < 0.05; but NS for Not-Significant).
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