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In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many

challenges which alter performance, animal health, welfare and livability. Preventive

strategies are needed to mitigate the impacts of these challenges on gut health while

reducing the need to use antimicrobials. In the first part of the review, we propose

a common definition of gut health for pig and chickens relying on four pillars, which

correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion,

(ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For

each pillar, we describe the most commonly associated indicators. In the second part

of the review, we present the potential of functional amino acid supplementation to

preserve and improve gut health in piglets and chickens. We highlight that amino acid

supplementation strategies, based on their roles as precursors of energy and functional

molecules, as signalingmolecules and asmicrobiotamodulators can positively contribute

to gut health by supporting or restoring its four intertwined pillars. Additional work is

still needed in order to determine the effective dose of supplementation and mode of

administration that ensure the full benefits of amino acids. For this purpose, synergy

between amino acids, effects of amino acid-derived metabolites and differences in the

metabolic fate between free and protein-bound amino acids are research topics that

need to be furtherly investigated.

Keywords: functional amino acids, oxidative stress, immunity, epithelial barrier, gut microbiota, weaning,

coccidiosis

INTRODUCTION

The main functions of the gut are to ingest, digest, and absorb nutrients to support animal growth
and physiological functions while protecting the organism against luminal harmful compounds
(toxins, microorganisms, dietary antigens, etc.) (1). This dual function as a filter and a rampart
explains the complexity of the organization of the digestive mucosa that is covered by a single layer
of epithelial cells. The intestinal epithelium is constantly renewed by cell turnover mediated by stem
cells located at the bottom of the crypts. During the migration along the crypt-villus axis, epithelial
cells differentiate into absorptive (enterocytes) or secretory (goblet, paneth, enteroendocrine cells)
lineages. This cellular complexity supports the two main functions of the intestinal epithelium:
nutrition (e.g., secretion of digestive enzyme, nutrient absorption, hormone secretion) and barrier
function (e.g., formation of tight junctions, secretion of antimicrobial peptides and mucus).
Epithelial cells also communicate with immune cells located in the lamina propria that constitute
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a key component of the defensive system of the digestive
mucosa, notably through the secretion of immunoglobulins.
This complex organization of the digestive mucosa allows the
establishment of a symbiotic relationship with the microbiota
that colonizes the gut lumen. This consortium of bacteria, yeasts
and protozoa collectively provide benefits to their animal host
(2) notably through complex carbohydrate digestion, immune
system tuning, and pathogens fighting (3, 4).

In livestock, both pigs and chickens are particularly subjected
to digestive disturbances especially during the early life because of
the immaturity of their digestive tract. Antimicrobial molecules
have been massively used to control digestive diseases but
increasing concerns on antibioresistance and environmental
issues have urged to find non-antimicrobial disease control
strategies. During the last decade, there was a significant
reduction in the use of antimicrobial but further strategies are
needed to maintain or improve the gut health status of pigs
and poultry.

Amino acids (AA) are major energy substrates in the intestinal
mucosa, limiting constituents of key proteins of the gut barrier
and they can regulate immune responses and oxidative stress (5).
In this context, the aim of the present review is to summarize
the potential of functional AA supplementation to preserve
and restore gut health of pigs and chickens. Topic on which a
large number of studies is available for both species. The first
requirement to evaluate the effects of AA is a clear definition
of gut health that could be applied to pigs and chickens and of
its indicators (6) similarly to what has been done in humans
(7). In line with the definition of gut health provided by Kogut
and Arsenault (6) and Pluske et al. (1, 6), we consider that
gut health provides resistance and resilience of the animals to
respond and adapt to the challenges that they can encounter,
allowing optimal performance, low mortality and morbidity and
good overall health. According to our definition, gut health
is characterized by four interconnected pillars: (1) epithelial
barrier function and absorption (2) intestinal immune fitness
(3) oxidative stress homeostasis and (4) microbiota balance as
presented in Figure 1. Herein, we first detail the key components
of these pillars and define related indicators in pigs and chickens.
Then, we review the effects of dietary AA supplementation on gut
health indicators providing, when available, a description of the
potential mode of actions. Finally, we propose future directions of
research to optimize the use of AA supplementation to ameliorate
gut health in pigs and chickens.

THE FOUR PILLARS OF GUT HEALTH AND
ASSOCIATED INDICATOR

Pigs and chickens differ in terms of intestinal physiology and
organization. To be able to generalize our definition of gut health
to both species, we focus in this part on markers and indicators
that are considered valid for both pigs and chickens.

Epithelial Barrier, Digestion, and Nutrient
Absorption
Function of digestion and absorption of the nutrients is realized
through the coordinated actions of digestive enzymes and

FIGURE 1 | definition of gut health for farm animals.

nutrient transporters. These digestion and absorption processes
are directly related to the surface of the epithelium. This surface
is a function of the height of the villus and the ratio between villus
height and crypt depth which are key indicators of absorptive
capacity and performance (8). Even a slight villus atrophy due
to distress or illness can induce a consequent reduction of the
digestive capacity by a reduction of the enzyme secretion from
the apical part of the villi (9).

The mucus layer overlying the monolayer of intestinal
epithelial cells is the first physical barrier of the gut. This mucus
forms a gel and is composed by mucins which are glycoproteins
secreted by goblet cells. It prevents the direct contact of toxins
and pathogens with the epithelium (10). The number of goblet
cells, the thickness of mucus layer as well as the level of expression
of genes encoding for mucins are regarded as key indicators
related of this barrier function (11, 12).

In addition, epithelial cell shedding (so called “anoikis”) and
the fast renewal of the intestinal epithelium (3–5 days) is another
mechanism providing protection against pathogens by limiting
their adherence to epithelial cells. Rapid renewal of damaged
enterocytes is supported by a high protein turnover and cell
proliferation, and maintenance of functional enterocytes can
therefore be considered as a marker of good intestinal function
(13, 14). Low expression of caspase-3 in enterocytes indicates
decreased apoptosis whereas increased proliferating cell nuclear
antigen (protein which enhances DNA polymerase activity),
mitotic index (number of cells undergoing mitosis divided by
the total number of cells), and ornithine decarboxylase (protein
involved in the first step of polyamine synthesis) activity are
described as indicators of cellular proliferation (15).

This barrier function also relies on the sealing of epithelial
cells which depends on the organization of tight junctions. Tight
junctions, located at the apical side of the enterocytes, are multi
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protein complexes consisting of transmembrane proteins, such
as occludin, claudins (claudin-1, claudin 2, claudin 3), tricellulin,
and junctional adhesion molecules anchored with cytosolic
molecules like zonula occludens proteins (ZO-1, ZO-2, and ZO-
3). The abundance of these molecules is directly linked to a
decrease in intestinal permeability (16). Disruption in gut barrier
function increases gut permeability, occurrence of diarrhea and
leaky gut syndrome.

In summary, the following parameters are considered good
markers to monitor epithelial barrier and digestion: villous
height, gene expression and/or protein levels of tight junctions,
abundance of goblet cells or mucins, digestive enzyme activity,
nutrient transporters, cell proliferation, diarrhea occurrence,
intestinal permeability, cell apoptosis.

Intestinal Immune Fitness
The physical barrier function of the gut is completed by innate
and acquired immunity which constitutes two additional lines of
defense. The gut is an important site of immunity in the body and
can be subjected to inflammatory process. Inflammation activates
immunity in order to fight against an infection and/or repair
tissue damage. Inflammation is related to increased demand in
energy and nutrients to synthesize cytokines and acute phase
protein and activate the proliferation of the immune cells
(17–19). Therefore, an excessive immune response, which could
be defined as an imbalance between the level of inflammation and
the challenge faced by the animal, can lead to an excessive and
unnecessary use of energy and nutrients.

Immune fitness could be defined as “the capacity of the
host immune system to respond in an appropriate manner to a
challenge and to return or stay in immune homeostatic state in
the case of the absence of a challenge.”

Low plasma circulating and/or low intestinal gut mucosa gene
expression of proinflammatory cytokines (TNF-a, IFN-g, IL-1,
IL-4, IL-6, IL-8) in the absence of a challenge and high secretion
of immunoglobulins are indicators related to immune fitness.
In addition, the intestinal concentration of secretory IgA which
are a key component of mucosal defenses is an indicator of the
adaptive immune response (20). Another key marker of immune
fitness and inflammation is related to lymphocytes proliferation
in themucosa and their phenotype. For instance, high proportion
of regulatory T cells in the gut mucosa (Tregs) expressing Foxp3
indicates an immunoregulatory phenotype (21).

In summary, the following parameters are
considered good markers to monitor immune fitness:
immunoglobulin concentrations, cytokines concentration,
lymphocytes proliferation.

Oxidative Stress Homeostasis
Oxidative stress occurs when the production of reactive oxygen
species (ROS) such as superoxide is not balanced by the
antioxidant defense (22). In that case, ROS may cause alteration
of macromolecules including lipids (marked by increased
malondialdehyde), proteins and DNA leading to cellular and
tissue damages. The production of ROS is a physiological
mechanism, thesemolecules being generated in themitochondria
during aerobic cellular metabolism (22). Besides, these molecules

are synthesized by the cells of the innate immune system, like
granulocytes and macrophages, and the epithelial cells to defend
against pathogens (23). In the intestine, the main ROS generating
enzymes are NOX1 and DUOX2 produced respectively by the
epithelial cells and the neutrophils (24).

A tight control of ROS concentration is of primary importance
and requires a delicate balance of systems involved in their
generation and degradation. Oxidative stress homeostasis is
defined as a “situation where the concentration of reactive oxygen
is sufficient to transduce signal and counteract pathogens but
insufficient to trigger cell damages to the host.”

Antioxidant system relies on the action of antioxidant
molecules including vitamins such as vitamins E and C and
metabolites like glutathione (GSH) in the oxidized form, and
enzymes including superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GSH-Px) and heme oxygenase (HO-1)
which expression is under the control of the transcription
factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (25).
Chaperone proteins such as HSP70 play also a role in the
response to oxidative stress being involved in the removing
of non-functional and potentially harmful proteins (26). Both
the measurements of antioxidant molecules concentrations and
antioxidant enzyme activities in the gut mucosa can be used as
markers to assess oxidative status.

In summary, the following parameters are considered
good markers to monitor oxidative stress at the gut level:
total glutathione concentration, antioxidative enzyme
expression or activity, antioxidative capacity, concentration
of malondialdehyde, oxidized glutathione concentration.

Microbiota Balance
In pigs and broilers, the intestine of healthy individuals is
colonized by over than 500 species of bacteria, but also by fungi
and protozoans (27, 28). Focusing on bacteria, for which the
literature is more exhaustive, is a first approach to encompass
microbiota complexity. In caecum and colon, microbial species
belong essentially to the phyla Firmicutes (including Clostridium,
Enterococcus, Lactobacillus, and Ruminococcus genera) and
Bacteroidetes (including Bacteroides and Prevotella genera) (29,
30). These bacteria are in a homeostatic balance with the host
and guarantee the protection of the gut. Indeed, commensal
bacteria potentially prevent the overgrowth of pathogenic ones by
competing for nutrients and adhesion sites and by synthesizing
short chain fatty acids (SCFA) or antimicrobial peptides. The
microbiota also plays a pivotal role to degrade the non-digestible
compounds producing SCFA as source of energy as well as
noxious compound like ammonia or polyamines when the
substrates are indigestible proteins.

Microbial ecology is a new frontier for animal science and
in some way mirrors what has been done in humans. Among
the approaches proposed by Vangay et al. (31) to study the
microbiota, the dysbiosis-centric view can fit with the livestock
science. The authors defined four changes associated with
dysbiosis: loss of keystone taxa, loss of biodiversity, blooms of
pathogens and pathobionts and shift in functional capability.
These changes can occur independently or altogether, which is
most often the case (32). Microbiota balance could therefore
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be defined as the opposite of dysbiosis meaning “a bacterial
population abundant and diverse with a high contribution
of beneficial bacteria (Lactobacillus, Bifidobacterium, SCFA
producers) at the expense of pathogenic ones” such as
enterotoxigenic Escherichia coli (ETEC), Campylobacter and
Salmonella enteritidis.

In summary, the following parameters are considered good
markers to monitor microbiota: microbiota diversity, abundance
of beneficial bacteria, abundance of parasites, abundance of
harmful bacteria.

EFFECT OF GUT HEALTH CHALLENGES IN
PIGS AND BROILER CHICKENS ON AMINO
ACID METABOLISM

Early Weaning and Diarrhea in Piglets
In intensive pig farms, piglets are usually weaned between 2
and 5 weeks of age, when the gut and immune system are
immature. Early weaning is a critical period during which they
are separated from the sow and mixed with those of other
litters in a new environment (33). These changes generate a
stress which usually decreases water and feed intake and in
turn affects negatively the gut health (33, 34). It was reported
that piglets, in the immediate post-weaning, exhibit intestinal
villous atrophy, crypt hyperplasia and lower number of goblet
cells. Altered transepithelial resistance and depressed digestive
enzymatic activities are also observed in association with immune
cells infiltration, upregulation of pro-inflammatory cytokines and
decrease in nutrient absorption (35). Intestinal oxidative stress
indicators are also increased due to a reduction of the activity or
gene expression of antioxidative enzymes (36). All these changes
can decrease the ability of the host to digest and absorb nutrients
(37) contribute to dysbiosis and translate into the occurrence of
post-weaning diarrhea (38).

In addition, both protein content and protein synthesis in
the gut increase after weaning indicating a high need to support
the tissue development and adaptation to this period (39).
Weaning is also believed to reshape AA metabolism especially
at the gut level. Indeed, at weaning, the endogenous production
of arginine is blunted in enterocytes which could lead to a
shortage of arginine (40). Bacterial infection involving E coli, the
major pathogenic bacterium involved in post-weaning diarrhea,
is known to impair feed intake, modulate AA, gut and body
metabolism because of the systemic inflammation induced by this
infection. Two studies reported higher tryptophan requirement
in piglets challenged with enterotoxigenic E. coli (41, 42).
Accordingly, weaning under poor sanitary conditions induced
a systemic inflammation that affected whole body tryptophan
metabolism (43). Similar results were reported with threonine in
piglets housed under challenged conditions and fed antibiotic-
free diets (44–46). A recent study also revealed that immune
stimulation induced by bacterial endotoxin (LPS) injection also
led to an increase in the fluxes of GSH synthesis together with
a decrease in plasma concentration of sulfur AA cysteine, one
of the three AA constituting GSH, and methionine (47). Taking
together, these results suggest that weaning may increase the

need for AA and that weaned piglets could particularly benefit
from increased supply of arginine, sulfur AA (SAA), tryptophan
and threonine.

Coccidiosis Challenge in Broiler Chickens
In broiler chickens, coccidiosis is the main challenge at the
gut level, generating more than 3 billion dollars of loss every
year in poultry industry (48). This challenge is caused by the
infection of Eimeria species which colonize different parts of the
intestinal tract. This coccidiosis decreases feed intake and growth
and increases the susceptibility of necrotic enteritis leading to a
further decrease in performance and increase in mortality (49).

The response of the host to the infection could be described in
two phases: a damaging phase and a repairing and defense phase.
As part of the damaging phase, coccidiosis is associated with
decreased villus height, number of goblet cells, AA transporters
and digestive enzymes leading to a lower AA availability as well
as a decrease in transepithelial resistance and mucin expression
(50). In addition, infection with any of the major Eimeria species
leads to reduced plasma carotenoid thereby impairing protection
against oxidative stress (51).

As part of the repairing and defense phase, it can be observed
during coccidiosis an increase in inflammation as indicated by
the increase of cytokines, nitric oxide and IgA production used
to fight the parasites (50, 52). In addition, crypt cell proliferation
occurs to replace damaged enterocytes and mucus production
is enhanced to form a physical barrier against the pathogens
(53). This latter effect could potentiate Clostridium perfringens
colonization and necrotic enteritis as this bacteria can use
intestinal mucus as a source of nutrients (49).

It has been reported that coccidiosis condition modulates AA
metabolism. Indeed, it was shown that coccidiosis decreases the
digestibility of nearly all AA (54). In the same study, Rochel et al.
reported that coccidiosis-challenged birds had decreased plasma
concentration of arginine, asparagine, glutamine, aspartate
and increased concentration of ornithine, branched-chain
AA (BCAA) and lysine. Interestingly, re-analysis of existing
transcriptomic data from chicken cecal epithelia upon infection
by Eimeria tenella (55) revealed that the expression of genes
encoding for enzymes involved in threonine and arginine
catabolism were increased during coccidiosis infection in the
cecum (data not published) suggesting decreased availability of
these amino acids for protein synthesis. To summarize, when
broilers are facing coccidial or bacterial challenge, feed intake and
digestibility of AA are reduced while they are showing a higher
need for some of those functional AA, leading to an imbalance
between supply and demand of AA in fast-growing broiler diets.

ROLES OF AMINO ACIDS IN INTESTINAL
HOMEOSTASIS

As suggested in the previous part, AA seem to have an important
role in the maintenance of gut health as their demand can
be increased during periods of challenge in both piglets and
chickens. Based on the published literature on functional AA
supplementation in piglets and broilers, we summarize below
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how AA could support and restore the four pillars of gut health
previously described. By “support,” we refer to the way that AA
can reinforce a pillar of gut health in the absence of challenge
or prepare the function before a challenge. By “restore,” we refer
to the way that AA can help the functions to recover and go
back to homeostasis after a challenge like weaning in piglets and
coccidiosis in broiler chickens. By “support and restore,” we refer
to the way that AA prepare to a challenge and help the animal
to recover. For each of the four pillars, a list of key indicators
mentioned in the previous part was listed as shown in Tables 1,
2. The AA that influence these indicators related to the four
pillars of gut health are listed in Table 1 by summarizing the
evidence in piglets and in Table 2 by summarizing the evidence
in broilers.

These two tables suggest that investigations about AA effects
on gut health are scarcer in broilers than piglets. Most broiler
studies are focusing on arginine, glutamine and threonine,
while piglet studies are investigating a broader scope of
AA. It is difficult to clearly identify different effects of AA
supplementation across the two species while it is known that AA

requirements and metabolism might differ in pigs and chickens.
Furthermore, it is interesting to note that in both the species
most studies tested very high doses of supplementation of AA
(between 0.5 and 1.0% as-fed basis) which lead to level of AA far
above the recommendation for growth in pigs and chickens. This
could be due to the fact that studies aimed to reveal the functional
properties of amino acids.

It is interesting to note that some AA, especially aspartate,
arginine, cysteine, glutamate or mono sodium glutamate (MSG),
and glutamine for piglets and arginine, glutamine, threonine
and tryptophan for broilers are involved in three out of the
four pillars of gut health confirming two main aspects: (1)
these pillars are strongly interconnected and interdependent;
(2) AA have different functions and can modulate several
metabolic pathways and functions depending to the
specific conditions.

These functional properties have been well-described in the
literature and rely on the following functional properties of
AA: (1) AA are energy sources and precursors of functional
molecules and proteins, (2) AA modulate gene expression

TABLE 1 | Amino acids influencing the indicators related to the 4 pillars of gut health in piglets.

Pillars Epithelial barrier and digestion Immune fitness Oxidative stress homeostasis Microbiota balance

Indicators of

gut health

Villus height

Tight junctions

Goblet cells and

mucins

Digestive

enzymes activity

Transporters

Cell proliferation

Diarrhea

Permeability

Cell apoptosis

Immunoglobulins

Anti-inflammatory

cytokines

Pro-

inflammatory

cytokines

Lymphocytes

proliferation

Total

Glutathione

Antioxidative

enzymes

Anti-oxidative

capacity

Malondialdehyde

Oxidized

glutathione

Diversity

Beneficial

bacteria

(Lactobacillus,

Bifidobacterium)

Parasites

(Eimeria)

Harmful

bacteria

(Enterobacteria,

Clostridium,

Campylobacter)

Effect of

amino acids

Support Support and

restore

Restore Support Support

and restore

Restore Support Support

and restore

Restore Support Support

and restore

Restore

Asparagine (56) (57) (56)

Aspartate (58) (59, 60) (61) (59)

Arginine (62–67) (68) (69) (62, 64) (68) (62, 65, 70, 71)

Cysteine (72) (73) (72) (73) (72)

Glutamate or

monosodium

Glutamate

(67, 74–77) (78) (61) (79) (75, 78) (77) (78) (61)

Glutamine (62, 80–89) (90–93) (94) (62, 88) (92, 93, 95) (94, 96) (88, 97) (92)

Isoleucine (98) (99) (99, 100)

Leucine (101)

Lysine (102) (103) (102)

Methionine (104, 105) (105)

Proline (106)

Serine (107) (107) (107)

Threonine (108, 109) (110)

Tryptophan (111) (42, 112–114) (111) (113, 115) (116) (114)

, increased in response to AA supplementation; , decreased in response to AA supplementation.
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and protein phosphorylation and finally, (3) AA can serve as
microbiota modulators.

Amino Acids Are Energy Sources and
Precursors of Functional Molecules and
Proteins
Several AA can serve as a source of energy for the gut epithelium
and are therefore considered to favor gut development and
epithelial barrier. Indeed, it has been reported that most of
dietary glutamine and glutamate (>90%) after conversion into
α-ketoglutarate fuel the Krebs cycle and are used as a source
of energy by enterocytes (137). Accordingly, in piglets, the
supplementation of feed with asparagine, aspartate, glutamine,
alanyl-glutamine and MSG are associated with an increase
of energy availability in the intestine as shown by higher
intestinal levels of ATP, adenylate energy charge (AEC) and lower
AMP:ATP ratio (57, 58, 77, 92). Similarly, the roles of glutamate
and glutamine as substrate for ATP production has been reported
in vitro using chicken enterocytes, glutamate being the most
potent source of energy (138).

The importance of AA for gut health also relies on the
abundance of particular AAs in functional proteins. For example,
threonine is critical for epithelial barrier function being the most
abundant indispensable AA in mucins (53). Finally, AAs are
also pivotal for gut health as precursors of functional molecules.
For example, glycine, glutamate and cysteine are the three AAs
composing glutathione (GSH), a tripeptide synthesized in the
cytosol that play a key role in the regulation of the oxidative

stress through its scavenging effect on free radicals (72). The
concentrations in glutathione in the small intestine (jejunum
and ileum) was decreased by 50% in piglets fed a SAA-free diet
compared to those fed a well-balanced diet (139).

Amino Acids Can Modulate Gene
Expression and Protein Phosphorylation
In addition to being precursors of energy and functional
molecules and proteins, AAs are signaling molecules; their
abundance in cells directly modulates some metabolic pathways
by modifying gene expression and protein phosphorylation. In
piglets, leucine and glutamate supplementations in feed in vivo
were able to increase the level of phosphorylation of mTOR, a
major regulator of protein synthesis, and some of its downstream
targets (4-EBP1, S6K) in the different parts of the gut (75, 78,
101, 140). In line with these results, Corl et al. (141) reported
that arginine and BCAA increased the phosphorylation level of
p70S6k, a downstream target of mTOR, in rotavirus-infected
piglets’ jejunal segments. Similarly, increasing the glycine level
triggers cell proliferation, protein synthesis, phosphorylation
of mTOR, 4EBP-1 and p70S6K in intestinal porcine IPEC-1
cells (142). In broiler chickens, evidence is scarce but a key
role of arginine as a regulator of protein synthesis in the gut
is suggested. Indeed, Tan et al. reported that supplemental
dietary arginine attenuates intestinal mucosal disruption in
broiler chickens during a coccidial vaccine challenge through
an increase of mRNA expression of jejunal genes related to
kinase activity, such as mTOR, Raptor and RP6KB1 (50). The

TABLE 2 | Amino acids influencing the indicators related to the 4 pillars of gut health in broiler chickens.

Pillars Epithelial barrier and digestion Immune fitness Oxidative stress homeostasis Microbiota balance

Indicators of

gut health

Villus height

Tight junctions

Goblet cells

and mucins

Digestive

enzymes activity

Transporters

Cell proliferation

Diarrhea

Permeability

Cell apoptosis

Immunoglobulins

Anti-inflammatory

cytokines

Pro-inflammatory

Cytokines

Lymphocytes

proliferation

Total

Glutathione

Antioxidative

enzymes

Anti-oxidative

capacity

Malondialdehyde

Oxidized

glutathione

Diversity

Beneficial

bacteria (eg.

Lactobacillus,

Bifidobacterium)

Parasites

(Eimeria)

Harmful

bacteria (E. coli,

Enterobacteria,

Clostridium,

Campylobacter)

Effect of

amino acids

Support Support and

restore

Restore Support Support and

restore

Restore Support Support

and restore

Restore Support Support and

restore

Restore

Arginine (50, 117, 118) (119–121) (50, 122, 123) (52, 117, 118)

Glutamate (124, 125)

Glutamine (125, 126) (125, 127–129) (125) (125) (127)

Glycine (130)

Lysine (131)

Methionine (132) (131)

Threonine (130, 133) (134, 135) (133) (134) (133) (131) (133)

Tryptophan (122) (136) (136)

, increased in response to AA supplementation; , decreased in response to AA supplementation.
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TABLE 3 | Main metabolites produced by amino acid metabolism by the in the gut microbiota and associated effect on gut health.

AA AA derived metabolites with effect on gut health Effects on gut health Reference

Arginine Putrescine Involved in cell proliferation (153, 156)

Spermine and spermidine Involved in DNA and protein syntheses (153, 156)

Asparagine Converted to Aspartate (157)

Aspartate Acetate Is a precursor for fatty acid synthesis and an energy source (158, 159)

Cysteine H2S Is a source of energy for colonocytes in low concentration

Inhibits mitochondrial respiration and SCFA oxidation, disrupts

mucus layer in high concentration

(153, 157, 160)

Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Butyrate Is a major energy source for colonocytes (157, 159)

Glutamate Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Butyrate Is a major energy source for colonocytes (157, 159)

Glutamine Converted to Glutamate (157)

Glycine Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Isoleucine 2-Methylbutyrate or converted to Valine Its effect is poorly documented (153, 157)

Leucine Isovalerate Inhibits tight junction protein destabilization together with

isobutyrate

(153, 161)

Acetate Is a precursor for fatty acid synthesis and an energy source (158)

Butyrate Is a major energy source for colonocytes (159)

Lysine Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Butyrate Is a major energy source for colonocytes (157, 159)

Cadaverine Can be toxic at high dose (153, 157)

5-aminovalerate Can be toxic at high dose (153)

Serine Butyrate Is a major energy source for colonocytes (157, 159)

Methionine Butyrate Is a major energy source for colonocytes (157, 159)

Proline Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Threonine Butyrate Is a major energy source for colonocytes (157, 159)

Acetate Is a precursor for fatty acid synthesis and an energy source (157, 158)

Tryptophan Indole Increases the gene expression of tight junctions

Reduces the expression of proinflammatory cytokines and

chemokines while inducing the expression of anti-inflammatory

cytokines

(155, 162)

Phenol Increases permeability in vitro (163)

Serotonin (5-HIAA) Involves in the modulation of the gut immune system (156)

Tryptamine Regulates intestinal motility and immune function (157, 164)

effect of AA supplementation in feed on gene expression is
well-described. For example, the expression of AA and glucose
transporters responds to AA supplementation, particularly to
branched-chain amino acids and lysine in piglets (103) and to
lysine, methionine and threonine in broiler (143) suggesting
that AA supplementation could mitigate the effects of challenge
and support gut health by improving nutrient absorption (144).
Supplementation of glutamine to weanling diet can promote the
expression of genes related with the reduction of oxidative stress
(88). Similarly, SAAs can control Nrf2 expression in the liver,
a transcription factor controlling the expression of antioxidant
redox buffering enzymes and the production of other scavenging
systems for reactive oxygen species like methionine sulphoxide
reductases (145).

Amino Acids Are Microbiota Modulators
In vitro studies, based on single strains and mixed community
derived by intestinal content of piglets have shown that AAs can
contribute in influencing the metabolism and the development

of bacteria (146–148). This suggests that AAs can regulate
the gut microbiota composition and activity. This microbiota-
modulating effect of AAs has already been investigated with a
main focus on tryptophan and arginine.

Indeed, in weaned pigs, 0.4% tryptophan supplementation
for 4 weeks increased Lactobacillus and Clostridium XI in
the jejunum (111). Alpha diversity indices were enhanced in
response to tryptophan supplementation in both weaned piglets
(111) and fattening pigs susceptible to intestinal adhesion of
ETEC F4 (149). 1.0% arginine supplementation for 60 days
in fattening pigs increased Canobacteria and in combination
with 1.0% Leucine (Leu) it increased Bacteriodes and reduced
Clostridium sensu stricto, Terrisporobacter and Escherichia-
Shigella in the colon (150). In sows, arginine supplementation
increased both the Bacteroidaceae family and the Bacteroides
genus in feces (151).

In broilers, it has been reported that arginine supplementation
can alleviate gut injury and normalize the ileal microbiota
of C. perfringens-challenged chickens (117). Furthermore, in
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broiler chickens facing a 2 h-transportation stress, tryptophan
supplementation increased the population of beneficial bacteria
(Enterococci, Bifidobacteria and Lactobacilli) and reduced the
population of pathogenic ones (Clostridia, Enterobacteria and
Campylobacter) in the cecum digesta suggesting a positive
effect of this AA on microbial balance (136). Similarly, a
total SAAs supply exerted a beneficial effect in broiler cecal
microbial community by increasing the alpha diversity of the
microbiota and by promoting the microbial metabolisms related
to carbohydrate, AA, nucleotide, and lipid (152).

The metabolism of AA by the gut microbiota releases
numerous metabolites in the intestinal lumen (153). These
bioactive compounds are key molecular intermediates between
the microbiota and its host. Similarly to carbohydrates, AA
can serve as precursors for the production of the main SCFA
including acetate and butyrate that are well-known regulators
of gut health (154). Moreover, some SCFA are produced
exclusively from AA (isobutyrate, isovalerate, 2-methylbutyrate)
but their effect on gut health has not been extensively studied
(153). Recent research has highlighted the beneficial role on
gut health of bacterial metabolites derived from tryptophan
(indolic compounds) (155). Catabolism of AA by the gut
microbiota also produces amines and polyamines such as
putrescine, cadaverine and 5-aminovalerate. The effects on
gut health of these metabolites are not clear yet since both
beneficial and detrimental effects were described according to
the studies and concentration tested (153). It is also worth
noting that AA degradation by the microbiota can release toxic
compounds such as deamination-derived ammonia, cysteine-
derived hydrogen sulfide and tyrosine derived p-cresol (153).
In Table 3, we summarized the main metabolites yielded by
bacterial metabolism of the AA that were tested in the in

vivo trial that included in the present review. We also listed
the direct effects of these AA-derived metabolites on gut
health. Overall, it is clear that metabolites derived from the
s yielded by bacterial catabolism of the AA can mediate
part of the action of AA on the four pillar of gut health
and more work is needed to validate this hypothesis in pigs
and poultry.

CONCLUDING REMARKS

This work confirms that supplementation of free AA, based on
their roles as precursors of energy and functional molecules,
as signaling molecules and as microbiota modulators, can
contribute to gut health of monogastric animals by supporting
or restoring its four intertwined pillars. The fact that piglet and
broiler gut health positively benefit from AA supplementation
indicates that under challenging conditions, those AA may
become indispensable for optimal performance and health.
Additional work is still needed in order to take the full
benefits of AA functions while decreasing the effective dose of
supplementation. For this purpose, synergy between AA, effects
of AA derived metabolites, difference in the metabolic fate
between free and protein-bound AA are research topics that need
to be furtherly investigated.
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