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Abstract 17 

Climate and management affect grassland plant diversity but studies vary regarding the magnitude of 18 

changes in plant species richness. Here we develop a comprehensive understanding of species richness 19 

modification due to management (mowing) and climate (warming) variation worldwide, and present 20 

the results of two meta-analyses from 999 and 1793 records (articles). Recorded articles had at least 21 

one experiment with a case-control design. The results show that both mowing (43 articles) and 22 

warming (34 articles) modify species richness, which on average increased by c. 32% with once-a-23 

year mowing (against no mowing) and reduced by c. 13% with warming (against ambient 24 

temperature). Our meta-analysis on the mowing regime supports the humped-back model, with one or 25 

two cuts per year being the level of disturbance optimising species richness. We also observed that 26 

warming-induced reduction in species richness is lower in dry climates (< 300 mm yr
-1

) and at low-27 

elevations (< 1000 m a.s.l.). We also took into account, where available, a concomitant variable, 28 

harvested biomass (determined experimentally in both mown and unmown plots), and found that it 29 

overall decreased by c. 21% (mowing) and increased by c. 11% (warming). The evidence provided of 30 

an opposite response of species richness and harvested biomass to disturbance is consistent with the 31 

competitive-exclusion hypothesis of negatively correlated patterns between the two outcomes (high 32 

taxonomic diversity with low biomass production, and vice versa). Study results thus help develop a 33 

more complete picture of the role of increasing temperature and cutting regime on grassland species 34 

richness and add insights to published meta-analyses examining the outcomes of terrestrial 35 

ecosystems. The reported difficulties to retrieve representative studies in previous and the present 36 

meta-analyses highlight the need to focus on dedicated research for robust inference about 37 

environmental and management constraints on grassland performances. 38 

 39 

1. Introduction 40 

The intensification of agricultural practices from the 20
th
 century onwards is partly responsible for the 41 

reduction of areas covered by grassland ecosystems, notably with a considerable loss of semi-natural 42 

grasslands and a decrease of their biodiversity in different regions worldwide (e.g., Fakarayi et al. 43 

2015; Munch et al. 2017; Schirpke et al. 2017; Gibson et al. 2018). Plant species’ richness was also 44 

observed to decrease with the current warming trend (White at al. 2014), especially in climates that are 45 

becoming more arid and less productive (Harrison et al. 2015). These changes affect the human 46 

population broadly and may actually have a great socio-economic impact (Dunford et al. 2015). In 47 

fact, not only grassland replacement and biodiversity erosion alter the continuity of the forage 48 

production supporting livestock agriculture but also the delivery of a broad set of ecosystem services 49 

essential to society (Loreau 2010; Bengtsson et al. 2019) like carbon storage, pollination and the 50 

maintenance of the general aesthetic of landscapes (e.g., Oertel et al. 2016; Tribot et al. 2018). These 51 

services are related to the plant diversity of grasslands (Turnbull et al. 2016), whose high biodiversity 52 

is not only consisting of plants, but also of mammals, arthropods and microorganisms (Plantureaux et 53 
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al. 2005; Baur et al. 2006; van Klink et al. 2015). This biodiversity is recognized as an ecological and 54 

evolutionary insurance (after Yachi and Loreau 1999) thanks to the stabilizing effect of species 55 

diversity on aggregate ecosystem properties through fluctuations of component species (e.g., 56 

phenotypic changes, Norberg et al. 2001). Different components of plant diversity (e.g., species 57 

richness, functional diversity, assemblage structures) would also make grasslands more resilient to 58 

hazards and extreme weather events (such as prolonged droughts, e.g., Vogel et al. 2012; Craven et al. 59 

2016) and would be able to stabilize forage production and maintain overall ecosystem services 60 

(Cleland 2011). It is thus essential to preserve these open spaces in order to preserve their biodiversity 61 

and the associated services, but also to study them to better appreciate their evolution under different 62 

constraints (Zeller et al. 2017). In hay meadows, which typically occur where the environmental 63 

constraints are less important compared to high-elevation pastures, the management practices and their 64 

intensity tend to be the main drivers of plant diversity (Pittarello et al. 2020), whose changes reflect 65 

the evolution of both environmental conditions (pedo-climate) and management practices (Pontes et 66 

al. 2015). While the effects of increased temperature on grassland production are systematically 67 

studied and understood (e.g., Parton et al. 1995; Song et al. 2019), the effects of warming on plant 68 

diversity is an evolving and multifaceted challenge (Cowles et al. 2018). This is because temperature 69 

changes are dynamic and their effects on grassland communities depend on a number of other factors 70 

like moisture and nutrient availability (e.g., Zavaleta et al. 2013). Likewise, the effects of cutting 71 

events on the botanical composition of a sward are related to environmental conditions (e.g., Wen and 72 

Jiang 2005). 73 

Studies that have reported the response of grassland plant diversity to climate and management 74 

conditions (e.g., Su et al. 2019) indicate that the pattern of responses is complex and needs additional 75 

analyses based on quantitative assessments. An objective assessment is increasingly important as 76 

grasslands continue being vulnerable to warming conditions (e.g., Gao et al. 2018), and halting 77 

grassland abandonment is an emerging topic of interest (e.g., Lasanta et al. 2017), especially in 78 

mountain regions (Haddaway et al. 2014). The proportion of grassland plant species tends to decline 79 

following abandonment (Riedener et al. 2014) and plant species decline due to abandonment could not 80 

easily be reversed (and grasslands restored) by mowing alone (Stampfli and Zeiter 1999). However, 81 

the variability in the reported results is also likely due to the different challenges associated with the 82 

quantification of impacts on plant diversity. In particular, there is no standardized mode of conducting 83 

the experimental design and setup of control versus the experimental dataset (Christie et al. 2019). In 84 

the wake of diverse findings and conclusions, and because of the availability of an increasing number 85 

of peer-reviewed publications as well as the maturity of the results, there are science questions 86 

relevant to the issue of plant diversity modifications, e.g., is warming or mowing modifying species 87 

richness and, if yes, by what amount and under which conditions? We performed two meta-analyses 88 

using species richness as an indicator of plant diversity conditions. In fact, despite the growing 89 

knowledge about grassland modifications induced by temperature increase and mowing regime, 90 
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quantitative assessments and analyses are still limited (e.g., Tӓlle et al. 2016; Gruner et al. 2017). 91 

Here, we provide a conceptual framework (Fig. 1) of the direct and indirect effects of mowing (one cut 92 

per year versus abandonment) and climate change (warming) on the grassland ecosystem (after Li et 93 

al. 2018), using harvested biomass and species richness as expressions of functioning and stability 94 

(e.g., species richness can promote community stability through increases in asynchronous dynamics 95 

across species; Zhang et al. 2018). We highlight that the type of inference presented in Fig. 1 (which 96 

represents a simplified view of the grassland ecosystem) depends on the extent to which the meta-97 

analysis can establish causality between the outcomes of interest and the hypothesized related factors. 98 

This means that for only a subset of the above questions, it may be possible to find consistency in the 99 

set of bibliographic data to code into the state-of-the art literature and develop meta-analyses of the 100 

extracted data. Specific objectives were to analyse (1) the mean effect of mowing (first meta-analysis: 101 

one mowing event per year versus abandonment) and (2) the mean effect of warming (second meta-102 

analysis: warming versus ambient temperature), both conducted on species richness in grasslands (and 103 

concomitant harvested biomass when available). In this way, we have pursued standardized meta-104 

analyses to review fragmented results in a common framework. For the impact of mowing on plant 105 

diversity worldwide, our study complements previous reports from Tӓlle et al. (2018) on the effects of 106 

different mowing frequency on the conservation value of semi-natural grasslands in Europe. It also 107 

completes the assessment with a meta-analysis on the effect of warming on the biodiversity of 108 

different ecosystems including plant terrestrial ecosystems (Gruner et al. 2017). 109 

 110 

2. Materials and methods 111 

 112 

2.1 Literature search method 113 

 114 

Our meta-analysis method quantitatively combines and summarizes research results across individual 115 

and independent studies performed worldwide and published in peer-review journals (grey literature 116 

was not included in our meta-analyses). The first step was to find all the pertinent articles on the topic. 117 

We used a keyword search and expert recommendations to find the related articles in two international 118 

bibliographic databases. The literature search was initiated using the ISI Web of Science (WoS, 119 

(http://apps.webofknowledge.com) with the following topic search terms: 120 

 121 

(Title)TI=(grassland OR meadow OR pasture OR pampa OR steppe OR prairie OR savanna OR 122 

tundra)). AND (Topic)TS=(diversity OR diverse OR richness OR evenness OR cover OR abundance 123 

AND plant OR "functional type*")). AND (Title)TI=(cut OR mow OR clip OR treatment OR 124 

management)). NOT (Title)TI=(forest OR tree OR shrub*)) 125 

 126 

http://apps.webofknowledge.com/
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TI=(temperature* OR warm* OR air OR heat* OR stress* OR "extreme temperature") AND 127 

TI=(grassland* OR meadow* OR pasture* OR pampa* OR steppe* OR prairie* OR savanna* OR 128 

tundra*) NOT TI=(forest* OR tree* OR shrub*) AND TS=(diversity* OR diverse* OR richness OR 129 

evenness OR cover OR abundance* AND plant* OR "functional type*") 130 

 131 

Searches were also undertaken with Scopus (http://www.scopus.com) in order to pick up publications 132 

that were not indexed in the WoS database: 133 

 134 

TITLE (grassland  OR  meadow  OR  pasture  OR  pampa  OR  steppe  OR  prairie  OR  savanna  OR  135 

tundra) AND TITLE-ABS-KEY (diversity OR diverse OR richness OR evenness OR cover OR 136 

abundance AND plant OR "functional type*")  AND  TITLE (cut OR mow OR clip OR treatment OR 137 

management) AND NOT TITLE (forest OR tree OR shrub*) AND LANGUAGE (English) AND 138 

DOCTYPE (ar). 139 

 140 

(TITLE (temperature*  OR  warm*  OR  air  OR  heat*  OR  stress*  OR  "extreme 141 

temperature") AND TITLE (grassland* OR meadow* OR pasture* OR pampa* 142 

OR steppe* OR prairie* OR savanna* OR tundra*) AND NOT TITLE (forest* OR tree* OR shrub*) 143 

AND TITLE-ABS-KEY 144 

(diversity* OR diverse* OR richness OR evenness OR cover OR abundance* AND plant* OR "functio145 

nal type*") AND LANGUAGE (english)) AND DOCTYPE (ar OR re) AND PUBYEAR > 146 

1984 AND PUBYEAR <2021 AND (LIMIT-TO (SUBJAREA, "AGRI") OR LIMIT-TO 147 

(SUBJAREA, "ENVI") OR LIMIT-TO (LIMIT-TO (SUBJAREA, "MATE") OR LIMIT-TO 148 

(SUBJAREA, "EART") OR LIMIT-TO (SUBJAREA, "BIOC") OR LIMIT-TO (SUBJAREA, "MULT"))  149 

 150 

This review covers articles published from 1985 to 2020. The cut-off date for data collection was 31 151 

December 2019, which ensured including 2020 articles web published in 2019. We also added other 152 

pertinent articles from peer-review journals to the extent that we are aware of them. In particular, for 153 

the effect of warming, we used part of the bibliography of a meta-analysis made by Gruner et al. 154 

(2017). 155 

 156 

2.2. Inclusion criteria and data extraction 157 

 158 

Care was taken to standardize and document the process of data extraction. The quantitative review 159 

followed a structured protocol, which included pre-setting objectives and the inclusion criteria for 160 

studies, approach for data collection, and the analyses to be done (Pullin and Stewart 2006). To 161 

facilitate the capture, organization and elimination of duplicate records from electronic WoS and 162 

Scopus databases searching, bibliographic records were imported into EndNote reference manager 163 

http://www.scopus.com/
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(https://endnote.com) and outputted in BIBTeX format (Lorenzetti and Ghali 2013). Data extracted 164 

from articles were recorded on carefully designed spreadsheets and accompanying tables with details 165 

of the study characteristics, data quality, relevant outcomes, level of replication and variability 166 

measures. 167 

Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses; Liberati et al. 168 

2009) diagrams depicting the flow of information through the different phases of the literature review, 169 

we mapped out the number of records identified, included and excluded, and the reasons for 170 

exclusions. Any single article had at least one experiment with a case-control design. The control was 171 

defined as being identical to the experimental treatment (case) with regard to all variables apart from 172 

the type of factor applied. Here, the mowing and warming experiments included ambient temperature 173 

(no warming) and abandonment (no mowing) as controls, respectively. The articles from the literature 174 

search were filtered by title and abstract, discarding obviously irrelevant studies (e.g. when species 175 

richness referred to other organisms than grassland plant species). After the examination of abstracts, 176 

the full text of the remaining articles was examined in detail. Articles that quantitatively reported 177 

effects of mowing (or clipping or cutting) or warming on species richness (SR as species conservation 178 

metric) were selected. When available, concomitant harvested biomass (HB as provisioning service 179 

metric, g DM m
-2

) determinations were also considered in the analyses. Articles had to contain data in 180 

the form of experimental determinations together with a measure of variation (e.g., means and 181 

variance). Articles with unreported outcomes (e.g., no species richness available), ineligible 182 

experimental design (e.g., lack of control) and missing essential statistics (e.g., standard deviations or 183 

related variability metrics) were discarded. In our meta-analyses, experiments with and without 184 

fertilisation were pooled. We also took into account only the effect of mowing (one cut per year) even 185 

if there was a previous grazing period. Mowing once per year is the most commonly used mowing 186 

frequency in species-rich grasslands (e.g., Hejcman et al. 2013) and was used as a treatment in all 187 

included experiments regardless of the timing of the mowing event during the year. Articles 188 

comparing more frequent cuts during the same year were excluded from the meta-analysis, as these 189 

comparisons (often using once-a-year mowing, not abandonment, as control) were outside  the scope 190 

of the present study, but their results were used as complementary elements to improve the discussion 191 

of our results. 192 

For the articles that met the inclusion criteria, the sample size, mean and standard deviation (sd) of the 193 

response variables were extracted (or calculated where a variability measure other than sd was 194 

provided, e.g., standard error). With sample data collected at different dates, mean and sd were used as 195 

practical descriptors of time-series central tendency and spread. Critical appraisals were performed by 196 

two authors independently, i.e., the above data were extracted and ~ 50% of the extracted data were 197 

randomly cross-checked by another author. In case of disagreement on data extraction, a consensus 198 

was reached through discussion among all authors. As some studies had not reported the exact values 199 

https://endnote.com/
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for relevant variables and experimental design details, more than 10 disagreements on the most 200 

appropriate inference for these missing data were discussed within the team. 201 

 202 

2.3. Effect sizes 203 

 204 

The goal of any meta-analysis is to provide an outcome estimate (or overall effect size) that is 205 

representative of all study-level findings. Effect sizes were characterized by the response ratio (RR), 206 

which is frequently used to quantify the proportion of changes due to experimental manipulations and 207 

thus provide a measure of the experimental effects (Hedges et al. 1999; Nagakawa and Santos 2012). 208 

This is calculated as the ratio of the average values of a treatment (   ) and its control (   ). Then, log-209 

response ratio (LRR) values,     
   

   
 , are calculated as these are the size effects used in ecological 210 

meta-analyses, primarily because they tend to be normally distributed around zero for small samples. 211 

This means that a size effect with a value of zero represents no difference between the groups being 212 

compared (treatment vs. control). Meta-analysis, by pooling LRR values from several studies, also 213 

assigns a weight to each LRR that is inversely proportional to its sampling variance, equal to 214 

         
     

 

     
  

     
 

     
 , where sd and N are the standard deviation and sample size of     and    , 215 

respectively (e.g., Lajeunesse 2011). The percent change (%) in the level of the outcome from baseline 216 

to the treatment is 100·[exp(LRR)-1]. 217 

 218 

2.4. Meta-analysis models 219 

 220 

To perform the two meta-analyses, we referred to the set of dedicated functions of the metafor package 221 

(Viechtbauer 2010), implemented within the statistical software RStudio (https://www.rstudio.com) 222 

for R version 3.5.3 x64. Meta-analysis models determine if an effect (y) is significant or not in a given 223 

experiment (i). In mathematical form, this is expressed as yi = θi + ei, where θ and e indicate the 224 

unknown true effect and the known sampling error, respectively. Once effect sizes are extracted from 225 

the primary studies, they are pooled by applying a fixed- or random-effects model. A random-effects 226 

model was used in our meta-analysis, because the fixed-effects model assumes that there is only one 227 

underlying population effect size and that the observed effect sizes deviate from this population effect 228 

only because of sampling variation (an unrealistic scenario of heterogeneity among the population 229 

effect sizes). A random-effects model assumes that each study has its own population effect, i.e., effect 230 

sizes vary due to sampling variation and also due to systematic differences among studies. In this 231 

model, not only is the combined effect size estimated, but also the variance of the overall effect among 232 

studies. The mixed-effects model was also applied to explain heterogeneity in the data with the use of 233 

moderators (covariates). In this case, it is a challenge for the meta-analyst to find moderating variables 234 

https://www.rstudio.com/
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(moderator) that explain the variation in effect sizes among studies. Mixed-effects analyses were only 235 

conducted if at least half of the studies reported information on moderators. 236 

The Q-statistic (or multiple significance testing across means; weighted squared deviations) was used 237 

to evaluate heterogeneity through 0 < I
2
 < 100, which quantifies the proportion of total variability that 238 

is due to heterogeneity rather than sample variations: I
2
 > 75% means high heterogeneity; values 239 

between 50 and 75% are considered as moderate heterogeneity; if the I
2
 is between 25 and 50%, it is 240 

considered as low heterogeneity; below 25%, it is considered as no heterogeneity (e.g., Gianfredi et al. 241 

2019). When p-values for the Q-test and effect sizes (random-effect model) were less than 0.1, 242 

homogeneity and no-effect assumptions were considered invalid. After quantifying variation among 243 

effect sizes beyond sampling variation (I
2
), we examined the effects of moderators (covariates) that 244 

might explain this additional variation. The significance of moderators was tested using the probability 245 

(P) of an omnibus test (i.e., the Qm statistic). For that, in addition to SR and HB determinations, we 246 

recorded information on moderators that may affect the response variables - from the k articles (k ≤ n) 247 

and experiments (j) for which this information was available. Plot size (S, m
2
), duration of the study 248 

(D, number of years), year of publication of articles (Y), site elevation (E, m a.s.l.) and two site-249 

specific climatic variables (mean annual air temperature: T, °C; mean annual precipitation total: R, 250 

mm) were chosen as moderators of the SR and HB responses in the mixed-effects model. Year of 251 

publication of the studies can be a potential source of bias because changes in study methods and 252 

characteristics occurring over time can correlate to effect sizes (e.g., Jennions and Møller 2002). As 253 

well, since vegetation within smaller plots tends to be more homogeneous than within larger plots, plot 254 

size may influence the number of recorded species and the estimate of SR (Chytrý 2001). Some 255 

authors also found that as the duration of the study increased so did the plant species diversity and 256 

productivity (e.g., Cardinale et al. 2007; Pallett et al. 2016). Then, plant community composition can 257 

change along elevation gradients (e.g., Ohdo and Takahashi 2020), with global warming pushing 258 

species towards higher elevations (e.g., Engler et al. 2009), and temperature and rainfall are the 259 

climatic variables most used to explore the relationships between climate and plant community data 260 

(e.g., Harrison et al. 2020). For the effect of mowing, the cutting height (H, cm) was also considered 261 

because it can affect the community characteristics and biomass production (e.g. Wan et al. 2016). The 262 

temperature difference between control and warming treatments (ΔT, °C) was instead used as 263 

moderator in the meta-analysis of the effects of warming because divergent effects may be due to 264 

different warming treatments among experiments and different temperature sensitivities of various 265 

plant species (e.g., Llorens et al. 2004). As well, the heating technique (M, 0: open-top chambers; 1: 266 

heaters) used in vegetation warming experiments (a categorical moderator) may lead to potential 267 

differences in plant responses for: (i) the different control on temperatures of passive (e.g., open-top 268 

chambers) and active (e.g., infrared heating) warming methods (e.g., De Boeck and Nijs 2011), and 269 

(ii) the size of the device, open-top chambers used in field experiments being generally relatively 270 
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small (i.e. ≤ 3 m in diameter), allowing the establishment of a well-controlled and essentially 271 

homogeneous environment (e.g., Cunningham et al. 2013). 272 

 273 

2.5. Potential data analysis bias and results 274 

 275 

Possible publication biases were tested, either visually by means of funnel plots, which show the 276 

observed effect sizes on the x-axis against a measure of precision (standard error) of the observed 277 

effect sizes on the y-axis, or statistically by means of the test for plot asymmetry (Egger et al. 1997). 278 

The results of meta-analysis were displayed in forest plots for each outcome, where individual 279 

experiments were plotted sequentially on the y-axis. The x-axis shows outcome measures (log-ratio 280 

and 0.95 confidence interval for each study). Point estimates are represented by square boxes, where 281 

the weight of a study is reflected by the size of the square. The point estimates are accompanied by a 282 

line, which represents their associated 0.95 confidence interval. A vertical midline (line-of-no-effect) 283 

divides the diagram into two parts. A confidence interval that crosses the line-of-no-effect indicates a 284 

statistically non-significant difference, whereas a confidence interval that does not cross the midline 285 

indicates a significant difference for either the treatment or control, depending on whether it is located 286 

at the left side or the right side of the midline. That is, right-sided (left-sided) result estimates (LRR > 287 

0) for our two outcomes of interest, SR and HB, are higher (lower) in the treatment than in the control 288 

(and vice versa). 289 

 290 

3. Results and discussion 291 

 292 

3.1. Literature search 293 

 294 

The heuristic search of the state-of-the art literature in the WoS and Scopus bibliometric databases 295 

yielded 999 articles for the effects of mowing  (Fig. 2a) and 1793 articles for the effect of warming 296 

(Fig. 2b), after removing 467 and 411 duplicates from the original set of 1466 and 2204 records (with 297 

pairwise observations in the control and treatments), respectively. The two bulks of articles were 298 

reviewed, and initially screened, for their relevance to the study topic. After applying the criteria to the 299 

original set of articles and adding 31 articles from other sources, 43 and 34 articles (46 and 42 300 

experiments, respectively) met the criteria and were selected to quantify the effects on SR of mowing 301 

or warming, respectively (Supplementary material). In 16 articles for mowing (18 experiments) and 17 302 

articles (22 experiments) for warming the same analysis was performed to assess the effect of the same 303 

factors on HB. 304 

Table S1 and Table S2 show the characteristics of the articles included in the meta-analysis on the 305 

effects of mowing and warming, respectively. The current literature did not provide a robust sample of 306 

articles and quantitative results corresponding to different subclasses (e.g., abandonment versus 307 
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management with two, three, etc. mowing events associated with associated with fertiliser supply 308 

gradients; warming under gradients of atmospheric CO2 concentration and water status levels).The 309 

included studies report on grassland research conducted in 46 mowing experiments in 18 countries 310 

from Asia, Europe, North America and Oceania, and 42 warming experiments in nine countries from 311 

Asia, Europe and North America (Fig. 3). Using the Köppen‐ Geiger climate classification (Peel et al. 312 

2007), our research shows an uneven geographical distribution of the selected studies for the effect of 313 

mowing (Table S1), with most articles focusing on temperate-oceanic (44%) and warm- or hot-314 

summer continental (37%) climate zones of the northern hemisphere (with the exception of one study 315 

from the southern hemisphere in the temperature-oceanic climatic zone of Australia). Studies from 316 

cold (12%), Mediterranean (2%) and subtropical (5%) areas remain rare. Climate zones only in part 317 

reflect the distinctive characteristics of grassland systems, which varied widely in environmental 318 

conditions, mowing regimes and experimental settings. All recorded articles on the effect of warming 319 

document studies carried out on grasslands in the northern hemisphere (Table S2): 15 in China, 10 in 320 

the USA, and nine in central and northern Europe. Most of them (41%) are from regions with ice cap 321 

and tundra climates, showing that manipulation studies focusing on the effects of warming on 322 

grassland systems are not gaining interest in the Mediterranean and developing regions of the world. 323 

They are all unfertilised treatments and include two main devices to simulate the experimental climate 324 

warming and to study plant responses, i.e., open-top chambers and infrared heaters. As with articles on 325 

the effects of mowing, the types and designs varied considerably also within the same study.  326 

 327 

3.2. Potential data analysis bias 328 

 329 

The statistical distributions of LRR values were determined to be nearly normal according to quantile 330 

plots (Fig. S1). 331 

For mowing, high heterogeneity was found with both SR (I
2
 = 92%; Q = 499, p < 0.01) and HB (I

2
 = 332 

66%; Q = 55, p < 0.01) determinations. However, no evidence of publication bias was found in our 333 

meta-analysis for the effect of mowing on SR and HB that would reflect bias toward not reporting 334 

small positive or negative effect sizes, as demonstrated by the substantial symmetry of the funnel plots 335 

(SR: z = -1.06, p > 0.10; HB: z = -2.00, p = ~ 0.05). The points falling outside both funnels (Fig. S2, 336 

top graphs) are located on both sides of the funnel, hence indicating no clear-cut direction in the bias. 337 

For SR, Fig. S2 (left) shows that the majority of the data are clustered in one-point cloud (same order 338 

of magnitude), with the exception of the study of Lanta et al. (2009), whose high variability is found in 339 

the forest plot (Fig. 4a). For warming, significant results with both SR (I
2
 = 92%; Q = 815, p < 0.01) 340 

and HB (I
2
 = 55%; Q = 60, p < 0.01) are taken as evidence of heterogeneity. The overall funnel plots 341 

are however relatively symmetric (Fig. S2, bottom graphs) and consistent with low likelihood of 342 

publication bias (SR: z = 1.40, p > 0.10; HB: z = -0.94, p > 0.10). 343 

 344 
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3.3. Effect of mowing on SR and HB 345 

 346 

A forest plot for all 43 recorded articles combined (46 experiments) indicates a significantly positive 347 

effect of mowing (one cutting event per year) on SR compared to abandonment (Fig. 4a): pooled LRR 348 

= 0.28 (c. 32% increase), 0.95 confidence interval from 0.19 to 0.37 (p < 0.01). There are however 349 

three studies, which showed an opposite effect. This was distinctly observed in Finnish meadow 350 

patches (LRR = -0.50, Huhta and Rautio 1998), where an increase in SR due to a successional change 351 

may have only been apparent, plausibly related to short-term effects and creating (according to 352 

authors) the illusion that abandonment is more desirable than management. In fact, early succession 353 

was characterized by a transient loss of plant species diversity (Velbert et al. 2017) in wet meadows of 354 

north-west Germany (LRR = 0.22). While in the Qinghai-Tibetan plateau (Xu et al. 2015) SR was 355 

observed not to be sensitive to the short-term effects of mowing (LRR = -0.02), in a mesic hay 356 

meadow of Western Hungary (near the Slovenian border), Szépligeti et al. (2018) noted that mowing 357 

once a year may not be efficiently preventing (LRR = -0.15) the spread of tall goldenrod (Solidago 358 

gigantea Ait.) and control native competitive species (which hinder the growth of rare and less 359 

competitive species). 360 

Without including the unmanaged option in their analysis, Tälle et al. (2018) observed small 361 

differences in the effects of different mowing intensities on the SR of European semi-natural 362 

grasslands (LRR < 0.13, with 0.1 representing the difference between a SR of two communities 363 

consisting of 10 and 11 species, respectively). The authors highlighted that while lower and higher 364 

mowing frequency can be expected to have both positive and negative effects on plant diversity at the 365 

same time, they concurred with other authors (e.g., Batáry et al. 2010; Tóth et al. 2018) that any kind 366 

of management which is actually applied tends to be more important than the intensity of the 367 

management itself. We show that the difference can indeed be high when moving from abandoned 368 

fields to once-a-year mowing. The highest estimated mean effect size of LRR = 1.53 (wet experiment 369 

from Truus and Puusild 2009), in particular, reflects the substantial decrease in SR on long-abandoned 370 

floodplain grasslands, which is likely a consequence of increased light competition and the 371 

accumulation of dense litter layers, as several low-growing plant species are outcompeted by strong 372 

competitors during succession or germination and establishment are inhibited by litter layers. 373 

In addition to the results of our meta-analysis, some results by individual studies were also informative 374 

on the effect of alternative mowing schemes on SR. Fig. 5 shows the changes in the SR of grassland 375 

plants under combinations of mowing frequency beyond one cut per year versus no cut, which were 376 

identified in the systematic review and in additional sources (section “References of the review on the 377 

effect of different mowing regimes”), and not included in the meta-analysis. Overall, it appears that a 378 

moderate mowing intensity of one or two cuts per year is positive for maintaining or enhancing a high 379 

plant SR. With two cuts per year over abandonment, we observe a similar mean response (LRR = 0.28) 380 

but greater variability across studies compared to just one cut (that is the core of this meta-analysis), 381 
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likely associated with the influence of varying situations of soil fertility. Then, the potential benefits of 382 

mowing are progressively lost with more frequent cuts (i.e., three to four cutting events per year 383 

compared to one cut). It is known that regular disturbance by mowing can trigger niche partitioning, 384 

leading to higher species diversity (e.g., Mason et al. 2011), but too frequent harvests may threaten the 385 

long-term survival of certain plant species (e.g., Loydi et al. 2013) by suppressing their seed stock. 386 

Our results can be interpreted in terms of the humped-back model (Huston 1979), a dynamic 387 

equilibrium model predicting that taxonomic richness may be greatest at intermediate biomass 388 

production and at intermediate levels of available resources (stress) and disturbance factors (Pierce 389 

2014). In fact, a hump-shaped relationship between vegetation biomass and SR, based on the balance 390 

between competition and abiotic stress, has been found in a large number of case studies (van Klink et 391 

al. 2017), and with SR likely peaking at intermediate productivity levels (Boch et al. 2019). 392 

Consistently with the pattern predicted by the intermediate disturbance hypothesis, SR may be 393 

maintained by extensive agricultural practices (Uchida and Ushimaru 2014). By alleviating understory 394 

light limitation thorough the removal of plant biomass, both mowers and grazers play an important 395 

role in maintaining plant diversity in grassland ecosystems, where they increase ground-level light 396 

availability (Borer et al. 2014). 397 

However, even if mowing frequency only marginally affecting plant diversity measures like SR might 398 

still affect the species composition in a grassland and, considering that mowing is costly, it is 399 

important to find a balance between mowing frequency and conservation benefits beyond SR (Tälle et 400 

al. 2018). The most suitable mowing frequency can be highly site-specific because the mechanisms 401 

linking mowing to conservation value are complex, and there is often no need or no resource for a 402 

second cut (beneficial for the feeding of herbivores), or weather conditions may make hay making 403 

difficult in autumn (Szépligeti et al. 2018). The level of detail of the present study, aiming at assessing 404 

the overall SR, does not allow to refer to the richness (and abundance) of plant species of nature 405 

conservation interest (which would be a more valuable indicator than the overall richness). Studying 406 

the effects of disturbances requires measures of species abundance, rather than just their presence, and 407 

an experimental approach to complete the understanding of the mechanisms involved (e.g., Debussche 408 

et al. 1996). For instance, it is possible that the abundance of each plant species decreases or the plant 409 

species turnover increases while the SR remains the same. In this case, different results would be 410 

expected when assessing biodiversity outcomes taking species abundance into account, e.g., Shannon 411 

diversity, which is calculated on the proportion of each species relative to the total number of species 412 

(Milberg et al. 2017).  413 

A possibly important factor not taken into account in the present study is the timing of mowing during 414 

the year (either this information was not available for some included studies or too small subgroups 415 

would have been created by including this factor). In fact, the effects can be different depending on 416 

whether the harvest occurs early or late in the growing season. Early mowing can have negative effects 417 

on plant species with late seed-setting. In combination with more frequent harvesting this can affect 418 
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the ability of species to re-grow back (e.g., Humbert et al. 2012). Then, the two American studies of 419 

the review (Dickson and Foster 2008; Foster et al. 2009) in which fertilisers were used during the 420 

study period, were also combined in the meta-analysis. 421 

In the study of Lanta et al. (2009), the estimate of LRR = 0.14 was obtained with a wide confidence 422 

interval (from -1.58 to 1.86), likely due to the wide variation in the original dataset. We also note that 423 

five experiments showed effects that are about three- to five-fold higher (LRR from 0.71 to 1.53) than 424 

the average. Fenner and Palmer (1998) in Belgium (LRR = 0.92), and Jacquemyn et al. (2011) in 425 

United Kingdom (LRR = 0.71), noticed that several small herbs and rosette plants were quickly lost in 426 

abandoned plots, with mowing reducing the proportion of tall-growing plants and increasing light 427 

penetration to the ground surface. As Truus and Puusild (2009), with LRR = 1.53 (wet experiment), 428 

Metsoja et al. (2014) - LRR = 1.17 (tall forb meadow) - and Neuenkamp et al. (2013) – LRR = 1.14 429 

(tall forb meadow) - observed that mowing had a distinct role in activating the soil seed bank in 430 

Estonian flooded, well drained meadows dominated by tall forb meadow communities. These are 431 

highly productive communities (e.g., ~ 1000 g m
-2

 in Neuenkamp et al. 2013), where plant SR is 432 

determined primarily by light and litter rather than nutrient availability. 433 

Opposite to SR, over the 16 independent studies (18 experiments) for the effect of mowing on HB 434 

(Fig. 4b), the pooled LRR value equal to -0.23, or c. -21% (0.95 confidence interval from -0.31 to -435 

0.14, p < 0.01) suggests an overall negative influence of disturbance. In the included studies, mowing 436 

(which had a positive effect on SR) distinctly had a negative effect on HB. Although this is 437 

undoubtedly a trade-off between a provisioning service (forage production) and biodiversity-mediated 438 

ecosystem services (e.g., pollination, pest control, soil fertility and yield stability), there are studies 439 

which indicate that vegetation density and biomass production may be reduced in unmanaged 440 

treatments because litter accumulated on the sward surface prevents plants sprouting (as observed, for 441 

instance, in Czech Republic by Pavlů et al. 2016). A stimulating effect of cutting on grassland 442 

productivity was also observed by Sasaki et al. (2011) in temperate Japan, which was attributed to the 443 

over-compensatory growth because of changes in floristic composition owing to the mowing 444 

treatment. 445 

In the mixed-effects model, planned moderators were mostly not significant (p > 0.10). When a 446 

grassland is abandoned, changes in SR can be expected as a function of time since abandonment 447 

(vegetation succession; e.g., Tasser and Tappeiner 2002) but we could not confirm an effect of the 448 

duration of the experiment. Only the year of publication was a significant moderator (p < 0.05) of the 449 

effect of mowing on HB (k = 16, j = 18) when this covariate was assessed alone (with more negative 450 

LRR values observed in the oldest experiments, i.e., mean LRR of about -0.20 in 2010-2019 and -0.31 451 

in 1993-2009). The covariate explained ~ 33% of the heterogeneity (Table S3) but the effect was not 452 

significant (P
 
> 0.05) when different moderators were assessed together. 453 

 454 

3.4. Effect of warming on SR and HB 455 
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 456 

A forest plot for all 34 recorded articles combined (42 experiments) indicates a significantly negative 457 

effect of warming (different treatments) on SR compared to control (Fig. 6a): pooled LRR = -0.14 (c. -458 

13%), 0.95 confidence interval from -0.21 to -0.06 (p < 0.01). The decline in SR, observed here for an 459 

average temperature increase of 1.8 ± 0.9 °C (range: 0.15 to 4.10 °C), is consistent with the response 460 

of terrestrial ecosystems (-10.5% of SR) as observed by Gruner et al (2017) for an average warming of 461 

3 °C. It cannot be excluded that short-term simulation of warming, without considering temporal 462 

adaptation, has exacerbated the warming effect on terrestrial ecosystems (Leuzinger et al. 2011). 463 

The results of the mixed-effects model showed that SR was somewhat significantly moderated by the 464 

year of publication (p ~ 0.05) when this moderator, which explained only ~ 9% of the heterogeneity 465 

(Table S3), was assessed alone (k = 34, j = 42). We note that more recently published studies were 466 

more numerous and yielded larger effect sizes, with an imbalance with only eight studies published 467 

prior to 2010 (giving an average LRR of -0.05). This could be due to the widespread use of small, low-468 

cost open-top chambers (passive warming) in climate change experiments, especially on short-statured 469 

vegetation like grassland steppe and temperate grasslands (Frei et al. 2020). According to Leuzinger et 470 

al. (2011), a diminishing effect size is expected with a longer duration and a larger spatial scope of 471 

experiments. In light of this, we would have expected an influence of the experimental methodology 472 

on SR/HB responses since infrared heaters (active heating) can be applied to larger plots than open-top 473 

chambers. The three experiments of Wang et al. (2017) do indeed indicate that a smaller open-top 474 

chamber of different sizes could have an impact on the response to warming on both SR (which tends 475 

to became even more negative, LRR = -0.87, with a smaller chamber) and HB (which, conversely, 476 

tends to became more positive, LRR = 0.40, with a smaller chamber). The duration of experiments 477 

could also have had an influence on the grassland response to warming since SR changes slowly (e.g., 478 

Galvánek and Lepš 2008), but we have no confirmation of these effects in our study. 479 

Site elevation (p < 0.05) and annual rainfall (p < 0.01) emerged as significant moderators when all 480 

moderators were included in the mixed-effects model (P < 0.05; k = 22, j = 30). The latter explained ~ 481 

36% of the heterogeneity (Table S3). We note that smaller size effects of warming on SR (lesser plant 482 

diversity loss) tend to be associated with dry areas (< 300 mm precipitation per year, with LRR of 483 

about -0.01 on average). In fact, the response of SR to warming was observed to be stronger the lower 484 

the aridity (e.g. Peñuelas et al. 2007). Similarly, less negative LRR values (i.e., more limited decline in 485 

plant diversity) were found for grassland sites below 1000 m a.s.l. (about -0.06 on average), where SR 486 

is generally lower (e.g., Dengler et al. 2014). The more pronounced decline of SR in high-elevation 487 

grasslands may reflect that plant species that are adapted to cold areas tend to be more sensitive to 488 

warming. It can be assumed that the thermal niche of plant species may be narrower than at low 489 

altitudes, which considerably hinders adaptation/acclimation in the short-term (e.g., Löffler and Pape 490 

2020). While changes in species cover and the composition of plant communities indicate an 491 

acceleration of the transformation towards more heat-demanding vegetation, this colonisation process 492 
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could take place at a slower pace than the continued decrease in cryophilic species, thus favouring 493 

periods of accelerated species decline (Lamprecht et al. 2018). 494 

Of the few experiments in which LRR > 0 (i.e., increased SR under higher temperatures), the one from 495 

Zhu et al. (2015), with LRR = 0.15, is consistent with the situation of a meadow steppe dominated by a 496 

perennial rhizome grass species - Leymus chinensis (Trin.) Tzvelev (Chinese rye grass) - which is the 497 

first to germinate each year. A higher accumulation of plant community biomass in the warmed plots 498 

leads to more plant litter, which suppresses the germination and regrowth of L. chinensis, reducing its 499 

dominance and allowing other species (annual forbs) to quickly colonize the plant community. In 500 

Eskelinen et al. (2017), warmer climate increased SR (LRR = 0.11) via recruitment in conditions 501 

where competition with the residents was relaxed (e.g., in disturbed sites), where herbivores kept 502 

vegetation open and in habitats with relatively low nutrient availability. 503 

Over the 17 recorded articles (22 experiments) for the effect of warming on HB (Fig. 6b), the pooled 504 

LRR value equal to 0.10, or c. 11% increase (0.95 confidence interval from 0.04 to 0.17), suggests an 505 

overall positive influence of increasing temperatures (p < 0.05). This is in accordance with Song et al. 506 

(2019) for terrestrial ecosystems and Liang et al. (2013) who, in a meta-analysis, found that across 507 

warming experiments conducted worldwide, warming overall had positive effects on plant 508 

photosynthetic rates of terrestrial plants, with varying effects depending on plant functional types. 509 

Similarly, Wu et al. (2011) reported in a meta-analysis that experimental warming has led to an overall 510 

increase in aboveground biomass production of terrestrial ecosystems. However, plant gas exchanges 511 

can be constrained by other environmental factors (e.g., water availability) that can inhibit 512 

photosynthetic and transpiration rates (Song et al. 2016). In fact, warming-induced soil water deficit 513 

indirectly affects biomass production by decreasing soil moisture availability (e.g., Wagle and Kakani 514 

2014). In Hoeppner and Duke (2009), the maximum HB was obtained with +2.7 °C (LRR = 0.30), 515 

while with T = +4.0 °C the increase in HB was smaller (LRR = 0.22). The mixed-effects model with 516 

year of publication, site elevation and heating method as moderators (k = 15, j = 20) was significant (P 517 

< 0.05) and explained ~ 63% of the heterogeneity (Table S3), but only year of publication was 518 

significant (p < 0.05). In fact, negative effects of warming on HB were mostly observed in 519 

experiments conducted after 2015, reducing the LRR values for the period 2015-2019 (which 520 

nevertheless remained positive on average, i.e., ~ 0.04). In our meta-analysis, the most negative effect 521 

of warming on HB (LRR = -0.20) was obtained in a Tibetan alpine steppe (Jingxue et al. 2019), where 522 

experimental warming (+2 °C) under ambient precipitation significantly caused reductions in biomass 523 

because of induced water deficit. Xu et al. (2015) also showed how warming and mowing combined (a 524 

treatment not included in our meta-analysis) negatively affected HB (LRR = -0.08) and positively 525 

affected SR (LRR = 0.04), indicating the dominant role of management (which tends to favour SR and 526 

limit HB) over an environmental change (which, conversely, is supposed to favour HB and limit SR). 527 

Higher biomass production under warming conditions could explain the decline in SR, through 528 

competitive exclusion, for which all environmental conditions likely to favour high levels of HB could 529 
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lead to a decline of SR. However, as warming increases evapotranspiration, greater drought conditions 530 

could dampen the biomass response, thus reducing competitive exclusion, which favours the stability 531 

of SR. 532 

 533 

4. Conclusion 534 

 535 

Our results provide a close look towards two major effects of using mowing as a management practice 536 

and warming as an environmental stressor in grasslands. Using a meta-analytical methodology, we 537 

generated an integrated analysis of a large amount of observation data from different regions of the 538 

world, which better reflect the general patterns of grassland response than several fragmented studies 539 

performed so far. First, we found higher SR and lower HB in plots that were mown, suggesting the 540 

importance of management practices based on the application of disturbances such as prescribed 541 

mowing to enhance plant species diversity. Second (and opposite to the first result), we found that HB 542 

can be higher in plots that are exposed to higher temperatures while warming tends to decrease the 543 

number of plant species. The opposite responses of SR and HB to disturbances in the two meta-544 

analyses suggest possible competitive exclusion mechanisms, which have not be investigated in this 545 

study.  This is supported by the importance of site elevation (narrow thermal niche preventing plant 546 

species from adapting quickly at high altitudes) and annual rainfall (competitive exclusion in humid 547 

areas) in explaining the response of SR to warming. However, the present results of meta-analyses 548 

have some limitations. First, SR and HB are kinds of ecosystem response influenced by multiple 549 

factors and there are complex interactions between them. We are aware that we have not addressed 550 

such interactions due to the lack of data. Second, even if publication bias was substantially avoided, 551 

we have no access to unpublished researches or studies published in other language than English, 552 

which may have influenced our results. Despite some limitations, the present meta-analyses provide 553 

the latest evidence regarding the positive effect of moderate physical disturbance (i.e., limited 554 

mowing) on the creation and maintenance of highly diverse, ecologically and agriculturally valuable 555 

grasslands. In parallel to that, our results confirm the importance of considering plant species’ 556 

response to environmental stresses together with competition when predicting community dynamics 557 

under warming scenarios. Further quantitative analysis of these relations may contribute to improve 558 

grassland simulation models addressing the dynamics of plant diversity. Overall, we argue for long-559 

term, two‐ factor warming and mowing experiments that incorporate both SR and HB assessment to 560 

guide discussions of how best to meet the relevant goal of improving our understanding of grassland 561 

responses to global changes. Our results are a step in that direction. 562 

  563 
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Figure captions 1362 

 1363 

Figure 1 Conceptual framework of this study. Direct (blue arrows) and indirect (red arrows) effects of 1364 

climate change (i.e., warming) and management (i.e., mowing) jointly determine (degraded cross-1365 

hatched line) the functioning (expressed by harvested biomass) and stability (expressed by species 1366 

diversity) of grassland ecosystem, as mediated by plant growth and community properties 1367 

 1368 

Figure 2 PRISMA-flow diagram of studies’ selection process on the effect of mowing and warming 1369 

on species richness (n, number of articles) Some articles included more than one experiment and, in 1370 

this case, these experiments (j) were considered as separate experiments (j = 46 with mowing, j = 42 1371 

with warming) Subsets of the identified records also included the effect of mowing (16 articles, 18 1372 

experiments) or warming (17 articles, 22 experiments) on harvested biomass 1373 

 1374 

Figure 3 Global map of study sites that provided data for meta-analysis of the effects of mowing (red 1375 

triangles) or warming (blue dots) on species richness only (empty markers) or on species richness and 1376 

harvested biomass (solid markers) 1377 

 1378 

Figure 4 Forest plots of the meta-analysis (log-response ratios and 0.95 confidence limits) comparing 1379 

species richness, SR (a) and harvested biomass, HB, g DM m
-2

 (b) in unmown (0, control) and once-a-1380 

year mown (1, treatment) grasslands, with the relative standard deviations (sd). RE model stands for 1381 

random-effects model 1382 

 1383 

Figure 5 Log-response ratios (LRR) and 0.95 confidence bars comparing species richness for different 1384 

mowing regimes (number of cuts per year). The number of studies behind these data is given in 1385 

brackets (to the left). For LRR, the values of the mean and standard deviation are to the right. The 1386 

refereance articles are listed in the section “References of the review on the effect of different mowing 1387 

regimes” 1388 

 1389 

Figure 6 Forest plots of the meta-analysis (log-response ratios and 0.95 confidence limits) comparing 1390 

species richness, SR (a) and harvested biomass, HB, g DM m
-2

 (b) in ambient (C, control) and warmed 1391 

(W, treatment) grasslands, with the relative standard deviations (sd). RE stands for random effects-1392 

effects model   1393 
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Supplementary materials 1422 

 1423 

Supplementary tables 1424 

 1425 

 1426 

 1427 

Table S1 Data source, location (country and Köppen-Geiger climate classification) and survey methodologies for the 43 articles present in the meta-analysis on the 1428 

effect of mowing on species richness (with greyed areas highlighting the subset of 16 articles present in the meta-analysis on the effect of mowing on harvested biomass). NA 1429 

(not available) indicates that sufficient information could not be extracted or derived from the original articles. For studies in the United States of America (USA), states are 1430 

indicated: IA: Iowa; KS: Kansas; OK: Oklahoma. For climate classification: Bsk: cold semi-arid; Cfa: humid subtropical; Cfb: temperate-oceanic; Csa: hot-summer 1431 

Mediterranean; Cwa: dry-winter humid subtropical; Dfa: hot-summer humid continental; Dfb: warm-summer continental; Dfc: subarctic continental; ET: tundra. For multi-1432 

treatment experiments, the information on mowing time is given here for one-cut-per-year treatment only. On botanical method, the mentioned works provide evidence of a 1433 

vast amount of visually determined plant-cover data that were classified by different methods. A common way to measure plant cover in herbal plant communities is to make 1434 

a visual assessment of the relative area covered by the different species in a small circle or quadrate, and the visual estimates of cover percentages are categorized using 1435 

different ordinal classification scheme. For vegetation analyses of permanent quadrats, Londo (1976) used a modified scale with smaller intervals derived from difference- 1436 

and change quotients based on coverage percentages. In its development, the initially 12-scale grades by Hult (1881) and Sernander (1912) were merged to five grades, 1437 

describing the cover abundance of species: 1: ≤6.25%, 2: 6.25-12.5%, 3: 12.5-25%, 4: 25–50%, 5: 50-100% cover. Braun-Blanquet (1946) developed a cover-1438 

abundance/dominance scale with six categories (+: ≤1%, 1: 1-5%, 2: 5-25%, 3: 25-50%, 4: =50-75%, 5: 75-100% cover), and a seventh one (r) representing single occurrence 1439 

of plants of particular species. The scale that van der Maarel (1979) derived from the previous one includes a differentiation into subclasses (e.g., of the category 2). De Vries 1440 

(1948) developed a combined frequency and rank determination method. Zobel and Liira (1997) developed a humped pattern between species richness and biomass within 1441 

quadrats. 1442 

Reference Country 
Climate 

classification 

Grassland 

characteristics 

Mowing 

technique 

Mowing 

time 

Botanical 

method 

Observation 

period 

Cutting 

height 

(cm) 

Plot 

size 

(m
2
) 

Duration 

(years) 

Fertilisation 

/ other 

practices 

Beltman et al. 

(2003) 
Ireland Cfb 

species-rich 

limestone  

manual 

removal 

May-June 

or August 

Braun-Blanquet 

(1964) scale 

June or 

August 
≤ 5 1 11 No 



2 

 

Benot et al. 

(2013) 
France ET subalpine 

manual 

removal 
August 

cover with point 

quadrat 

before the 

peak of 

biomass 

≤ 5 1 2 No 

Berg et al. 

(2016) 
Estonia Dfb 

wetland (substrate 

composed of 

marine sands 

covered by 

saline littoral soil) 

scissors 

removal 
end July 

percent cover 

values 

end July, 

before cut 
≤ 5 4 5 No 

Billeter et al. 

(2007) 
Switzerland 

Cfb 

 

montane 

calcareous wet 

manual 

removal 

mid-

September 

visual cover 

estimate 

late July or 

early August 
≤ 5 0.04 2 No 

Bobbink and 

Willems 

(1993) 

Netherland Cfb Chalk 

electric hand 

mowing 

device 

end August 

early 

September 

biomass sorting August ≤ 5 0.125 3 No 

De Cauwer 

and Reheul 

(2009) 

Belgium 
Cfb 

 
wetland NA June 

De Vries (1948) 

rank method 

June and 

July 
NA 0.01 5 No 

Dee et al. 

(2016) 
USA - OK Cfa tallgrass prairie NA 

March or 

June or 

September 

abundance 

cover values 
May NA 1 18 No 

Dickson and 

Foster (2008) 
USA - KS Dfa 

secondary 

grassland 

dominated by 

Bromus inermis 

and 

Poa pratensis 

(introduced 

perennial C3
 

grasses) 

manual 

removal 
June 

percent cover 

values 
June ≥ 10 2 3 

16 g N m
–2

 

yr
–1 

Doležal et al. 

(2019) 

Czech 

Republic 
Cfb 

oligotrophic wet 

meadow 

mowing 

removal 

April, June, 

August, 

October 

biomass sorting 

into species 

April, June, 

August, 

October 

≤ 5 0.04 1 No 

Fenner and 

Palmer (1998) 
England Cfb 

neutral grassland 

community on a 

sandy soil 

NA 
June and 

August 

percent cover 

values 
late June NA 0.25 13 No 

Foster et al. 

(2009) 
USA - KS Dfa 

deciduous forest–

tallgrass prairie 

ecotone 

mowing 

removal 

mid-late 

June 
biomass sorting 

mid-late 

June 
≤ 5 100 7 

8 and 14 g N 

m
–2

 

Galvánek and Slovakia Cfb perennial grassland scythe June-July presence and second half NA 0.25 5 No 
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Lepš (2009) on limestone 

bedrock 

removal absence of June 

Gerard et al. 

(2008) 
Belgium Cfb 

former natural 

floodplains 
NA mid-July 

modified 

Braun–Blanquet 

scale (van de 

Maarel, 1979) 

beginning 

July 
NA 4 1 No 

Huhta and 

Rautio (1998) 
Finland 

Dfc 

 

semi-natural 

meadow 

lawn mower 

removal 
late June 

cover percent 

values 
June NA 1 1 No 

Ilmarinen and 

Mikola (2009) 
Finland 

Dfc 

 
NA NA August 

record of all 

species cover 
June ≤5 1 3 

No / re-

seeding 

Jacquemyn et 

al. (2011) 
Belgium 

Cfb 

 
calcareous 

manual 

removal 
end August 

Braun-Blanquet 

(1964) scale 
mid-May NA 1 11 No 

Klimeš et al. 

(2013) 

Czech 

Republic 
Cfb wooded 

manual 

removal 

June or 

September 

cover percent 

values 

first half 

June 
≤ 5, ≥ 10 0.56 3 

No / 

mulching 

Lanta et al. 

(2009) 

Czech 

Republic 
Cfb 

calcareous 

mountain 

manual 

removal 
June 

percent cover 

values 
June NA 1 3 No 

Liira et al. 

(2009) 
Estonia Dfb flooded meadow 

- scythe 

cutting and 

removal 

- machine 

cutting and 

hay removal 

- mulching 

(machine 

cutting and 

without hay 

removal) 

end June-

beginning 

July 

record of all 

species 

end June- 

beginning 

July 

≤ 5, ≥ 10 0.25 6 
No / 

mulching 

Lundberg et 

al. (2017) 
Norway Dfb 

semi-natural dune 

meadows 

motorized 

grass mower 
August 

cover 

abundance scale 

by Hult (1881) 

and Sernander 

(1912) 

August 

every two 

years 

≤ 5 1 16 No 

Mašková et al. 

(2009) 

Czech 

Republic 
Cfb 

species-rich 

mountain meadow 

manual 

removal 
July 

Braun-Blanquet 

scale 
July ≤ 5 1 10 No 

Maurer et al. 

(2006) 
Switzerland Dfb grassland parcels NA NA 

Braun-Blanquet 

scale 
NA ≤ 5 25 1 No 

Metsoja et al. 

(2014) 
Estonia Dfb 

1: tall forb meadow  
NA June 

cover percent 

values 
June NA 1 1 No 

2: sedge meadow  



4 

 

Moinardeau et 

al. (2019) 
France Csa artificial dykes NA May 

Braun-Blanquet 

scale 
NA NA 10000 3 No 

Neuenkamp et 

al. (2013) 
Estonia Dfb 

1: tall forb meadow scissors 

removal 
late July 

cover percent 

values 
NA ≤ 5 1 10 No 

2: sedge meadow 

Opdekamp et 

al. (2012) 
Poland Cfb fen meadow NA July point quadrat 

beginning of 

July  
NA 4 12 No 

Pavlů et al. 

(2011) 

Czech 

Republic 

Cfb 

 

mountain hay 

meadow 
NA mid July 

cover percent 

values 
every year NA 25 10 No 

Pecháčková et 

al. (2010) 

Czech 

Republic 
Cfb mountain 

scythe 

removal 
mid July 

point quadrat or 

cover percent 

values 

before cut, 

July 
≤ 5 1 5 No 

Peet et al. 

(1999) 
Nepal Cwa NA 

manual 

removal 

early 

December 

cover percent 

values 

late 

November- 

December 

≥ 10 1 3 No 

Peintinger and 

Bergamini 

(2006) 

Switzerland Dfb 
calcareous fen 

meadows 

manual 

removal 
late summer 

record of all 

species 
late summer NA 0.04 1 No 

Pruchniewicz 

and Żołnierz 

(2019) 

Poland Cfb mountain meadows NA 

mid-June, 

mid-June + 

mid-August 

record of all 

species 
NA NA NA 4 No 

Ryser et al. 

(1995) 
Switzerland Dfb 

mountain 

limestone 

calcareous 

nutrient-poor  

NA 

summer 

(mid-June, 

mid-July) 

and October 

modified scale 

by Londo 

(1976) 

late June ≤ 5 
1 and 

40 
2 No 

Shao et al. 

(2012) 
China 

Dfb 

 
semi-arid steppe 

clipping with 

a push mower 

and removal 

of biomass  

late August 
cover percent 

values 
mid-August ≤ 5, ≥ 10 1 4 No 

Smith et al. 

(2018) 
Australia Cfb natural temperate 

10-cm high 

retained on 

site 

late spring / 

early 

summer 

NA spring > 5 1 10 No 

Szépligeti et 

al. (2018) 
Hungary Dfb mesic hay-meadow with tractors 

May; 

September; 

May and 

September 

cover percent 

values 

second half 

of May 
NA 4 7 No 

Török et al. 

(2009) 
Hungary 

Dfb 

 

mountain hay 

meadow 

scythe 

removal 
end of July 

record of all 

species 
end of July NA 1 12 No 

Truus and Estonia Cfb f l o o d p l a i n  ( a b a n d o n e d  f o r  a t  l e a s t  1 5  y e a r s ) 1: wet: NA NA method of Zobel NA NA 0.815 1 No 
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Puusild (2009) regularly 

flooded, 

well 

drained 

and Liira (1997) 

2: moist: 

poorly 

drained 

to 

saturated 

Valkó et al. 

(2011) 
Hungary Dfb 

acidic fen and dry-

mesophilous 

meadows 

scythe 

removal by 

hand raking 

July 

record of all 

species in 

permanent 

quadrats 

July NA 4 9 No 

Van Dyke et 

al. (2004) 
USA - IA Dfb tall grass prairie 

tractor-drawn 

removal 
April-May 

cover percent 

values 
April-May ≥ 10 0.129 2 No 

Velbert et al. 

(2017) 
Germany Cfb wet meadow 

hand-held 

machinery 

removal 

 early 

June/July or 

late 

September 

cover percent 

values 

mid-June 

every second 

year 

NA 16 26 No 

Xu et al. 

(2015) 
China Bsk alpine meadow NA NA 

record of all 

species 

from May to 

September 
≤ 5 4 1 No 

Yang et al. 

(2012) 
China Dfb semiarid steppe 

manual 

removal 
August 

cover percent 

values 
June ≥ 10 1 7 No 

Zhang et al. 

(2016) 
China Dfb semiarid steppe NA August biomass sorting August NA 1 3 No 



1 

 

The data were acquired from 46 experiments (43 articles) varying over durations of only one year (eight studies) to 26 years (one study), conducted between 1443 

1993 (one study) and 2019 (three studies) from about 65° N (Keminmaa, Finland; Huhta and Rautio 1998) to 35° S (Canberra, Australia; Smith al. 2018) and 1444 

from about 97° W (Stillwater OK, USA; Dee et al. 2016) to 149° E (Canberra, Australia; Smith al. 2018). Three Estonian studies included two case-control 1445 

designs each (i.e., tall forb and sedge meadows in Metsoja et al. 2014 and Neuenkamp et al. 2013; two flooded meadows, differing in the degree of soil 1446 

moisture, in Truus and Puusild 2009) and were analysed separately. The meta-analysis integrated several ecological zones, from the cold and arid Tibetan 1447 

Plateau (> 4600 m a.s.l.), with -5.9 °C mean air temperature and 277 mm annual precipitation (Xu et al. 2015) to the humid Swiss pre-Alps (with ~ 2000 mm 1448 

annual precipitation, Peintinger and Bergamini 2006) and the mild slopes (14 °C on average) of the lower course of the Rhone River, France (Moinardeau et 1449 

al. 2019). 1450 



1 

 

Table S2 Data source, location (country and Köppen-Geiger climate classification) and survey methodologies for the 34 articles present in the meta-analysis on the 1451 

effect of warming on species richness (with greyed areas highlighting the subset of 17 articles present in the meta-analysis on the effect of warming on harvested biomass). ΔT 1452 

is the temperature difference (°C) between control and warming treatments. NA (not available) indicates that sufficient information could not be extracted or derived from the 1453 

original articles. For studies in the United States of America (USA), states are indicated: AK: Arkansas; CO: Colorado; FL: Florida; MA: Massachusetts; NM: New Mexico; 1454 

OR: Oregon; OK: Oklahoma; RI: Rhode Island; TN: Tennessee; WA: Washington. For climate classification: Bsk: cold semi-arid; Cfa: humid subtropical; Cfb: temperate-1455 

oceanic; Csa: hot-summer Mediterranean; Csc: cold-summer Mediterranean; Dfa: humid continental; Dfb: warm-summer continental; Dfc: subarctic continental; Dwa: humid 1456 

continental; Dwb: warm-summer humid continental; EF: ice cap; ET: tundra. On survey sampling, year 0 measurements were taken at the beginning of the study (before the 1457 

experimental treatment began) 1458 

References Country 
Climate 

classification 

Grassland 

characteristics 
Warming methods ΔT (°C) 

Timing of the 

warming 

treatment 

Botanical 

method 

Observation 

period 

Plot 

size 

(m
2
) 

Survey 

sampling 

(years) 

Biomass 

determination 

Alatalo et al. 

(2015) 
Sweden Dfc heathland open-top chamber 2.25 all the time 

record of all 

species in 1 m 

x 1 m grid 

peak 

growing 

season 

1 1, 5, 7 No 

Alatalo et al. 

(2016) 
Sweden Dfc rich meadow 

hexagonal open-top 

chamber 
1.87 all the time 

record of all 

species in 1 m 

x 1 m grid 

early August 1 0, 1, 2 

Estimation 

using cover 

and plant 

height 

Collins et al. 

(2017) 
USA – NM Bsk desert grassland 

lightweight 

aluminium-framed 

shelters 

1.10 (winter), 

1.50 (summer) 

passive night-

time 

record of all 

species 

May and 

September 
1 

1, 2, 4, 

5, 6, 7 

Mowing in 

May and 

September 

Engel et al. 

(2009) 
USA – TN Cfa 

old-field community 

with grasses, forbs 

and legumes 

(plots seeded with 

seven common 

plant species) 

circular open-top 

chamber 
2.60 all the time 

visual 

estimation 
monthly 0.49 2 No 

Eskelinen et 

al. (2017) 
Finland Dfc 

species-rich treeless 

tundra meadow 

hexagonal open-top 

chamber 
1.58 

spring and 

autumn  

point-transect 

method taking 

data from 100 

points in each 

transect every 

0.3 m (Daget 

and Poissonet 

1971) 

end of July 0.56 5 
Plant biomass 

removal 



2 

 

Gedan and 

Bertness 

(2009) 

USA – RI Dfb 
salt marsh 

(three sites) 
open-top chamber 1.40 

from May to 

September 
percent cover 

June and 

August 
0.25 3 No 

Gornish and 

Miller 

(2015) 

USA – FL Cfa 

native grasses and 

legumes for 

agricultural use 

hexagonal open-top 

chamber 
2.50 all the time percent cover August 1.00 1, 2 

Plant biomass 

removal 

Grant et al. 

(2017) 
Germany Dfa 

semi-natural 

grassland 
infrared heaters 0.90-1.30 

winter or 

summer 

Biomass 

sorting 

June-

September 
0.81 3 

Mowing in 

June and 

September 

Grime et al. 

(2008) 
United Kingdom Cfb 

unproductive, 

grazed grassland 
soil surface heating 3.00 

November-

April 
point-quadrat June-July 0.18 13 

Mowing in 

October 

Hoeppner 

and Dukes 

(2012)
 

USA – MA Dfb 
old-field herbaceous 

community 

ceramic infrared 

heaters 

1: 1.00 

all the time 
record of all 

species 
summer 

0.25 

and 

0.5 

1, 2 

0.015 to 

0.100 m-

height hand 

clipping in 

June and at 

the end of 

growing 

season 

2: 2.70 

3: 4.00 

Hollister et 

al. (2005) 
USA – AK ET 

dry heath/wet 

meadow 

hexagonal open-top 

chamber 
1.40 

growing 

season 

point-framing 

method 

mid-July 

early August 
1 1, 6 No 

Hollister et 

al. (2015) 
USA - AK ET tundra 

hexagonal open-top 

chamber 
1.40 

open-top 

chambers 

installed 

every year 

shortly after 

snowmelt and 

removed at the 

end 

of the growing 

season 

point-framing 

method 
NA 1 

2, 5, 

12, 17 
No 

Hou et al. 

(2013) 
China Bsk desert steppe infrared lamps 

4.1 (2011), 

1.58 (2012) 
all the time 

record of all 

species 
late August 1 1, 2 No 

Jingxue et al. 

(2019) 
China ET alpine steppe infrared lamps 2.0 

growing 

season 

record of all 

species 
mid-August 1 2 

Plant biomass 

removal 

Jónsdóttir et 

al. (2005) Ic
el

a

n
d
 Thingvellir 

(64° 17′ N, 

21° 05′ W) 

ET 

tu
n

d
r

a 

co
m

m
u

n
i

ti
es

 1: species-

poor moss 

heath 

hexagonal open-top 

chamber 
1.50 summer 

point-framing 

method 
end of June 0.5625 3-5 No 



3 

 

Audkuluheid

i 

(65°16′ N, 

20°15′ W) 

2: species-

rich dwarf 

shrub heath 

Klanderud 

and Totland 

(2005) 

Norway EF heathland open-top chamber 1.50 all the time 
record of all 

species 
August 0.18 1, 4 

Plant biomass 

removal 

Klein et al. 

(2004) 
China ET 

four sites: meadow 

and shrubland 
open-top chamber 1.30 all the time 

record of all 

species 
mid-July 0.56 4 No 

Ma et al. 

(2017) 
China Bsk Alpine grassland infrared radiators 2 NA 

biomass 

sorting 
late August 0.07 

1, 2, 3, 

4 

Plant biomass 

removal 

Olsen and 

Klanderud 

(2014) 

Norway EF tundra 
hexagonal open-top 

chamber 
1.50 

growing 

season 

record of all 

species  
summer 0.36 

0, 3, 7, 

12 
No 

Pfeifer-

Meister et al. 

(2016) 

USA - WA 

Csc 

M
ed

it
er

ra
n

ea
n

 p
ra

ir
ie

s 

1: Tenalquot 

Prairie (46° 53′ 

N, 122° 44′ W) 

infrared radiators 2.75 
growing 

season 

point-intercept 

method 
May-June 1 0, 1, 2 No USA – OR 

2: Willow 

Creek (44° 01′ 

N, 123°10 W) 

USA- OR 

3: Deer Creek 

Center (42°16′ 

N, 123° 38′ W) 

Press et al. 

(1998) 
Sweden Dfc tundra 

open-top tents 
4.00 

from May to 

September 

point-intercept 

method 

first half of 

August 
0.56 5 No 

Price and 

Waser 

(2000) 

USA - CO ET subalpine meadow electric heaters 1.20 all the time 
record of all 

species 
June 0.06 

0, 1, 2, 

3 
No 

Shi et al. 

(2015) 
USA - OK Cfa 

tallgrass prairie not 

grazed for ~ 40 

years 

infrared heaters 1.75 all the time 
point-quadrat 

method 
August 2.00 

1, 2, 3, 

4, 5, 6, 

7, 8, 9, 

10, 11, 

12, 13, 

14 

No 

Su et al. China ET semiarid steppe hexagonal open-top 0.33 not specified biomass August 0.25 1 Soil-level 
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(2019) chamber sorting (soil-level 

mowing at 

the peak of 

biomass) 

mowing at 

the peak of 

biomass 

Wang et al. 

(2012) 
China ET alpine meadow infrared heaters 

1.28 

(daytime), 

1.78 (night-

time) 

all the time  
visual 

estimation 

end of 

August 
1.00 

average 

of four 

years 

Estimation 

using cover 

and plant 

height 

Wang et al. 

(2017) 
China Bsk alpine meadow 

h
ex

ag
o
n

al
 o

p
en

-t
o

p
 c

h
am

b
er

 

(b
o

tt
o

m
 d

ia
m

et
er

) 

1: 0.85 m 0.15  

all the time 
biomass 

sorting 
August 0.25 

0, 1, 2, 

3, 4, 5, 

6, 7 

Sampling at 

the peak of 

biomass 

2: 1.45 m 1.10 

 3: 2.05 m 1.80 

Xu et al. 

(2015) 
China Bsk alpine meadow infrared heaters NA all the time 

percentage 

cover values 
NA 0.06 2 

Plant biomass 

sampling 

Yan et al. 

(2015) 
China Dwa 

homogeneous 

grassland dominated 

by Chloris virgata 

Sw. 

hexagonal open-top 

chamber 
0.93 not specified NA 

mid-June, 

August and 

October 

0.04 3 No 

Yang et al. 

(2011) 
China ET temperate steppe infrared radiators 1.14 

from March to 

November  

visual 

estimation 
August 1 

1, 2, 3, 

4, 5 
No 

Yang et al. 

(2016) 
China ET 

semi-arid temperate 

steppe 
infrared radiators 0.71-0.78 

daytime and 

night-time  

record of all 

species 
August 1 2 No 

Zhang et al. 

(2015) 
China Bsk 

1: alpine meadow conical open-top 

chamber 
1.73 all the time 

record of all 

species 

from July to 

August 
0.25 0.25 

Plant biomass 

sampling 2: alpine steppe 
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Zhang et al. 

(2017a) 
China ET temperate steppe infrared radiators 1.10 all the time 

biomass 

sorting 
August 0.15 5 

Plant biomass 

sampling 

Zhang et al. 

(2017b) 
China ET 

alpine meadow 

(with a history of 

low or high grazing 

intensity) 

open-top chamber 1.10 all the time 
record of all 

species 
NA 0.56 

1, 2, 3, 

4, 18 
No 

Zhu et al. 

(2015) 
China Dwb meadow steppe infrared radiators 1.70 

from March to 

November 

record of all 

species 

from June to 

September 
0.06 3 

Mid-August 

plant biomass 

sampling 

 1459 

Data were acquired from 42 experiments (34 articles) varying in duration and number of sampling instances per year (up to 14 in the study period in Shi et al. 1460 

2015), conducted between 1998 (one article) and 2019 (two articles). They include the study by Xu et al. (2015), also used in the meta-analysis for the effect 1461 

of mowing (with no warming) on SR and HB (Table S1). Here, we assess the effect of warming on the abandoned plot and discuss the results obtained by Xu 1462 

et al. (2015) with the combined treatment of the effects of mowing and warming without including this treatment in the meta-analyses. Broad altitudinal 1463 

ranges up to above 4700 m a.s.l. in the Tibetan Plateau (Zhang et al. 2015; Jingxue et al. 2019) imply broad ranges of mean air temperatures (from -5.9 °C in 1464 

the Tibetan Plateau, Xu et al. 2015, to 20 °C in USA - Florida, Gornish and Miller 2015) and annual precipitation (> 1400 mm in the southern Pacific 1465 

Northwest, Pfeifer-Meister et al. 2016, down to < 90 mm in Norway, Klanderud and Totland 2005; Olsen and Klanderud 2014). Where this was clearly 1466 

established, alternative experimental treatments and conditions were analysed separately. This is the case in the study by Wang et al. (2017), who examined 1467 

warming impacts in experiments with open-top chambers having different bottom diameters (i.e., 0.85 m, 1.45 m and 2.05 m). Hoeppner and Dukes (2012) 1468 

described the response of a grassland community by comparing three levels of warming (up to +4 °C) to the control case. Jónsdóttir et al. (2005) studied two 1469 

grassland communities (i.e., species-poor moss heath and species-rich dwarf shrub heath) at two sites in Iceland. Likewise, Pfeifer-Meister et al. (2016) 1470 

quantified how warming affects the relative dominance of plant functional groups and the diversity of Mediterranean prairies at three sites across a 520‐ km 1471 

latitudinal gradient in the Pacific Northwest (USA).1472 
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Table S3 Mixed-effects model analysis of moderators for species richness (SR) and harvested biomass (HB): standardized coefficients (slopes), standard errors (se), 1473 

z-values (z), lower (LCI) and upper (UCI) 0.95 confidence intervals, significance probability of slope estimates (p), omnibus test of heterogeneity (QM), its significance 1474 

probability (P), amount of residual heterogeneity accounted for by the whole model (R
2
). Moderators are: Y: year of publication; D (years): duration of the experimental 1475 

study; S (m
2
): plot size; T (°C): temperature difference between control and warming treatments; T (°C): mean annual temperature of the site; R (mm): mean annual 1476 

precipitation of the site; E (m a.s.l.): site elevation; M: warming method (not enough data were available to examine the effects of cutting height). The probabilities of 1477 

significant slope estimates are marked in red (p<0.05) and bold red (p<0.01) 1478 

Factor Effect size Moderator 
Estimates Omnibus test 

slope se z LCI UCI p QM P R
2
 (%) 

Mowing HB Y 0.0172 00082 2.1117 0.0012 0.0332 0.0347 4.4593 0.0347 33.03 

Warming 

SR 

Y -0.0087 0.0044 -1.9764 -0.0173 -0.0001 0.0481 3.9060 0.0481 9.40 

Y -0.0005 0.0078 -0.0703 -0.0158 0.0147 0.9439 

17.2876 0.0272 31.13 

D -0.0142 0.0212 -0.6685 -0.0557 0.0274 0.5038 

S 0.1608 0.1410 1.1404 -0.1156 0.4372 0.2541 

T -0.0078 0.0855 -0.0916 -0.1754 0.1598 0.9270 

T -0.0064 0.0167 -0.3816 -0.0391 0.0263 0.7028 

R -0.0004 0.0002 -2.2202 -0.0007 -0.0000 0.0264 

E -0.0001 0.0000 2.7952 -0.0002 -0.0000 0.0052 

M -0.0178 0.1360 -0.1312 -0.2845 0.2488 0.8956 

HB 

Y -0.0203 0.0086 -2.3685 -0.0371 -0.0035 0.0179 

8.9215 0.0304 63.05 E 0.0000 ~ 0.0000 1.3952 -0.0000 0.0001 0.1630 

M 0.0363 0.0610 0.5946 -0.0833 0.1559 0.5521 

 1479 
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Supplementary figures 1480 

Figure S1 1481 

 1482 

Figure S1 Normal quantile plots of the natural logarithms of the response ratios (LRR) for species richness (left) and harvested biomass (right) with mowing 1483 

(top) and warming (bottom) effects. The solid line is the diagonal reference line. The dashed lines show 0.95 Lilliefors (1967) confidence bounds 1484 

1485 



2 

 

Figure S2 1486 

 1487 

 1488 

Figure S2 Funnel plots of the meta-analysis comparing species richness (left) and harvested biomass (right) with mowing (top) and warming (bottom) effects 1489 

 1490 
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