The limits of fast and slow symmetric dispersal in single-species discrete diffusion system
Bilel Elbetch, Tounisia Benzekri, Daniel Massart, Tewfik Sari

To cite this version:
Bilel Elbetch, Tounisia Benzekri, Daniel Massart, Tewfik Sari. The limits of fast and slow symmetric dispersal in single-species discrete diffusion system. 2nd National Seminaire of Mathematics, Jun 2021, Constantine, Algeria. 2021. hal-03264605

HAL Id: hal-03264605
https://hal.inrae.fr/hal-03264605
Submitted on 18 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The theoretical applicandae of the system \(\Gamma \), whose existence is shown in Proposition 2.2, is denoted by \(E'(\beta) = (x_i' - 1, ... , x_n' - 1) \)-dimensional and the total equilibrium population by:
\[
X_i(1) = x_i(1) + v^T x_i(0),
\]
where \(x_i(1) \) is the limiting value of the population in each patch. In the case of perfect mixing, i.e. in the limit \(n \to \infty \), the total population follows a logistic law with a carrying capacity which in general is different from the sum of the patch carrying capacities.

\[
\frac{d x_i}{d t} = r_i x_i \left(1 - \frac{x_i}{K_i} \right) + \sum_{j \neq i} \gamma_{ij} (x_j - x_i), \quad i = 1, \ldots, n.
\]

In all of this work, the GAS equilibrium of the system \(\Gamma \), whose existence is shown in Proposition 2.2, is denoted by \(E'(\beta) = (x_i' - 1, ... , x_n' - 1) \)-dimensional and the total equilibrium population by:
\[
X_i(1) = x_i(1) + v^T x_i(0),
\]
where \(x_i(1) \) is the limiting value of the population in each patch. In the case of perfect mixing, i.e. in the limit \(n \to \infty \), the total population follows a logistic law with a carrying capacity which in general is different from the sum of the patch carrying capacities.

In all of this work, the GAS equilibrium of the system \(\Gamma \), whose existence is shown in Proposition 2.2, is denoted by \(E'(\beta) = (x_i' - 1, ... , x_n' - 1) \)-dimensional and the total equilibrium population by:
\[
X_i(1) = x_i(1) + v^T x_i(0),
\]
where \(x_i(1) \) is the limiting value of the population in each patch. In the case of perfect mixing, i.e. in the limit \(n \to \infty \), the total population follows a logistic law with a carrying capacity which in general is different from the sum of the patch carrying capacities.