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ABSTRACT

The paper considers a n-patch model with migration terms, where each patch follows a logistic law. In the case of perfect mixing, i.e when the migration rate tends to infinity, the total population follows a logistic
law with a carrying capacity which in general is different from the sum of the n carrying capacities.
————————————————————————————————————————————————————————————————————————————————————————————–

1. Introduction

Population dynamics is a wide field of mathematics, which con-
tains many problems, for example fragmentation of population and
the effect of migration in the general dynamics of population. Bib-
liographies can be found in the work of Levin [7, 8] and Holt [6].
There are ecological situations that motivate the representation of
space as a finite set of patches connected by migrations, for in-
stance an archipelago with bird population and predators. It is an
example of insular bio-geography. The standard question in this
type of biomathematical problems, is to study the effect of migra-
tion on the general population dynamics, and the consequences
of fragmentation on the persistence or extinction of the population.
Our aim is to extend some of the results in [1, 2, 3, 4] to the more
general case of the n-patch model:

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

γij
(
xj − xi

)
, i = 1, · · · , n.

(1.1)
where n is the number of the patches in the system. The parame-
ter β represents the dispersal rate of the population; γij = γji ≥ 0
denotes the flux between patches j and i, for j 6= i. Note that if
γij > 0 there is a flux of migration between patches i and j and
if γij = 0 there is no migration. In the case where β = 0, there is
no migration , and the system (1.1) admits (K1, · · · , Kn) as a non
trivial equilibrium point, which furthermore is globally asymptoti-
cally stable (GAS). The problem is whether or not, the equilibrium
continues to be positive and GAS for any β > 0. In this work our
aim is to study the behavior of the system (1.1) for large migration
rate, i.e when β →∞.

2. Mathematical model

We consider the model of multi-patch logistic growth, coupled by
symmetric migration terms (1.1). This system of differential equa-
tions can be written:

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1

γijxj, i = 1, · · · , n (2.1)

where

γii = −
n∑

j=1,j 6=i
γij, i = 1, · · · , n (2.2)

denotes the outgoing flux of patch i. We denote by Γ the matrix

Γ := (γij)n×n. (2.3)

Its columns sum to 0 since the matrix Γ is symmetric and the diag-
onal elements γii are defined by (2.2) in such a way that each row
sums to 0. The matrix

Γ0 := Γ− diag(γ11, . . . , γnn) (2.4)

which is the same as Γ, except that the diagonal elements are
0, is called the connectivity matrix. It is the adjacency matrix of
the weighted directed graph G, which has exactly n vertices (the
patches), and there is an arrow from patch j to patch i precisely
when γij > 0, with weight γij assigned to the arrow.
We have the following result:
Proposition 2.1. The domain

Ω = {(x1, . . . , xn) ∈ Rn/xi ≥ 0, i = 1, . . . , n.}

is positively invariant for the system (1.1).
For the global stability of the model, we have the result:
Proposition 2.2. Assume that the matrix Γ := (γij)n×n (or equiv-
alently, the connectivity matrix Γ0) is irreducible. The model (1.1)
has a unique positive equilibrium point which is GAS in the positive
cone Rn+ \ {0}.
Proof. The result follows from [9].
Remark 2.1. The matrix Γ being irreducible means that the set
of patches cannot be partitioned into two nonempty disjoint sub-
sets, I and J , such that there is no migrations between a patch
in subset I and a patch in subset J . The matrix Γ is assumed to
be irreducible throughout the rest of the paper. Therefore species
can reach any patch from any patch either directly or through other
patches.

In all of this work, the GAS equilibrium of the system (1.1), whose
existence is shown in Proposition 2.2, is denoted by E∗(β) =
(x∗1(β), . . . , x∗n(β)) and the total equilibrium population by:

X∗T (β) = x∗1(β) + · · · + x∗n(β), (2.5)

3. The limits of fast symmetric dispersal

In this section our aim is to study the behavior of the system (1.1)
for large migration rate, i.e when β → ∞. We need the following
result:
Lemma 3.1. The matrix Γ has rank n− 1. Except 0 which is a sim-
ple eigenvalue of Γ, whose eigenvector is u = (1, . . . , 1)T , all other
eigenvalues of Γ are negative.
We have the following result:
Theorem 3.1. We have

lim
β→+∞

E∗(β) =

∑n
i=1 ri∑n

i=1 ri/Ki
(1, . . . , 1) .

As a corollary of the previous theorem we obtain the following
result which describes the total equilibrium population for perfect
mixing:
Corollary 3.1. We have

X∗T (+∞) = lim
β→+∞

n∑
i=1

x∗i (β) = n

∑n
i=1 ri∑n

i=1 ri/Ki
. (3.1)

Proposition 3.1. If α1 = · · · = αn =: α, then X∗T (+∞) =
∑n
i=1Ki.

Proof. We use Equation (3.1) for α1 = · · · = αn =: α.
We can use the theory of singular perturbations and theorem of
Tikhonov [10, 11] to obtain a better understanding of the behaviour
of the system in the case of perfect mixing.
Theorem 3.2. Let (x1(t, β), . . . , xn(t, β)) be the solution of the sys-
tem (1.1) with initial condition (x10, · · · , xn0) satisfying xi0 ≥ 0 for
i = 1 · · ·n. Let Y (t) be the solution of the logistic equation

dX

dt
= rX

(
1− X

nK

)
, where r =

∑n
i=1 ri
n

and K =

∑n
i=1 ri∑n

i=1 ri/Ki
,

(3.2)
with initial condition Y (0) =

∑n
i=1 xi0. Then, when β → ∞, we

have
n∑
i=1

xi(t, β) = Y (t) + o(1), uniformly for t ∈ [0,+∞) (3.3)

and, for any t0 > 0, we have

xi(t, β) =
Y (t)

n
+ o(1), i = 1, . . . , n, uniformly for t ∈ [t0,+∞).

(3.4)
In the case of fast dispersal, the approximation (3.3) shows that
the total population behaves like the unique logistic equation (3.2)
and then, when t and β tend to ∞, the total population

∑
xi(t, β)

tends toward nK = n
∑
ri/
∑
αi, where αi = ri/Ki, as stated in

Corollary 3.1. The approximation (3.4) shows that, with the excep-
tion of a thin initial boundary layer, where the population density
xi(t, β) quickly jumps from its initial condition xi0 to the average
Y (0)/n, each patch of the n-patch model behaves like the single
logistic equation

dx

dt
= rx

(
1− x

K

)
, where r =

1

n

n∑
i=1

ri and K =

∑n
i=1 ri∑n

i=1 ri/Ki
.

(3.5)
Hence, when t and β tend to ∞, the population density xi(t, β)
tends toward K =

∑
ri/
∑
αi, as stated in Theorem 3.1.

Remark 3.1. The single logistic equation (3.5) gives an approxi-
mation of the population density in each patch in the case of fast
dispersal. The intrinsic growth rate r is the arithmetic mean of the
local intrinsic growth rates ri and the carrying capacity K is the
weighted harmonic mean of the local carrying capacities Ki with
weights the growth rates ri.
Remark 3.2. Notice that if we use the r-α formalism for the logis-
tic equation, instead of the r-K formalism, where α = r/K is the
parameter quantifying intraspecific competition, then the n-patch
model (1.1) becomes

dxi
dt

= rixi − αixi2 + β

n∑
j=1,j 6=i

γij
(
xj − xi

)
, i = 1, · · · , n.

The perfect mixing approximation (3.5) of each population xi be-
comes

dx

dt
= rx− αx2, where r =

1

n

n∑
i=1

ri and α =
1

n

n∑
i=1

αi,

which is a single logistic equation whose intrinsic growth rate r and
intraspecific competition parameter α are the arithmetic means of
the local ri and αi respectively.

4. conclusion

The goal of this paper was to generalize to a multi-patch model
the results obtained in [1] for a two-patch model. The migra-
tion between patches is modeled by a symmetric Metzler matrix,
called the connectivity matrix. When the connectivity matrix is ir-
reducible, the system is shown (Prop. 2.2) to have a unique non-
trivial equilibrium, which furthermore is globally asymptotically sta-
ble.
we looked at another particular case, that of perfect mixing, when
the migration rate goes to infinity, in other words, when there is
no restriction whatsoever on travel. We computed the equilibrium
in this situation, and by perturbation arguments (see [10, 11]), we
proved that the dynamics in this ideal case provide a good approx-
imation to the case when the migration rate is large.
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