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Abstract
Olkin and Spiegelman introduced a semiparametric esti-
mator of the density defined as a mixture between the
maximum likelihood estimator and the kernel density
estimator. Due to the absence of any leave-one-out strat-
egy and the hardness of estimating the Kullback–Leibler
loss of kernel density estimate, their approach produces
unsatisfactory results. This article investigates an alter-
native approach in which only the kernel density esti-
mate is modified. From a theoretical perspective, the
estimated mixture parameter is shown to converge in
probability to one if the parametric model is true and to
zero otherwise. From a practical perspective, the utility
of the approach is illustrated on real and simulated data
sets.
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1 INTRODUCTION

There exist two general approaches to density estimation. On the one hand, parametric meth-
ods are known to be precise but their results depend on the assumed statistical model. On the
other hand, nonparametric methods often require more data but are free from model specifica-
tion. In this context, Olkin and Spiegelman (1987), abbreviated OS in the present article, proposed
to combine the two approaches by forming a convex combination 𝛼f𝜃̂n

+ (1 − 𝛼)f̂ n between a
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parametric density estimator f𝜃̂n
and a kernel density estimator f̂ n. Given a set of data X1, … ,Xn ⊂

Rd where d≥ 1, the value of 𝛼 is estimated by 𝛼̂OS
n , defined as the argmax over 𝛼 ∈ [0, 1] of the

function

n∑
i=1

log(𝛼f𝜃̂n
(Xi) + (1 − 𝛼)f̂ n(Xi)).

This permits to get a density estimator robust to misspecification while retaining a performance
comparable to parametric estimators when the true density is close to the model.

While the previous idea is quite seducing, it has little chance to succeed because of (i) a
prohibitive bias caused by the absence of any leave-one-out estimation strategy and (ii) the inher-
ent flaws of the kernel density estimator in Kullback–Leibler loss estimation (Hall, 1987). In
practice, it is very sensitive to the choice of the bandwidth (Faraway, 1990; Rahman, Beaver, &
Gokhale, 1997). This prevents the OS method from getting satisfactory theoretical and practical
results, as we shall argue throughout this article.

In this article, we “repair” the kernel density estimator in order to improve the quality
estimation of 𝛼. We introduce the estimate

𝛼̂n ∈ argmax
𝛼∈[0,1]

n∑
i=1

log(𝛼f𝜃̂n
(Xi) + (1 − 𝛼)f̂

LR
n,i ), (1)

where f̂
LR
n,i is called the leave-and-repair (LR) kernel density estimate and is given by

f̂
LR
n,i =

(
1

(n − 1)hd
n

∑
j≠i

K
(Xi − Xj

hn

))
+ Δnq(Xi), (2)

where K ∶ Rd → R≥0 is the kernel, hn > 0 is the bandwidth, Δn ≥ 0 and q ∶ Rd → R≥0.
The LR estimate is a modification of the well-known leave-one-out (LOO) estimate usu-
ally employed in cross-validation procedures (Hall, 1987) and semiparametric estima-
tion (Delecroix, Hristache, & Patilea, 2006). The estimator 𝛼̂n introduced in (1) is called the
fitness coefficient because it may be interpreted as how well the model fits the data (see
Section 5).

1.1 Main contributions.

Under mild conditions, the fitness coefficient 𝛼̂n is shown to converge in probability to one if
the model is true and zero otherwise, a property called consistency. Even if the fitness coef-
ficient is maximizing some objective function (over 𝛼 ∈ [0, 1]), the results from M-estimation
theory do not apply directly because, when the model is true, the limiting objective function
is independent from 𝛼. The proof follows from a fine comparison between the rates of con-
vergence of f𝜃̂n

and f̂ n. Using some real data as well as extensive simulations, we observe that
the LR approach is more stable than the OS approach and leads to more accurate inference.
Finally, some new perspectives on the use of the fitness coefficient for model evaluation are
provided.
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1.2 Alternative approaches.

Following the idea of combining parametric and nonparametric estimator, some authors (Lee
& Soleymani, 2015; Rahman et al., 1997; Soleymani & Lee, 2014) investigate different strategies
based on the mean squared error between the combination 𝛼f𝜃̂n

+ (1 − 𝛼)f̂ n and the true density,
but then the solution depends on the unknown distribution and hence heavy bootstrap methods
need to be employed. There exist also other approaches than that of forming a convex combination
between the parametric and nonparametric estimators. The locally parametric nonparametric
estimation is developed for instance in Hjort and Jones (1996), Hjort, McKeague, and Van Kei-
legom (2018), and Talamakrouni, El Ghouch, and Van Keilegom (2017), but is less appealing
from the point of view of model quality assessment because they do not provide any “fitness
coefficient.”

1.3 Outline.

In Section 2, we motivate the use of the LR estimator f̂
LR
i,n to compute the fitness coefficient 𝛼̂n.

The consistency of the fitness coefficient is stated in Section 3 where some examples are given. In
Section 4, numerical experiments are designed to measure the robustness of the fitness coefficient
and the performance of the corresponding density estimators. Finally, some concluding remarks
on the potential use of the fitness coefficient are given in Section 5. All the proofs are given in the
Appendix.

2 THE LEAVE-AND-REPAIR ESTIMATOR

The aim of this section is to motivate the use of the LR estimator f̂
LR
n in the definition of the fitness

coefficient 𝛼̂n.
Let (Xi)i≥ 1 be an independent and identically distributed sequence of Rd-valued random vari-

ables having density f 0 with respect to the Lebesgue measure. The kernel density estimator of f 0
at x ∈ Rd is given by

f̂ n(x) =
1

nhd
n

n∑
i=1

K
(

x − Xi

hn

)
.

For any h > 0, define the function f h as the convolution product between Kh(⋅)=K(⋅ /h)/hd and f 0,
that is, f h(x)= (Kh ⋆ f 0)(x), x ∈ Rd. Note that fhn(x) = E[f̂ n(x)]. But since E[f̂ n(Xi)|Xi] = fhn(Xi) +
K(0)∕(nhd

n), we see that f̂ n(Xi) has a positive hn-dependent bias when estimating fhn(Xi), condi-
tionally on Xi. When studying the estimator decomposition, this bias term spreads to the diagonal
terms of some U-statistics and gives rise, in the end, to some nonnegligible terms. This phe-
nomenon is common in semiparametric statistics, and has been noticed for instance in remark 4
in Portier and Segers (2018).

To overcome the undesirable effects caused by this bias term, the leave-one-out (LOO)
estimator of fhn (Xi), given by

f̂
LOO
n,i = 1

(n − 1)hd
n

∑
j≠i

K
(Xi − Xj

hn

)
,

has been successfully used in several cross-validation procedures aiming at selecting the band-
width, either based on the likelihood (Habbema, Hermans, & Van Den Broeck, 1974; Hall, 1987;
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Marron, 1985) or on the mean squared error (Rudemo, 1982; Stone, 1984) (see Marron (1987) for
a comparison). Since then, LOO estimators have been frequently used in semiparametric studies
(Delecroix et al., 2006).

The LR estimator proposed in this article is inspired, but different, from the LOO estima-
tor. In view of (2), the LR estimator satisfies f̂

LR
n,i = f̂

LOO
n,i + Δnq(Xi). If Δn = 0 the LR estimator

is equal to the LOO estimator. If q=K(0) and Δn = 1∕((n − 1)hd
n) the LR estimator is equal to

(n∕(n − 1))f̂ n(Xi). In this article,Δn shall be typically of order 1/n and q shall be a density satisfying
q(X1) > 0 almost surely.

The heuristic for using the LR estimator f̂
LR
n,i instead of the LOO estimator f̂

LOO
n,i is as follows.

It is well known that the Kullback–Leibler divergence between kernel density estimates and the
true density depends crucially on the tails of the true distribution f 0 (Hall, 1987; Schuster & Gre-
gory, 1981). As shown in Hall (1987), if the tail is too heavy and the kernel K(x) vanishes too
quickly as x becomes large then the associated Kullback–Leibler divergence diverges to minus
infinity. This is because some of the f̂

LOO
n,i , i= 1, … , n, might have very small values (possibly

zero), leading to very large values (possibly infinite) for some of the log(f̂
LOO
n,i ). We built the LR

estimator to overcome this issue by simply adding Δnq(Xi) to the LOO estimator. We coined the
term leave-and-repair because the term Δnq(Xi) repairs the LOO estimator. Since f̂

LR
n,i ≥ Δnq(Xi),

the LR estimator is not subjected to the difficulties of the LOO estimator. By adding the term
Δnq(Xi) in (2), however, a bias is introduced: now one has E[f̂

LR
n,i |Xi] − fhn(Xi) = Δnq(Xi). Thus,

there is a bias-variance trade-off controlled by the sequenceΔn that must go to zero slowly enough
to keep f̂

LR
n,i away from zero but also fast enough to keep the bias as small as possible. The right

compromise is given in the conditions in Theorem 1 (for instance Δn = 1∕n is one possibility).
Let  = {f𝜃 ∶ 𝜃 ∈ Θ} be the parametric model where Θ ⊂ Rp is such that for each 𝜃 ∈ Θ, f𝜃 ∶

Rd → R≥0 and ∫ f𝜃(x) dx = 1. The maximum likelihood estimator of f 0 based on and X1, … , Xn
is f𝜃̂n

where 𝜃̂n (when it exists; this is further assumed) is defined as

𝜃̂n ∈ argmax
𝜃∈Θ

n∑
i=1

log(f𝜃(Xi)).

To conclude the section, we consider existence and uniqueness of the fitness coefficient 𝛼̂n.
The existence follows from the use of the LR estimator f̂

LR
n,i . Uniqueness of 𝛼̂n is obtained under

the mild requirement that the parametric and nonparametric estimators are distinguishable on
the observed data.

Proposition 1. Suppose that Δn > 0 and q(X1) > 0 a.s. and f𝜃̂n
(Xi) ≠ f̂

LR
n,i for at least one

i∈ {1, … , n}. Then the fitness coefficient exists and is unique.

The proof is given in Section A of the Appendix.

3 CONSISTENCY OF THE FITNESS COEFFICIENT

3.1 Assumptions and main result

Let || ⋅ ||2 be the Euclidean norm and for any set S ⊂ Rd and any function f ∶ S → R, define the
sup-norm as ||f ||S = sup x∈S|f (x)|. Denote by 𝜆 the Lebesgue measure on Rd. Introduce the density
level sets St = {x ∈ Rd ∶ f0(x) > t}, t ≥ 0. We shall assume the following.
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(H1) The density f 0 is bounded and continuous on Rd and the gradient ∇f 0 of f 0 is bounded on
Rd, and satisfies, for every x ∈ Rd and u∈ [− 1, 1]d,

|f0(x + u) − f0(x) − uT∇f0(x)| ≤ ||u||2
2g(x),

where g is positive, bounded, integrable and ∫ g(x)2∕f0(x) dx <∞.
(H2) The kernel function K ∶ Rd → R≥0 integrates to 1 and takes one of the two following forms,

(a) K(x) ∝ K(0)(||x||2) or (b) K(x) ∝
d∏

k=1
K(0)(|xk|),

where K(0) ∶ [0, 1] → R≥0 is of bounded variation. The sequence (hn)n≥ 1 is such that
nh2d+4

n → 0, nhd
n∕| log(hn)| → ∞.

Whereas (H1) and (H2) are rather classical in the kernel smoothing literature (see the remarks
just below Theorem 1), the following assumption is specific to our approach. We shall see in
Section 3.2 that this assumption is satisfied for densities with classical tails.

(H3) The function q ∶ Rd → R≥0 is bounded, integrable, and E[| log(q(X1))|] <∞. There exist
𝛽 ∈ (0, 1] and c > 0 such that ∫Sc

t
f0(x) dx ≤ ct𝛽 as t → 0. For any 𝛾 > 0, bn = 𝛾(nhd

n)−1∕𝛽 , there
exists C > 0 such that, as n→∞,

sup
x∈Sbn

sup
u∈[−1,1]d

f0(x + hnu)
f0(x)

≤ C and hd
n𝜆(Sbn) → 0.

For the sake of clarity, the assumptions dealing with the parametric model, namely (A1) and
(A2), are postponed to Section C of the Appendix. They are taken from the monographs van der
Vaart (1998) and Newey and McFadden (1994), and they mainly ensure the asymptotic normality
of 𝜃̂n whenever f0 ∈  .

Theorem 1. Suppose that assumptions (H1) to (H3), and (A1) are fulfilled.

(i) When f0 ∈  , under (A2) and if (nhd
n)Δn → 0, it holds that 𝛼̂n → 1, in probability.

(ii) When f0 ∉  , if Δn → 0 and (
√| log(hn)|∕nhd

n + h2
n)| log(Δn)|1∕𝛽 → 0, we have that 𝛼̂n → 0,

in probability.

Section B of the Appendix is dedicated to the proof of Theorem 1. We did not follow the
approach used in Olkin and Spiegelman (1987), which, we believe, is unsatisfactory because it
does not consider the case when 𝛼̂n lies in the border of [0, 1]. Actually, this is not straightfor-
wardly remedied as the event 𝛼̂n = 0 or 𝛼̂n = 1 has a nonnegligible probability (as illustrated in
the numerical experiments in Section 4.2). The smoothness assumption stated in (H1) and the
symmetries in the kernel function ensure a control of order h2

n of the bias f h(x)− f (x), uniformly
in x ∈ Rd (see Lemma 5 stated in Section B.5 of the Appendix). Such a rate could be improved by
using higher order kernels but this is not necessary here. Assumption (H2), (a) and (b), are bor-
rowed from the empirical process literature; see among others (Einmahl & Mason, 2000; Giné &
Guillou, 2002; Nolan & Pollard, 1987). They permit to bound, uniformly in x ∈ Rd, the variance



6 MAZO and PORTIER

term f̂ n(x) − fh(x). The fact that the kernel has a compact support can be alleviated at the price of
additional technicalities in the proof and assuming that the tails of the kernel are light enough.
We did not include this analysis in the article for reasons of clarity.

For any dimension d≥ 1, there exists a couple of sequences (hn,Δn)n≥1 that fulfills the restric-
tions (i), (ii) of Theorem 1, and (H2). For instance, the bandwidth hn ∝n−1/(d+ 4) and Δn = n−r

with r ≥ 1 are such sequences. An interesting point in Theorem 1 is the two opposite roles played
by the sequence Δn in (i) and (ii), respectively. The consistency when f0 ∈  requires Δn to be as
small as possible, whereas when f0 ∉  , Δn must not be too close to 0. In the proof, the two cases
Δn = 0 (leave-one-out) as well as Δnq(Xi) = K(0)∕(nhd) (OS method) need to be excluded. How-
ever, as suggested by the assumptions on Δn, its rate of convergence to 0 might be very fast as it
only appears as a logarithmic factor.

The fitness coefficient can be used to improve upon the parametric and the nonparametric
estimators. Define the mixture estimate

f̃ n(x) = 𝛼̂nf𝜃̂n
(x) + (1 − 𝛼̂n)f̂ n(x).

We have the following uniform consistency result which does not depend on the validity of the
parametric model.

Proposition 2. Suppose that assumptions (H1) to (H3), and (A1) are fulfilled and that

sup 𝜃∈Θ||f𝜃||Rd < ∞. If Δn → 0 and (
√| log(hn)|∕nhd

n + h2
n)| log(Δn)|1∕𝛽 → 0, we have

||f̃ n − f0||Rd → 0, in probability.

3.2 Distributions and bandwidths satisfying (H3)

For densities f 0 with unbounded supports, the verification of Assumption (H3) only depends on
some tail function g0 associated to the density f 0. The meaning of this is made precise in the
following proposition.

Proposition 3. Suppose that for any A > 0, inf ||x||≤Af0(x) > 0 and that there exists a function g0
such that f 0(x)/g0(x)→ 1 as ||x||→∞. Suppose that hn → 0 and nhd

n → ∞. If there exist c2 > 0 and
𝛽 ∈ (0, 1] such that

∫g0(x)≤t
g0(x) dx ≤ c2t𝛽 , as t → 0,

and if for any 𝛾 > 0, bn = 𝛾(nhd
n)−1∕𝛽 , there exists A > 0, C2 > 0 such that

sup||x||>A, g0(x)>bn

sup
u∈[−1,1]

g0(x + hnu)
g0(x)

≤ C2 and hd
n𝜆(g0(x) > bn) → 0, (3)

as n→∞, then (H3) is valid for f 0 with the same value of 𝛽.

The proof of Proposition 3 is given in Section A of the Appendix. The function g0 in Propo-
sition 3, not necessarily a proper density function, represents the rate of decrease of f 0(x) as||x||→∞.
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Example 1 (Mixture of densities). Let d= 1. Let f0(x) = 𝜋1f1(x) + 𝜋2f2(x), 𝜋1 > 0, 𝜋2 > 0, 𝜋1 +
𝜋2 = 1, where f 1 and f 2 are densities such that f 1(x)/f 2(x)→ 0 as |x|→∞. Take g0(x) = 𝜋2f2(x).
Then, as |x|→∞,

f0(x)
g0(x)

=
𝜋1f1(x)
𝜋2f2(x)

+ 1 → 1.

Hence the verification of (H3) by f 0 only depends on the component f 2.

Putting g0 ∝ f 0 (the symbol ∝ stands for proportionality) in Proposition 3 amounts to
check (H3) directly, which is done in the following examples.

Example 2 (Gaussian tails). Let d= 1 and g0(x) = 𝜅1 exp(−𝜅2x2), with 𝜅1 > 0, 𝜅2 > 0. For clarity
the computations are provided for 𝜅1 = 𝜅2 = 1 but can easily be extended for arbitrary values. As
∫exp(−x2)≤t exp(−x2) dx ≤ t, as t → 0, we have that 𝛽 = 1. Moreover, for 0 < bn < 1, we have

sup
exp(−x2)>bn

sup
u∈[−1,1]

exp(−(x + hnu)2 + x2) ≤ sup
exp(−x2)>bn

sup
u∈[−1,1]

exp(−2hnxu)

= sup
exp(−x2)>bn

exp(2hn|x|)
≤ exp(2

√
− log(bn)hn).

Therefore, a sufficient condition on hn guaranteeing (3) is that h2
n log(n) → 0, which is satisfied

under (H2).

Example 3 (Exponential tails). Let d= 1 and g0(x) = 𝜅1 exp(−𝜅2x), with 𝜅1 > 0, 𝜅2 > 0. The
computations are very similar to the one presented in the Gaussian case. We find 𝛽 = 1 and the
condition on hn becomes hn log(n) → 0 which is always true under (H2). Hence, as for Gaussian
tails, when the tails are exponential, (H3) is automatically satisfied under (H2).

Example 4 (Polynomial tails). Let d= 1 and g0(x) = 𝜅1|x|−k with 𝜅1 > 0, k > 1. For simplicity, as
in the Gaussian example, we focus on 𝜅1 = 1. We find that 𝛽 = (k − 1)∕k. For hn < |A|, we have

sup|x|>A, |x|≤b−1∕k
n

sup
u∈[−1,1]d

|x|k|x + hnu|k
= sup|x|>A, |x|≤b−1∕k

n

|x|k

(|x| − hn)k

= 1
(1 − hn∕A)k

n→∞
→ 1.

Finally, since𝜆(g0 > bn) = 2b−1∕k
n = 2𝛾−1∕k(nhn)1∕(𝛽k), a sufficient condition on hn guaranteeing (3)

is that nhk
n → 0.

The three examples considered above are informative on the interplay between the tails of f 0
and the choice of hn. For distributions with light enough tails, including Gaussian, exponential,
and polynomial tails with k≥ 6, the conditions on hn required by (H3) are already fulfilled when
assuming (H2). Consequently, the rate hn ∝n−1/5, which is the optimal bandwidth corresponding
to the kernel density estimator for estimating f 0 (Wand & Jones, 1994) is included by our set of
assumptions. By contrast, as soon as k < 6 in the polynomial case, we have the additional condition
that nhk

n → 0.
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4 NUMERICAL ILLUSTRATIONS

4.1 Parameter tuning

The computation of the fitness coefficient depends on four tuning parameters: the function q, the
sequence (Δn)n≥1, the kernel K, and the bandwidth (hn)n≥ 1. In our experiments, we have observed
that the results are very robust to the choice of q and Δn. In particular, we have observed that
Δn = n−r with r ≥ 1, and q being a large tail density function work fine in general. Concerning
the kernel K, it is well known in nonparametric density estimation that the choice of K does
not influence much the results (Silverman, 1998). As for the choice of the bandwidth, the values
returned by the bandwidth selection methods of the literature are expected to give satisfactory
results. Indeed, assuming that the tail of f 0 is not too heavy, these methods aim at estimating the
optimal bandwidth n−1/(d+ 4), which satisfies the conditions of Theorem 2. Thus, a bandwidth of
order n−1/(d+ 4) should be reasonable for computing the fitness coefficient.

In all the simulation experiments, we set Δn = 1∕n, K(x) ∝ exp(−x2∕2) and q(x) = t𝜈((x −
𝜇q)∕𝜎q)∕𝜎d

q where t𝜈 is the density of a Student-t distribution with 𝜈 = 3 degrees of freedom,𝜇q = 0
and 𝜎q = 100. With such a large variance and heavy tails, this choice of q is noninformative. In all
the experiments but those in Section 4.2, the bandwidth is chosen according to the well-known
rule of thumb given in Silverman (1998, p. 48, equation (3.31)). All the numerical experiments
were carried out with the R software.

4.2 Sensitivity to the bandwidth: Comparison of the fitness
coefficient and the OS coefficient

In this section, we study how a change in the bandwidth affects the fitness coefficient and the OS
coefficient. We reanalyze the data set used in Olkin and Spiegelman (1987), consisting of yearly
wind speed maxima taken in the north direction in Sheridan, Wyoming. There are 20 observations
for the years 1958 to 1977: 70, 61, 61, 60, 61, 63, 61, 67, 61, 62, 47, 67, 61, 49, 55, 65, 57, 51, 47, and 56.
The parametric model is a Gumbel model, that is, log f𝜃(x) = (x − 𝜇)∕𝜎 − exp((x − 𝜇)∕𝜎), where
𝜃 = (𝜇, 𝜎), 𝜇 is a real location parameter and 𝜎 > 0 a dispersion parameter obeying varf𝜃 = 𝜋2𝜎2∕6
and Ef𝜃 = 𝜇 − 𝜎𝛾 , where 𝛾 ≈ 0.58 is the Euler–Mascheroni constant. The maximum likelihood
estimator is given by 𝜃̂n ≈ (62.1, 5.4).

Let h denote the bandwidth. In Olkin and Spiegelman (1987), it was arbitrarily chosen h= 0.7s,
where s is the standard deviation of the data. This yields 𝛼̂OS

n ≈ 0.8. But if h≈ 0.43s, h≈ 0.37s or
h≈ 0.21s then one gets 𝛼̂OS

n ≈ 0. All the above values for h are grounded by well-known bandwidth
selection methods, see the textbook Silverman (1998, p. 47, equation (3.30) and p. 48, equation
(3.31)) and Sheather and Jones (1991). By contrast, the fitness coefficient yields 𝛼̂n ≈ 1. These
findings are summarized in Figure 1a, where the coefficients are represented as functions of h.
We see that the OS coefficient is sensitive to the choice of the bandwidth: a slight difference in h
can yield a large difference in 𝛼̂OS

n = 𝛼̂
OS
n (h) especially in the range 0.4≤ h≤ 0.8. On the opposite,

the fitness coefficient is more robust: the estimated value for 𝛼̂n(h) remains close to one in a large
range for h. In Figure 1a, the fitness coefficient and the OS coefficient contradict each other and
no more credit can be given to any one of them because the ground truth is unknown.

To observe the behavior of the coefficients when the model is known to be true, we simulated
n= 400 observations according to a Gumbel distribution with mean and SD equal to those of the
wind speed data, that is, 59.1 and 6.55, respectively. The results are shown in Figure 1b. One has
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indicates choice of bandwidth
OS coefficient
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F I G U R E 1 Values of the fitness coefficient and the OS coefficient as a function of the bandwidth h,
expressed as a proportion of the standard error of the data. Plain blue line: fitness coefficient. Dashed black line:
OS coefficient. The red sticks indicate various bandwidth values chosen according to the literature (see text); (a)
wind speed data, (b) simulations under a Gumbel model, and (c) simulations under a Gaussian model. In all
cases the fitted model is a Gumbel model [Color figure can be viewed at wileyonlinelibrary.com]

𝛼̂n(h) ≈ 1 whatever h while 𝛼̂OS
n (h) ≤ 0.2 for all h chosen by the bandwidth selection methods of

the literature. These results tend to indicate that the fitness coefficient is consistent but the OS
coefficient is not. Let us note that Figure 1a,b is similar, making the Gumbel model plausible.
The difference spotted in the range 0≤ h≤ 0.2 can be explained by the ties of the wind speed data.
(When h is small, one can see that (1) is close to the likelihood of a Bernoulli trials experiment,
the maximizer of which is given by the proportion of untied observations, here one-half.)

Whenever the model is wrong, we found on simulations that for most reasonable (i.e., found in
the literature as above) values of h, the values of the coefficients are close to zero, as expected. This
is illustrated in Figure 1c: the model is still Gumbel, but the n= 400 data points were generated
according to a Gaussian distribution with mean 59.1 and SD 6.55.

4.3 Performance of the methods when the model and the truth
intertwine

Parametric estimators perform better than kernel density estimators when the model is approxi-
mately true, but worse otherwise. Can the semiparametric combination be uniformly best? Does
the fitness coefficient goes to unity as the model approaches the truth?

http://wileyonlinelibrary.com
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We generated samples of size n= 400 according to a density f t, for several values t in a certain
index set, representing the “distance” between f t and the model. The parametric model is given
by f𝜃 ∼  (𝜃, 1) and the curve of true distributions is given by ft ∼  (0, (1 + t)2). The intersection
between the model {f𝜃} and the family {f t} is given by f0 ∼  (0, 1); that is, 𝜃 = t = 0.

For each t, we compute the maximum likelihood estimator, the standard kernel density esti-
mator, the fitness coefficient, the OS coefficient, and the semiparametric density estimator. The
semiparametric density estimator is the combination between the maximum likelihood estimator
and the kernel density estimator where the mixing coefficient can be either the fitness coefficient
(LR method) or the OS coefficient (OS method). To assess the performances of the estimators, we
compute the L2-distance to f t. The above procedure is repeated 500 times so that the errors are
averaged over the repetitions.

The errors for the parametric estimator, shown in Figure 2a, shrink sharply as the model and
the truth intersect. The error for the nonparametric estimator is approximately constant. We see
that the OS method performs poorly: it fails to give accurate estimates near the truth. This behav-
ior is explained in Figure 2b, where we see that the values of the OS coefficient barely exceed 0.1.
This is not the case for the fitness coefficient; the values stretch entirely the range [0, 1] and are
consistent with the proximity between the truth and the parametric model. As a consequence,
coming back to Figure 2a, the error of the LR method is near the minimum of the parametric and
nonparametric errors. This means that, in practice, however close our parametric model is to the
truth, we never lose by choosing the LR method. Even more interestingly is the fact that in the
region where the parametric and the nonparametric estimators perform similarly, the LR method
performs better: this corresponds to the values t ≈−0.10 and t ≈ 0.15. This fact is clearly seen
in Figure 2c which pictures the averaged error integrated in the interval [− t, t]: the LR method
always has the lowest curve.

The results for n= 50, 100, 200 and another setting, with f𝜃 ∼  (0, 𝜃2) and ft ∼  (t, 1), are
similar and not shown here to limit the length of the article.

4.4 Application to multivariate density estimation

It is well known that building accurate multivariate parametric models is an uncertain and diffi-
cult task. One way of addressing this problem consists of decomposing the target density f 0 into
a copula c and the marginal densities f 1, … , f d, that is,

f (x1, … , xd) = c(F1(x1), … ,Fd(xd))f1(x1) … fd(xd)

(here the {Fj} stand for the distribution functions). This decomposition, also known as Sklar’s
theorem, is unique provided that the {Fj} are continuous; for more details about copulas, see,
for example, Genest and Favre (2007) or the books (Joe, 2014; Nelsen, 2006). The copula is
assumed to belong to a parametric model {c𝜉 , 𝜉 ∈ Ξ} and the true underlying parameter 𝜉 is
estimated (Genest, Ghoudi, & Rivest, 1995) by

𝜉 = arg max
𝜉∈Ξ

n∑
i=1

log c𝜉
(

Ri,1

n
, … ,

Ri,d

n

)
,

where Ri, j is the rank of Xi, j among (X1, j, … , Xn, j) and Xi, j stands for the jth coordinate of
the ith observation. The marginals are estimated in a separate step. If one of the marginals is
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F I G U R E 2 Performance of the methods when the truth { (0, (1 + t)2), −0.5 < t < 0.5} approaches the
model { (𝜃, 1), −∞ < 𝜃 < ∞} until they intersect at t = 0. The L2-distance averaged over the replications is
pictured in (a) for the parametric estimator, the nonparametric estimator, the OS method and the LR method.
The integrated averaged distance is pictured in (c). Figure (b) pictures the values of the fitness coefficient and the
OS coefficient averaged over the replications [Color figure can be viewed at wileyonlinelibrary.com]

misspecified, the estimation of the joint distribution is biased. In the following, a computer exper-
iment illustrates that the LR method can help to reduce this bias by avoiding misspecification.

We have generated data sets of size n= 25, 50, 100, 150, … , 500 using a Gumbel cop-
ula with parameter 𝜉 = 3 and marginals f 1 ∼E(2), f 2 ∼W(2, 1/2) where E(𝜆) is an expo-
nential distribution with mean 1∕𝜆 and W(a, b) is a Weibull distribution with shape a > 0
and scale b > 0. For each of the simulated data sets, the copula parameter 𝜉 was esti-
mated as mentioned above and the marginals were estimated under three scenarios: using
a kernel density estimator; a maximum likelihood estimate based on the exponential dis-
tribution for both margins; and using the semiparametric combination based on the LR
method.

Figure 3 shows the estimation for the bivariate joint density for n= 200. In Figure 3b we see
that one marginal misspecification led to a poor estimation of the joint density, especially in the
joint tails. Figure 3c shows the estimated joint density with the nonparametric strategy for the
marginals. Drawbacks of nonparametric estimation are easily spotted: the estimated density is
multimodal and assumes positive values where it should be null. Visually, the best performance is

http://wileyonlinelibrary.com
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F I G U R E 3 Contour plots of
the true (a) and the estimated joint
densities with the parametric (b),
nonparametric (c), and
semiparametric (d) strategies. The
size of the data set is n= 200 [Color
figure can be viewed at
wileyonlinelibrary.com]

achieved with the semiparametric strategy in Figure 3d. The figures for n= 50, 100, 500 are similar
and not shown to limit the length of the article.

The squared L2-distances between the true joint density and the estimators are shown in
Figure 4. The semiparametric strategy performs best for all sample sizes.

5 DISCUSSION

In the previous sections, we have mostly focused on the estimation properties related to the fit-
ness coefficient and we have demonstrated that the difficulties (practical and theoretical) related
to the initial OS method can be overcome by using the LR estimate of the density (as illustrated for
instance in Figure 1). Apart from the use of the fitness coefficient in building robust (against mis-
specification) density estimate, not so much has been said about other potential applications of
the fitness coefficient. The aim of this section is to show that it may be used (i) to assess the qual-
ity of a given model, (ii) to detect when the dimension is too large to make use of nonparametric
estimates, and (iii) to achieve model selection. Finally we shall see that (iv) the fitness coefficient
may be extended to the regression setting.

5.1 Model assessment with the fitness coefficient

The fitness coefficient, which follows from a competition between the parametric and the non-
parametric approaches so as to maximize the likelihood of the data, may be interpreted as a

http://wileyonlinelibrary.com
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F I G U R E 4 Squared L2-distances between the
true joint density and the estimators in function of
the sample size. From bottom to top, the plain blue
line, green dashed line, and violet dotted line are the
semiparametric, the nonparametric, and the
parametric error curves, respectively [Color figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Estimated p-values (on a logarithmic scale) of
the Cramer–von Mises goodness-of-fit normality test against the
values of the fitness coefficient for the CAC40 data [Color figure
can be viewed at wileyonlinelibrary.com]
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measure of how well the model fits the data with regard to the nonparametric alternative. This
intuition has been confirmed by Theorem 1 in which it is shown that 𝛼̂n goes to 1 when the model
is true and to 0 when the model is wrong.

To support the interpretation of 𝛼̂n as a measure of model plausibility, we compare it with
p-values on a real data example. Specifically, we have n= 409 financial returns of 38 companies
from the French stock market CAC40 and we wish to measure the quality of the normal model for
each of these companies. On the one hand a goodness-of-fit test based on the Cramer–von Mises
statistic (D’Agostino & Stephens, 1986) is carried out. On the other hand, the fitness coefficient
defined by (1) is computed with a Gaussian kernel K, Δn = 1∕n, q(x) = t𝜈((x − 𝜇q)∕𝜎q)∕𝜎d

q (as
in the previous section), and hn = 1.06An−1/5, where A is the minimum between the standard
deviation of the data and, the interquartile range divided by 1.34. This value for the bandwidth
is a standard choice, see Silverman (1998, p. 48). In Figure 5, we plotted the values of the fitness
coefficient against the p-values on a logarithmic scale. We can see a clear positive dependence
relationship suggesting that, if one had used p-values to assess the fitness of the normal model,
he or she could have done so with the fitness coefficient.

Given the value 𝛼̂n ∈ [0, 1], to assess whether the model is true or not is an interesting and
yet still open question. To address this type of problem, the general approach consists in deriv-
ing, under the null hypothesis (in our context when the model is true), the weak convergence of

http://wileyonlinelibrary.com
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the sequence rn(𝛼̂n − 1), for some sequence rn →∞. The knowledge of the limiting distribution
(or some approximation) might help to define appropriate reject regions according to the desired
level. Deriving the limiting distribution of rn(𝛼̂n − 1) is not straightforward. The classical asymp-
totic theory of Z-estimation does not apply here and one possible avenue of investigation would be
to use the so called argmax theorem (van der Vaart & Wellner, 1996, chapter 3.2) which requires to
obtain the rate of convergence rn as a first step. Following the approach taken in our consistency
proof, the key quantities comes from a Taylor expansion of the likelihood. They take the form

n∑
i=1

⎛⎜⎜⎝
f̂

LR
n,i − f0,i

f0,i

⎞⎟⎟⎠
k

, k = 1, 2.

Unfortunately, our analysis of these terms, conducted in Lemmas 1 and 2 in the Appendix, is not
enough to obtain the rate of convergence rn nor the weak convergence of rn(𝛼̂n − 1). We believe
that this question is beyond the scope of the present article but represents an avenue for further
research.

Note that the quality criterion induced by the fitness coefficient is different than that of
information criteria (Burnham & Anderson, 2003; Claeskens & Hjort, 2008) such as the Akaike
information criterion (Akaike, 1974) or the Bayesian information criterion (Schwarz, 1978) which
focus on the relative performance between models (e.g., p. 30 in Claeskens and Hjort (2008) for
their relationship with the Kullback–Leibler distance). Note also that convex parametric combi-
nations recently have been proposed in the Bayesian literature (Kamary, Mengersen, Robert, &
Rousseau, 2014) to assess the fitness of a certain parametric model against another.

5.2 The problem of higher dimensions

Although our results hold for any value of d, the accuracy of kernel methods (and hence that of
the LR) deteriorates in high dimensions. This phenomenon, called the curse of dimensionality,
might prevent one from using the fitness coefficient as a quality criterion (as developed in the
previous section) when the dimension is high.

As an illustration, suppose that the density of the observed data is f 0 = f 01/2+ f 02/2, where
f01 ∼  (𝜇01, Id∕d), 𝜇01 = (3, 0, … , 0), and f02 ∼  (𝜇02, Id∕d), 𝜇02 = (−3, 0, … , 0). Note that the
variances of each densities f 01 and f 02 have been scaled down such that the dispersion around their
mean does not depend on the dimension. The model is f𝜃 ∼  (𝜇, 𝜎2Id), 𝜃 = (𝜇, 𝜎2) ∈ Rd × (0,∞).
For each dimension d= 1, … , 15, and each sample size n= 1000, 2000, 5000, we compute the
fitness coefficient over M = 50 Monte Carlo experiments. The resulting boxplots are depicted in
Figure 6 where d has been restricted to {6, … , 14}. They illustrate nicely the curse of dimensional-
ity because, even though the model is wrong, the fitness coefficient increases with the dimension.
When d is small, for example, d≤ 9 and n= 5000, the kernel density estimator dominates the MLE
but when the dimension increases, the MLE (based on a wrong model) takes over.

With regard to the difficulties faced by the LR method in high dimensions, we would like to
raise two points.

(i) When the dimension is too large compared to n, which could be inferred based on simula-
tions (as in Figure 6), one may replace the kernel density estimate by other nonparametric
density estimator that suffer less from the curse of dimensionality. Such candidates include,
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F I G U R E 6 Boxplots of the fitness coefficients
for the model f 01/2+ f 02/2. The x-line corresponds to
different dimensions going from 6 to 14. The sample
sizes are n= 1000 (blue), n= 2000 (light blue), and
n= 5000 (white) [Color figure can be viewed at
wileyonlinelibrary.com]
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among others, projection-pursuit density estimators (Hwang, Lay, & Lippman, 1994), maxi-
mum likelihood log-concave density estimators (Cule, Samworth, & Stewart, 2010), nonpara-
metric density estimation with a parametric start (Hjort & Glad, 1995), penalized likelihood
methods (Silverman, 1998) and structured nonparametric methods, such as nonparametric
vine copulas methods (Nagler & Czado, 2016). Could still one get a consistency result as
Theorem 1? The proof of Theorem 1 essentially consists of checking the conditions of Theo-
rems 2 and 3, the statements of which are valid for any nonparametric estimator 𝜉n,i. Thus,
if one is able to check those conditions for other nonparametric estimators, then Theorem 1
will remain true. To check the conditions of Theorems 2 and 3, one needs to compare the
linear and quadratic errors associated with the nonparametric estimators to their parametric
counterparts. To do so, however, we heavily relied on rates valid for kernel density estimators,
which may not be extended trivially to other nonparametric estimators.

(ii) In high-dimensions, the fitness coefficient may no longer be interpreted as a measure of
model quality because the nonparametric estimator will perform badly anyway. Note how-
ever that the fitness coefficient remains useful as a selection criterion because it allows to
compare between any two given approaches.

5.3 Model selection

The approach of this article could be adapted to the case where an arbitrary number of parametric
models are in competition with each other. Suppose that 1, … ,p are p families of the form
i = {fi(⋅; 𝜃i), 𝜃i ∈ Θi}. Suppose furthermore that f 0, the true underlying density, belongs to only
one model k among the collection of models, that is, f0 ∈ k and f0 ∉ j, for all j≠ k. Then the
selection of one of the models could be performed by estimating each models fj(⋅; 𝜃̂j), j= 1, … , p,
and then maximizing

n∑
i=1

log(𝛼1f1(Xi; 𝜃̂1) + … + 𝛼pfp(Xi; 𝜃̂p))

http://wileyonlinelibrary.com
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over all 𝛼1, … , 𝛼p such that
∑p

j=1 𝛼j = 1 and 𝛼j ≥ 0 for all j= 1, … , p. In this situation, we expect
that the previous maximizer (𝛼̂n,1, … , 𝛼̂n,p) would converge to (0, … , 0, 1, 0, … , 0), where the 1
is placed at the kth coordinate. Indeed the identification condition ensures that one and only one
of the fi(⋅; 𝜃̂i) will be close to f 0. Thus the “multivariate” fitness coefficient would be a pointer to
the true model. Even though all the estimators could possibly have the same rates of convergence,
the proof of the convergence to the multivariate fitness coefficient should be feasible because only
one density estimator goes to the true density; in this respect this is similar to the case studied in
Theorem 1(ii) (actually simpler since we only have to deal with parametric models).

5.4 Extension to the regression setting

The approach of this article could be extended to the problem of regression. Let Y i =m0(xi)+ 𝜀i,
i= 1, 2, … , where the xi ∈ Rd are some covariates, 𝜀i some centered random errors with common
variance 𝜎2 and m0 is an unknown function to estimate based on n independent but not identically
distributed observations Y 1, … , Y n. On the one hand, one can consider a parametric model of
the form {m𝜃 ∶ Rd → R ∶ 𝜃 ∈ Θ}, for example, the linear model is given by m𝜃(x) = 𝜃Tx with
Θ = Rd, and compute the estimator

𝜃̂n = argmin𝜃∈Θ
1
n

n∑
i=1

(Yi − m𝜃(xi))2.

On the other hand, one can choose a nonparametric estimator. For instance, the well-known
Nadaraya–Watson estimator is given by

m̂n(x) =
∑n

i=1 Kh(x − xi)Yi∑n
i=1 Kh(x − xi)

,

for some bandwidth h > 0. To get a tradeoff between these two approaches, we could solve

𝛼̂n = argmin
𝛼∈[0,1]

1
n

n∑
i=1

(Yi − 𝛼m𝜃̂n
(xi) − (1 − 𝛼)m̂(i)

n (xi))2, (4)

where m̂(i)
n is the leave-one-out version of m̂n. We expect 𝛼̂n be close to one when m0 belongs

to the parametric model and near zero otherwise. Heuristically, when the model is valid,
since m𝜃̂n

converges to m0 faster than m̂n, the former should be quite close to m0 while,
comparatively, the later should stay away from it. As a consequence, the above objective
function should be similar to 𝛼 → E(Y1 − m0(x1))2 + (1 − 𝛼)2 1

n

∑n
i=1 (m0(xi) − m̂(i)

n (xi))2, whose
argmin is 𝛼 = 1. Indeed, we have that the objective function in (4) with m0 in place of m𝜃̂n

is
equal to

1
n
∑

i
(Yi − m0(xi))2 + (1 − 𝛼)2 1

n
∑

i
(m0(xi) − m̂(i)

n (xi))2

+ 2(1 − 𝛼) 1
n
∑

i
(Yi − m0(xi))(m0(xi) − m̂(i)

n (xi)).
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The first term goes to E(Y 1 −m0(x1))2 and it is reasonable to expect the last term to go to zero
thanks to the existence of laws of large numbers for sequences of independent but nonidenti-
cally distributed random variables, see, for example, theorem 3 in Feller (1971, p. 239). To avoid
bad effect due to overfitting, it might be helpful to split the data into two independent sam-
ples. The first sample would be used to compute 𝜃̂n and m̂n, and the second one would be used
for 𝛼̂n.

ACKNOWLEDGEMENTS
The author gratefully acknowledge “Fonds de la Recherche Scientifique—FNRS” (Belgium). The
author gratefully acknowledges support from the Fonds de la Recherche Scientifique (FNRS)
A4/5 FC 2779/2014-2017 No. 22342320, from the contract “Projet d’Actions de Recherche Con-
certées” No. 12/17-045 of the “Communauté française de Belgique.” The authors thank two
anonymous referees for their helpful remarks and suggestions. The authors are grateful to Ingrid
Van Keilegom, Anouar El Ghouch, and Sylvie Huet for useful comments and references. The
authors are also grateful to Christian Robert for some motivating remarks at the very beginning
of this work.

ORCID
Gildas Mazo https://orcid.org/0000-0003-3189-6818

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,

19(6), 716–723.
Burnham, K. P., & Anderson, D. R. (2003). Model selection and multimodel inference: A practical

information-theoretic approach. Berlin, Germany: Springer Science & Business Media.
Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging (Vol. 330). Cambridge, MA: Cambridge

University Press.
Cule, M., Samworth, R., & Stewart, M. (2010). Maximum likelihood estimation of a multi-dimensional log-concave

density. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(5), 545–607.
D’Agostino, R. B., & Stephens, M. A. (1986). Goodness-of-fit techniques. New York, NY: Marcel Dekker Inc.
Delecroix, M., Hristache, M., & Patilea, V. (2006). On semiparametric M-estimation in single-index regression.

Journal of Statistical Planning and Inference, 136(3), 730–769.
Einmahl, U., & Mason, D. M. (2000). An empirical process approach to the uniform consistency of kernel-type

function estimators. Journal of Theoretical Probability, 13(1), 1–37.
Faraway, J. (1990). Implementing semiparametric density estimation. Statistics and Probability Letters, 10(2),

141–143.
Feller, W. (1971). An introduction to probability theory and its applications. Hoboken, NJ: Wiley.
Genest, C., & Favre, A. (2007). Everything you always wanted to know about copula modeling but were afraid to

ask. Journal of Hydrologic Engineering, 12(4), 347–368.
Genest, C., Ghoudi, K., & Rivest, L. P. (1995). A semiparametric estimation procedure of dependence parameters

in multivariate families of distributions. Biometrika, 82(3), 543–552.
Giné, E., & Guillou, A. (2002). Rates of strong uniform consistency for multivariate kernel density estimators.

Annales de l’Institut Henri Poincare (B) Probability and Statistics, 38(6), 907–921.
Grenander, U. (1981). Abstract inference. New York, NY: John Wiley & Sons, Inc.
Habbema, J. D. F., Hermans, J., & Van Den Broeck, K. (1974). A stepwise discriminant analysis program using density

estimation. Vienna, Austria: Physica Verlag.
Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, 15(4), 1491–1519.
Hjort, N. L., & Glad, I. K. (1995). Nonparametric density estimation with a parametric start. The Annals of Statistics,

23(3), 882–904.

https://orcid.org/0000-0003-3189-6818
https://orcid.org/0000-0003-3189-6818


18 MAZO and PORTIER

Hjort, N. L., & Jones, M. C. (1996). Locally parametric nonparametric density estimation. The Annals of Statistics,
24(4), 1619–1647.

Hjort, N. L., McKeague, I. W., & Van Keilegom, I. (2018). Hybrid combinations of parametric and empirical
likelihoods. Statistica Sinica, 28(4), 2389.

Hwang, J.-N., Lay, S.-R., & Lippman, A. (1994). Nonparametric multivariate density estimation: A comparative
study. IEEE Transactions on Signal Processing, 42(10), 2795–2810.

Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: Chapman & Hall.
Kamary, K., Mengersen, K., Robert, C. P., & Rousseau, J. (2014). Testing hypotheses via a mixture estimation model.

arXiv preprint arXiv:1412.2044.
Lee, S. S. M., & Soleymani, M. (2015). A simple formula for mixing estimators with different convergence rates.

Journal of the American Statistical Association, 110(512), 1463–1478.
Marron, J. S. (1985). An asymptotically efficient solution to the bandwidth problem of kernel density estimation.

The Annals of Statistics, 13(3), 1011–1023.
Marron, J. S. (1987). A comparison of cross-validation techniques in density estimation. The Annals of Statistics,

15(1), 152–162.
Murphy, S. A. (1994). Consistency in a proportional hazards model incorporating a random effect. The Annals of

Statistics, 22(2), 712–731.
Nagler, T., & Czado, C. (2016). Evading the curse of dimensionality in nonparametric density estimation with

simplified vine copulas. Journal of Multivariate Analysis, 151, 69–89.
Nelsen, R. B. (2006). An introduction to copulas. New York, NY: Springer.
Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of Econometrics,

4, 2111–2245.
Nolan, D., & Pollard, D. (1987). U-processes: Rates of convergence. The Annals of Statistics, 15(2), 780–799.
Olkin, I., & Spiegelman, C. H. (1987). A semiparametric approach to density estimation. Journal of the American

Statistical Association, 82(399), 858–865.
Pollard, D. (2000). Asymptopia. Unpublished book.
Portier, F., & Segers, J. (2018). On the weak convergence of the empirical conditional copula under a simplifying

assumption. Journal of Multivariate Analysis, 166, 160–181.
Rahman, M., Beaver, R. J., & Gokhale, D. V. (1997). A note on estimating the combining constant in semiparametric

density estimation. Brazilian Journal of Probability and Statistics, 11(1), 37–50.
Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of

Statistics, 9(2), 65–78.
Schuster, E. F., & Gregory, G. G. (1981). On the nonconsistency of maximum likelihood nonparametric density esti-

mators. Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface (pp. 295–298).
Springer, New York, NY.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density

estimation. Journal of the Royal Statistical Society: Series B (Methodological), 53(3), 683–690.
Silverman, B. W. (1998). Density estimation for statistics and data analysis. Boca Raton, FL: Chapman & Hall.
Soleymani, M., & Lee, S. M. S. (2014). A bootstrap procedure for local semiparametric density estimation amid

model uncertainties. Journal of Statistical Planning and Inference, 153, 75–86.
Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. The Annals of

Statistics, 12(4), 1285–1297.
Talamakrouni, M., El Ghouch, A., & Van Keilegom, I. (2017). Parametrically guided local quasi-likelihood with

censored data. Electronic Journal of Statistics, 11(2), 2773–2799.
van der Vaart, A., & Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli

classes. In High dimensional probability II (pp. 115–133). New York, NY: Springer.
van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge, NY: Cambridge University Press.
van der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes. With applications to

statistics. New York, NY: Springer-Verlag.



MAZO and PORTIER 19

Wand, M. P., & Jones, M. C. (1994). Multivariate plug-in bandwidth selection. Computational Statistics, 9(2),
97–116.

How to cite this article: Mazo G, Portier F. Parametric versus nonparametric: The
fitness coefficient. Scand J Statist. 2020;1–40. https://doi.org/10.1111/sjos.12495

APPENDIX A. PROOFS OF THE PROPOSITIONS

We define the mixture likelihood function Ln : [0, 1]→ [−∞,+∞) as

Ln(𝛼) =
n∑

i=1
log(𝛼f𝜃̂n

(Xi) + (1 − 𝛼)f̂
LR
n,i ).

The fitness coefficient 𝛼̂n in (1) is then defined as a maximizer of Ln(𝛼) over [0, 1].

A.1 Proof of Proposition 1
The presence of Δnq(Xi) in f̂

LR
n,i allows for Ln(𝛼) > −∞ for all 𝛼 ∈ [0, 1). If for all i, f𝜃̂n

(Xi) > 0, that
is, Ln(1) >−∞, then Ln is continuous on [0, 1] and the extreme value theorem yields the exis-
tence of 𝛼̂n. Else, if Ln(1)=−∞, there exists 𝛿 > 0 such that sup 𝛼∈[0,1−𝛿]Ln(𝛼) > sup 𝛼∈(1−𝛿,1]Ln(𝛼),
meaning that the maximum is over [0, 1 − 𝛿] and exists in virtue of the extreme value theorem.
Whenever f𝜃̂n

(Xi) is not identically equal to f̂
LR
n,i for all i= 1, … , n, the function Ln is strictly

concave and so comes the unicity.

A.2 Proof of Proposition 2
The proof follows from the decomposition

|f̃ n(x) − f0(x)| = |𝛼̂n(f𝜃̂n
(x) − f0(x)) + (1 − 𝛼̂n)(f̂ n(x) − f0(x))|

≤ 𝛼̂n|f𝜃̂n
(x) − f0(x)| + (1 − 𝛼̂n)|f̂ n(x) − f0(x)|.

Under (H1) and (H2), we have (Portier & Segers, 2018, proposition C.1) (see also theorem 2.1 in
Giné and Guillou (2002))

||f̂ n − fhn ||Rd = OP

(√| log(hn)|
nhd

n

)
.

Using Lemma 7, we obtain that

||f̂ n − f0||Rd = OP

(√| log(hn)|
nhd

n

)
+ O(h2

n). (A1)

As shown in (C2), when f0 ∈  and under (A1), we have that ||f𝜃̂n
− f0||Rd → 0, in probability.

Consequently, if f0 ∈  , the conclusion holds regardless of the convergence of 𝛼̂n. Suppose that

https://doi.org/10.1111/sjos.12495
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f0 ∉  , then

|f̃ n(x) − f0(x)| ≤ 𝛼̂n(sup
𝜃∈Θ

||f𝜃||Rd + ||f0||Rd) + (1 − 𝛼̂n)||f̂ n − f0||Rd .

The previous bound goes to 0 in virtue of (A1) and because 𝛼n → 0.

A.3 Proof of Proposition 3
Let 0 < 𝜖 < 1. By assumption, there exists Ã > 0, such that for all ||x||2 > Ã, we have

(1 − 𝜖)g0(x) ≤ f0(x) ≤ g0(x)(1 + 𝜖).

For t > 0 small enough (i.e., taking any t < inf ||x||2≤Ãf0(x) implies that {||x||2 ≤ Ã} ⊂ {f0(x) > t},
or equivalently that Sc

t ⊂ {||x||2 > Ã}), it holds

∫Sc
t

f0(x) dx = ∫f0(x)≤t
f0(x) dx ≤ (1 + 𝜖)∫(1−𝜖)g0(x)≤t

g0(x) dx.

Consequently, we obtain that ∫Sc
t
f0(x) dx ≤ t𝛽c2(1 + 𝜖)∕(1 − 𝜖)𝛽 .

Remark that

𝜆(St) ≤ 𝜆({||x||2 ≤ Ã}) + 𝜆({||x||2 > Ã} ∩ St) ≤ 𝜆({||x||2 ≤ Ã}) + ∫(1+𝜖)g0(x)>t
dx,

which is enough to obtain the last point of (H3).
Suppose that 0 < hn ≤ 1. By enlarging Ã (i.e., taking Ã ∶= Ã +

√
d), we have, for all ||x||2 > Ã

and u∈ [− 1, 1]d,

(1 − 𝜖)g0(x + hnu) ≤ f0(x + hnu) ≤ g0(x + hnu)(1 + 𝜖).

Let bn = 𝛾(nhd
n)−1∕𝛽 and A1 = max (A,Ã). As soon as ||x||2 ≤A1,

sup
u∈[−1,1]d

f0(x + hnu)
f0(x)

≤ ||f0||Rd

inf||x||2≤A1
f0(x)

.

Otherwise,

sup||x||2>A1, f0(x)>bn

sup
u∈[−1,1]d

f0(x + hnu)
f0(x)

≤ (1 + 𝜖)
(1 − 𝜖)

sup||x||2>A1, (1+𝜖)g0(x)>bn

sup
u∈[−1,1]d

g0(x + hnu)
g0(x)

.

We conclude by remarking that the previous is bounded, by (1 + 𝜖)C2∕(1 − 𝜖).
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APPENDIX B. PROOF OF THEOREM 1

Theorem 1 follows from the application of two high-level results, corresponding respectively
to the well-specified and misspecified case. Both high-level results take place in the following
general framework: given a triangular sequence of nonnegative real numbers 𝜉n,i, i = 1, … ,n,
n≥ 1, we consider the mixture likelihood function given by

Ln(𝛼) =
n∑

i=1
log(𝛼f𝜃̂n

(Xi) + (1 − 𝛼)𝜉n,i).

Here the sequence (𝜉n,i) is left unspecified in order to highlight the assumptions that we need on
the nonparametric part. This random sequence could be the nonparametric estimator evaluated
at Xi, that is, f̂ n(Xi), the LOO estimate f̂

LOO
n,i or the LR estimate f̂

LR
n,i with Δn > 0. In this slightly

new context, we define 𝛼̂n as

𝛼̂n ∈ argmax𝛼∈[0,1]Ln(𝛼).

In both cases, respectively, the misspecified and well-specified case, the approach taken is similar.
We compare the empirical likelihood of the mixture to the one of the parametric estimate (in the
well-specified case) or the nonparametric estimate (in the misspecified case).

For ease of readability, we introduce the short-cut notation gi for g(Xi), for any function g.

B.1 Case (i): The model is well specified
We are based on some restricted mean quadratic error

Q(p)
n (S) =

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)2

1{Xi∈S},

Qnp
n (S) =

n∑
i=1

(
𝜉n,i − f0,i

f0,i

)2

1{Xi∈S},

and some averaged linear error

M(p)
n =

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)
, Mnp

n =
n∑

i=1

(
𝜉n,i − f0,i

f0,i

)
.

The proof of the following theorem is given in Section B.3.

Theorem 2. Suppose that f0 ∈  and let S ⊂ Rd and b > 0 be such that for all x ∈ S, f 0(x) > b. If
the following convergences hold in probability, as n→∞,

||f𝜃̂n
− f0||S → 0, max

i=1,… ,n, ∶ Xi∈S
|𝜉n,i − f0,i| → 0, (B1)

Q(p)
n (S)

Qnp
n (S)

→ 0,
|M(p)

n | + |Mnp
n |

Qnp
n (S)

→ 0, (B2)

then, 𝛼̂n → 1 as n→∞, in probability.
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We now verify the conditions of the previous theorem when 𝜉n,i is the LR sequence f̂
LR
n,i and

when (H1), (H2), (H3), (A1), (A2) and nhd
nΔn → 0 are fulfilled.

Condition (B1)

The first convergence in (B1) holds in virtue of (C2) established in Section C1. For the second one,
it holds that

f̂
LR
n,i =

( n
n − 1

)(
f̂ n(Xi) −

K(0)
nhd

n

)
+ Δnq(Xi).

Using (A1), we get

max
i=1,… ,n

|f̂ LR
n,i − f0,i| ≤ ( n

n − 1

)(||f̂ n − f0||Rd +
K(0)
nhd

n

)
+ Δn||q||Rd +

||f0||Rd

n − 1

= OP

(√| log(hn)|
nhd

n
+ h2

n + Δn

)
. (B3)

The latter bound indeed goes to 0, in probability, as n→∞.

Condition (B2)

We proceed as follows, with 𝜉n,i = f̂
LR
n,i :

(a) By Lemma 1, stated in Section B.4, there exists c > 0 such that with probability going to 1,
hd

nQnp
n (S) ≥ c. The set S is chosen equal to {f 0(x) > b} where b > 0 is such that it is nonempty.

(b) We show in Lemma 2 that hd
n|Mnp

n | → 0 in probability.
(c) In Lemma 3 (resp. Lemma 4), it is established, under (A1) and (A2), that Q(p)

n (S) = OP(1)
(resp. |M(p)

n | = OP(1)).

All this together implies that (B2) holds true.

B.2 Case (ii): The model is misspecified
When the model is misspecified, that is, f0 ∉  , the following high-level conditions are enough to
ensure the convergence in probability 𝛼n → 0. These conditions are easily implied by (A1), (H1),
(H2), (H3) and

| log(Δn)|1∕𝛽(
√| log(hn)|∕nhd

n + h2
n) → 0,

as demonstrated below. The proof of this theorem is given in Section B.3.

Theorem 3. Suppose that f0 ∉  and E[| log(f0,1)|] < ∞, that the class  is Glivenko–Cantelli (i.e.,
(C1) holds) with Θ compact, that the envelop FΘ is such that E[log(FΘ,1)] < +∞, and that for every
x ∈ Rd, 𝜃 → f𝜃(x) is a continuous function defined onΘ. Suppose that there exists 𝛽 ∈ (0, 1] and c > 0
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such that, as t → 0, ∫Sc
t
f0(x) ≤ ct𝛽 , and q ∶ Rd → R+ such that E[| log(q(X1))|] < ∞, 𝜉n,1 ≥ Δnq1 a.s.,

and

| log(Δn)|1∕𝛽 max
i=1,… ,n

|𝜉n,i − f0(Xi)| → 0,

then, 𝛼̂n → 0, as n→∞, in probability.
We already argued that (C1) is implied by (A1). The continuity of f𝜃 is deduced

from the continuity of log(f𝜃) provided by (A1). The bound given in (B3) together with| log(Δn)|1∕𝛽(
√| log(hn)|∕nhd

n + h2
n) → 0 implies the stated convergence with 𝜉n,i = f̂

LR
n,i .

B.3 Proofs of the high-level theorems
Proof of Theorem 2

Define L̃n, the normalized version of Ln(𝛼), given by

L̃n(𝛼) =
n∑

i=1
log

(
𝛼f𝜃̂n,i + (1 − 𝛼)𝜉n,i

f0,i

)
.

Because f0 ∈  , it holds that f𝜃̂n,i > 0 for all i= 1, … , n, which guarantees the existence
of a maximizer 𝛼̂n (as explained in the proof of Proposition 1). By definition of 𝜃̂n,∑n

i=1 log(f0,i) ≤ ∑n
i=1 log(f𝜃̂n,i). Consequently, max 𝛼∈[0,1]L̃n(𝛼) ≥ 0 and for every 𝜖 > 0, the event

max 𝛼∈[0,1−𝜖]L̃n(𝛼) < 0 implies that 𝛼̂n > 1 − 𝜖. Thus, let 𝜖 ∈ (0, 1), the proof will be completed by
showing that with probability going to 1,

sup
𝛼∈[0,1−𝜖]

L̃n(𝛼) < 0.

A useful notation in the following is

x̂i,n = 1 +
𝛼(f𝜃̂n,i − f0,i)

f0,i
+

(1 − 𝛼)(𝜉n,i − f0,i)
f0,i

.

A useful technical detail is there exists a sequence 𝜖n → 0 such that the event

{ max
i=1… ,n ∶ Xi∈S

f0,i|x̂i,n − 1| ≤ 𝜖n}

has probability going to 1 as n→∞. This is a consequence of (B1). As we are establishing a result
in probability, we can further suppose that this event is realized.

A key step in our approach is the following inequality, reminiscent of the Taylor development
of the logarithm around 1,

log(x) − (x − 1) ≤
{

− 1
4
(x − 1)2 if 1∕2 < x < 3∕2

0 else
,

which might be derived by studying the concerned function. This kind of inequality is commonly
used for studying likelihood methods (Grenander, 1981; Murphy, 1994). Applied to x̂i,n, it gives
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L̃n(𝛼) − (𝛼M(p)
n + (1 − 𝛼)Mnp

n ) =
n∑

i=1
(log(x̂i,n) − (x̂i,n − 1))

≤ −1
4

n∑
i=1

(x̂i,n − 1)21{|x̂i,n−1|<1∕2}

≤ −1
4

n∑
i=1

(x̂i,n − 1)21{Xi∈S, |x̂i,n−1|<1∕2}.

Note that whenever Xi ∈ S, because it holds f0,i|x̂i,n − 1| ≤ 𝜖n, we have (for n small enough) that|x̂i,n − 1| < 1∕2. This means that, for all i= 1, … , n, 1{Xi∈S} ≤ 1{|x̂i,n−1|<1∕2}, and it follows

L̃n(𝛼) − (𝛼M(p)
n + (1 − 𝛼)Mnp

n )

≤ −1
4

n∑
i=1

(x̂i,n − 1)21{Xi∈S}

= −1
4
{(1 − 𝛼)2Qnp

n (S) + 𝛼2Q(p)
n (S) + 2𝛼(1 − 𝛼)Un}

≤ −1
4
(1 − 𝛼)2Qnp

n (S)
{

1 − 2𝛼|Un|
(1 − 𝛼)Qnp

n (S)

}
,

where

Un =
n∑

i=1

(f𝜃̂n,i − f0,i)(𝜉n,i − f0,i)

f 2
0,i

1{Xi∈S}.

Bounding the right-hand side with respect to 𝛼 ∈ [0, 1 − 𝜖] gives

sup
𝛼∈[0,1−𝜖]

{L̃n(𝛼) − (𝛼M(p)
n + (1 − 𝛼)Mnp

n )}

≤ −1
4
𝜖2Qnp

n (S)
(

1 − 2𝜖−1 |Un|
Qnp

n (S)

)
.

By assumption, we have that Q(p)
n (S)∕Qnp

n (S) → 0 in probability. From the Cauchy–Schwartz

inequality we get that |Un| ≤ √
Qnp

n (S)Q(p)
n (S), leading to |Un|∕Qnp

n (S) → 0, in probability. Conse-
quently, we obtain that

sup
𝛼∈[0,1−𝜖]

L̃n(𝛼) ≤ −1
4
𝜖2Qnp

n (S)

(
1 − 2𝜖−1 |Un|

Qnp
n (S)

− 4
|M(p)

n | + |Mnp
n |

𝜖2Qnp
n (S)

)
.

The term between brackets goes to 1, in probability, implying that for every 𝛿 > 0, with probability
going to 1,

sup
𝛼∈[0,1−𝜖]

L̃n(𝛼, 𝜃̂) ≤ −1
4
𝜖2Qnp

n (S)(1 − 𝛿).

Hence it remains to note that, by (B2), with probability going to 1, Qnp
n (S) > 0.
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Proof of Theorem 3

Note that 𝛼̂n ∈ argmax𝛼∈[0,1]L̃n(𝛼) exists because 𝜉n,i > 0 for all i, as explained in the proof of
Proposition 1. Let 𝜖 > 0. The proof requires to show that with probability going to 1, 𝛼̂n < 𝜖. This
event is realized as soon as max 𝛼∈[𝜖,1]L̃n(𝛼) < L̃n(0). We analyze both terms separately. First we
show that

L̃n(0) → 0,

in probability, and then that there exists 𝛿 > 0 such that, with probability going to 1,

sup
𝛼∈[𝜖,1]

L̃n(𝛼) ≤ −𝛿. (B4)

Let 𝜂 > 0, bn = (𝜂∕| log(Δn)|)1∕𝛽 and cn = max i=1,… ,n|𝜉n,i − f0,i|. We assume further that
bn + cn < 1 and Δn < 1. We have

|L̃n(0)|
≤ |||||n−1

n∑
i=1

log
(
𝜉n,i

f0,i

)
1{f0,i>bn}

||||| + n−1
n∑

i=1

|||||log
(
𝜉n,i

f0,i

)||||| 1{f0,i≤bn}

≤ |||||n−1
n∑

i=1
log

(
𝜉n,i

f0,i

)
1{f0,i>bn}

|||||
+ n−1

n∑
i=1

(| log(Δnqi)|1{f0,i≤bn} + | log(f0,i)|1{f0,i≤bn})

≤ |||||n−1
n∑

i=1
log

(
𝜉n,i

f0,i

)
1{f0,i>bn}

||||| + | log(Δn)|n−1
n∑

i=1
1{f0,i≤bn}

+ n−1
n∑

i=1
(| log(qi)| + | log(f0,i)|)1{f0,i≤bn}.

The expectation of the term in the right is smaller than E[(| log(q1)| + | log(f0,1)|)1{f0,i≤bn}], which
goes to 0 because | log(q1)| and | log(f0,1)| are integrable. For the term in the left, the mean-value
theorem gives

|||||n−1
n∑

i=1
log

(
𝜉n,i

f0,i

)
1{f0,i>bn}

||||| ≤
max

i=1,… ,n
|𝜉n,i − f0,i|

inf
i=1,… ,n ∶ f0,i>bn

inf
t∈[0,1]

t𝜉n,i + (1 − t)f0,i

≤ cn

bn − cn
→ 0.

Conclude remarking that the expectation of the term in the middle is bounded by| log(Δn)|P(f0(X1) ≤ bn). This is of order | log(Δn)|b𝛽n = 𝜂, by assumption, but 𝜂 is arbitrarily
small.

Now we establish (B4) by obtaining one-sided inequalities. Consider bn =
(1∕| log(Δn)|)1∕𝛽 , suppose that bn + cn < 1, and use the monotonicity of the logarithm, to get
that
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n−1
n∑

i=1
log

(
𝛼f𝜃̂n,i + (1 − 𝛼)𝜉n,i

f0,i

)
1{f0,i≤bn}

≤ n−1
n∑

i=1
log

(
FΘ,i + bn + cn

f0,i

)
1{f0,i≤bn}

≤ n−1
n∑

i=1
| log

(
FΘ,i + 1

f0,i

) |1{f0,i≤bn}.

Taking the expectation, we find a bound in E[| log
(

FΘ,1+1
f0,1

) |1{f0,1≤bn}] which goes to 0 as n→∞ in
virtue of the Lebesgue dominated convergence theorem. Let 𝜂 ∈ (0, 1). It holds that

L̃n(𝛼) ≤ n−1
n∑

i=1
log

(
𝛼f𝜃̂n,i + (1 − 𝛼)𝜉n,i

f0,i

)
1{f0,i>bn} + op(1)

≤ n−1
n∑

i=1
log

(
𝛼(f𝜃̂n,i + 𝜂f0,i) + (1 − 𝛼)𝜉n,i

f0,i

)
1{f0,i>bn} + op(1).

The first term in the right-hand side is decomposed according to

n−1
n∑

i=1
log

(
𝛼(f𝜃̂n,i + 𝜂f0,i) + (1 − 𝛼)𝜉n,i

𝛼(f𝜃̂n,i + 𝜂f0,i) + (1 − 𝛼)f0,i

)
1{f0,i>bn}

+ n−1
n∑

i=1
log

(
𝛼(f𝜃̂n,i + 𝜂f0,i) + (1 − 𝛼)f0,i

f0,i

)
1{f0,i>bn}.

By the mean value theorem, the term on the left is bounded by

(1 − 𝛼) max
i=1,… ,n

|𝜉n,i − f0,i|
(𝜂bn) ∧ (bn − cn)

,

which goes to 0, by assumption. For the term on the right, notice that {𝛼(f𝜃 + 𝜂f0) + (1 − 𝛼)f0 ∶
𝛼 ∈ [𝜖, 1], 𝜃 ∈ Θ} is Glivenko–Cantelli with envelop FΘ + 2f0. Then applying theorem 3 in van der
Vaart and Wellner (2000), the class formed by log(𝛼(f𝜃 + 𝜂f0) + (1 − 𝛼)f0) is still Glivenko–Cantelli.
Since for all 𝜃 ∈ Θ, 𝛼 ∈ [𝜖, 1],

log(𝜖𝜂f0) ≤ log(𝛼(f𝜃 + 𝜂f0) + (1 − 𝛼)f0) ≤ log(FΘ + 2f0 + 1),

the function | log(𝜖𝜂f0)| + log(FΘ + 2f0 + 1) is an integrable envelop. Using again theorem 3 in
van der Vaart and Wellner (2000), the class formed by log(𝛼(f𝜃 + 𝜂f0) + (1 − 𝛼)f0)1{f0>b}, 𝜃 ∈ Θ,
𝛼 ∈ [𝜖, 1], 0 < b < 1, is still Glivenko–Cantelli with the same envelop. This implies that

sup
𝛼∈[𝜖,1], 𝜃∈Θ

|||||n−1
n∑

i=1
log

(
𝛼(f𝜃,i + 𝜂f0,i) + (1 − 𝛼)f0,i

f0,i

)
1{f0,i>bn}

−E

[
log

(
𝛼(f𝜃,1 + 𝜂f0,1) + (1 − 𝛼)f0,1

f0,1

)
1{f0,1>bn}

]||||| → 0.



MAZO and PORTIER 27

The integrability of the envelop and the fact that bn → 0 implies that

sup
𝛼∈[𝜖,1], 𝜃∈Θ

E

[
log

(
𝛼(f𝜃,1 + 𝜂f0,1) + (1 − 𝛼)f0,1

f0,1

)
1{f0,1≤bn}

]
→ 0.

It remains to use the inequality log(x) ≤ 2(
√

x − 1) to obtain that

sup
𝛼∈[𝜖,1], 𝜃∈Θ

E

[
log

(m𝜃,𝛼,𝜂

f0,1

)]
≤ sup

𝛼∈[𝜖,1], 𝜃∈Θ
2∫ (

√
m𝜃,𝛼,𝜂f0 − f0) d𝜆,

where m𝜃,𝛼,𝜂 = 𝛼(f𝜃 + 𝜂f0) + (1 − 𝛼)f0. Since (m𝜃,𝛼,𝜂 − m𝜃,𝛼,0)f0 = 𝜂f 2
0 and using that

√
a + b ≤√

a +
√

b, a≥ 0, b≥ 0, we obtain

sup
𝛼∈[𝜖,1], 𝜃∈Θ

E

[
log

(m𝜃,𝛼,𝜂

f0,1

)]
≤ 2

√
𝜂 + 2 sup

𝛼∈[𝜖,1], 𝜃∈Θ∫ (
√

m𝜃,𝛼,0f0 − f0) d𝜆

= 2
√
𝜂 − inf

𝛼∈[𝜖,1], 𝜃∈Θ∫ (
√

m𝜃,𝛼,0 −
√

f0)2 d𝜆.

Using standard results about the Hellinger distance (Pollard, 2000, chapter 3) we obtain

sup
𝛼∈[𝜖,1], 𝜃∈Θ

E

[
log

(m𝜃,𝛼,𝜂

f0,1

)]
≤ 2

√
𝜂 − (1∕4) inf

𝛼∈[𝜖,1], 𝜃∈Θ
𝛼2

(
∫ |f𝜃 − f0| d𝜆

)2

≤ 2
√
𝜂 − (𝜖2∕4)

(
inf
𝜃∈Θ ∫ |f𝜃 − f0| d𝜆

)2

.

Since f0 ∉  and by the continuity assumption on f𝜃 , it holds that inf 𝜃∈Θ ∫ |f𝜃 − f0|d𝜆 > 0. Then,
as 𝜂 is arbitrary, the proof of (B4) is complete.

B.4 Linear and quadratic error of parametric and nonparametric estimate
Important tools for dealing with the terms involving f̂

LR
n,i are coming from U-statistic theory. We

call U-statistic of order p with kernel w ∶ Rp → R, any quantity of the kind∑
i1,… ,ip∈D

w(Xi1 , … ,Xip),

where the summation is taken over the subset D formed by the (i1, … , ip) ∈ {1, … ,n}p such that
ik ≠ i𝓁 , ∀k≠𝓁. The number of terms in the summation is then n(n− 1) … (n− p+ 1). When the
kernel w is such that, for every k∈ {1, … , p}, E[w(X1, … ,Xp)|X1, … Xk−1,Xk+1, … ,Xp] = 0, it is
called a degenerate U-statistic. In the proofs, we shall rely on the so-called Hajek decomposition
(van der Vaart, 1998, lemma 11.11).

To establish the two following lemmas, Lemmas 1 and 2, we are based on (H1), (H2), and
(H3). One might note that the expressions (a) or (b) in (H2) on the kernel are not used in any of
these lemmas.

Lemma 1. Under assumptions (H1), (H2), and (H3), if nhd
nΔn → 0, for any 𝛿 > 0 and any set

S ⊂ Rd such that inf x∈Sf0(x) > b, we have with probability going to 1,
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hd
n

n∑
i=1

⎛⎜⎜⎝
f̂

LR
n,i − f0,i

f0,i

⎞⎟⎟⎠
2

1{Xi∈S} ≥ (1 − 𝛿)vK𝜆(S),

where vK = ∫ K(u)2 du.

Proof. Note that

E[f̂
LR
n,i |Xi]

= (n − 1)−1
n∑

j≠i
E

[
h−d

n K
(Xi − Xj

hn

) |Xi

]
+ Δnqi = fhn,i + Δnqi.

The proof follows from the decomposition

n∑
i=1

⎛⎜⎜⎝
f̂

LR
n,i − f0,i

f0,i

⎞⎟⎟⎠
2

1{Xi∈S} = An + Bn + 2Cn,

where

An =
n∑

i=1

⎛⎜⎜⎝
f̂

LR
n,i − E[f̂

LR
n,i |Xi]

f0,i

⎞⎟⎟⎠
2

1{Xi∈S},

Bn =
n∑

i=1

( fhn,i + Δnqi − f0,i

f0,i

)2

1{Xi∈S},

Cn =
n∑

i=1

(f̂
LR
n,i − E[f̂

LR
n,i |Xi])(fhn,i + Δnqi − f0,i)

f 2
0,i

1{Xi∈S}.

We will show that hd
nAn → vK𝜆(S), in probability and that hd

nCn → 0, in probability. This will be
enough as Bn ≥ 0, almost surely.

Proof that hd
nAn → vK𝜆(S) in probability Introduce the notation, for any h > 0,

ah(x, y) =
Kh(x − y) − fh(x)

f0(x)
,

uh(x, y, z) = ah(x, y)ah(x, z)1{x∈S}.

Developing, we find

An = (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i

uhn(i, j, k),

where uhn(i, j, k) is as short-cut for uhn(Xi,Xj,Xk). We treat An relying on the Hajek projection of
U-statistics. Up to a centering term, which is E[uhn(i, j, k)|Xj,Xk], the U-statistic An is a degenerate
U-statistic. In the following we voluntary introduce this centering term in the summation to han-
dle separately a degenerate U-statistic and another summation with less indices. By introducing,
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for any h > 0,

vh(j, k) = E[uh(i, j, k)|Xj,Xk],
wh(i, j, k) = uh(i, j, k) − vh(j, k),

we obtain

An = (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i

whn(i, j, k) + (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i

vhn(j, k)

= (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i, k≠j

whn (i, j, k) + (n − 1)−2
n∑

i=1

n∑
j≠i

whn(i, j, j)

+ (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i

vhn(j, k). (B5)

Treatment of the first term in (B5). Note that whn(i, j, k) defines a degenerate U-statistic, that is,

E[whn (i, j, k)|Xi,Xj] = E[whn(i, j, k)|Xi,Xk] = E[whn(i, j, k)|Xj,Xk] = 0.

Note that
n∑

i=1

n∑
j≠i

n∑
k≠i, k≠j

whn(i, j, k) =
n∑

i=1

n∑
j>i

n∑
k>j

whn(i, j, k),

where wh is the symmetrized version of wh, that is, for any triplet (x1, x2, x3) of wh(x1, x2, x3) =∑
𝜎wh(x𝜎(1), x𝜎(2), x𝜎(3)) where the sum is over all the 3! possible permutations of the set {1, 2, 3}.

Using that the U-statistic with kernel whn is degenerate, some algebra gives that

E

⎡⎢⎢⎣
(
(n − 1)−2

n∑
i=1

n∑
j≠i

n∑
k≠i, k≠j

whn(i, j, k)

)2⎤⎥⎥⎦
= (n − 1)−4

n∑
i=1

n∑
j>i

n∑
k>j

E[whn(i, j, k)
2]

= O(n−1)E[whn(1, 2, 3)
2].

We have, using Minkowski’s inequality and the definition of the conditional expectation, that√
E[whn(1, 2, 3)2] ≤ 3!

√
E[whn (1, 2, 3)2] ≤ 3!

√
E[uhn(1, 2, 3)2].

Consequently, in virtue of (B10) in Lemma 5, we have shown that

E

⎡⎢⎢⎣
(
(n − 1)−2

n∑
i=1

n∑
j≠i

n∑
k≠i, k≠j

whn(i, j, k)

)2⎤⎥⎥⎦ = O(n−1h−2d
n ).

The previous rate, multiplied by h2d
n , goes to 0, hence, this term is negligible.
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Treatment of the second term in (B5). We continue the study of An by considering

(n − 1)−2
n∑

i=1

n∑
j≠i

whn(i, j, j)

= (n − 1)−2
n∑

i=1

n∑
j≠i

(whn(i, j, j) − E[uhn(i, j, j)|Xi] + E[uhn(1, 2, 2)])

+ (n − 1)−1
n∑

i=1
(E[uhn(i, j, j)|Xi] − E[uhn(1, 2, 2)]).

The first term is a degenerate U-statistic of order 2 whose order 2 moments satisfy

E

⎡⎢⎢⎣
(
(n − 1)−2

n∑
i=1

n∑
j≠i

(whn (i, j, j) − E[uhn(i, j, j)|Xi] + E[uhn(1, 2, 2)])

)2⎤⎥⎥⎦
= O(n−2)E[uhn(1, 2, 2)

2] = O(n−2h−3d
n ).

This is obtained by following exactly the same lines as in the treatment of the U-statistic wn and
using (B13) in Lemma 5. As n−2h−3d

n × h2d
n → 0, the previous term is negligible. The second term

is a sum of centered independent random variables with variance smaller than, in virtue of (B9)
in Lemma 5,

n(n − 1)−2
E[E[uhn(1, 2, 2)|X1]2] = O(n−1h−2d

n ).

This is the same rate as the rate obtained for the (negligible) U-statistic of order 3 with kernel wn.
Treatment of the third term in (B5). The study of An continues by considering

(n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i

vhn(j, k)

= (n − 1)−2
n∑

i=1

n∑
j≠i

vhn(j, j) + (n − 1)−2
n∑

i=1

n∑
j≠i

n∑
k≠i, k≠j

vhn(j, k)

= (n − 1)−1
n∑

j=1
vhn(j, j) + (n − 1)−2(n − 2)

n∑
j=1

n∑
k≠j

vhn(j, k).

The term associated with double summation over j and k is a degenerate U-statistic, as
E[vhn(j, k)|Xk] = E[vhn(j, k)|Xj] = 0. Consequently, following the same lines as in the treatment of
the first term of An, and using (B14) in Lemma 5, we get

E

⎡⎢⎢⎣
(
(n − 1)−2(n − 2)

n∑
j=1

n∑
k≠j

vhn(j, k)

)2⎤⎥⎥⎦ = O(1)E[vhn(1, 2)
2] = O(h−d

n ),

which goes to 0, when multiplied by h2d
n . The remaining term is a sum of independent and identi-

cally distributed random variables. We have, by computing the variance of the centered average,
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(n − 1)−1
n∑

j=1
(vhn(j, j) = OP(n−1∕2)

√
Evhn(1, 1)2 + n(n − 1)−1

E[vhn(1, 1)],

where the first term, using (B12) in Lemma 5, is O(n−1∕2h−d
n ) which goes to 0 when multiplied

by hn. The dominating term is in fact the last one, as by Lemma 6, it holds that hd
nE[vhn(1, 1)] →

vK𝜆(S).
Proof that hd

nCn → 0 in probability We are based on similar decompositions as for An involv-
ing U-statistics. Let 𝓁hn (x) = (fhn (x) − f0(x) + Δnq(x))∕f0(x) and note that in virtue of Lemma 7, it
holds

||𝓁hn ||S ≤ b−1
(

h2
n||g||Rd ∫ ||u||2

2K(u) du + Δn||q||Rd

)
.

Then

Cn = (n − 1)−1
n∑

i=1

n∑
j≠i

(ahn (i, j)𝓁hn,i1{Xi∈S} − bhn (j)) +
n∑

i=1
bhn(i),

with bhn(j) = E[ahn (i, j)𝓁hn,i1{Xi∈S}|Xj]. The term on the left is a degenerate U-statistic for which it
holds

E

⎡⎢⎢⎣
(
(n − 1)−1

n∑
i=1

n∑
j≠i

(ahn (i, j)𝓁hn,i1{Xi∈S} − bhn (j))

)2⎤⎥⎥⎦
= O(1)E[ahn(1, 2)

2𝓁2
hn,1

1{X1∈S}].

Using (B8) in Lemma 5 and the previous bound for ||𝓁hn ||S, we find

E[ahn (1, 2)
2𝓁2

hn,1
1{X1∈S}] = E

[(Vhn(X1)𝓁2
hn,1

f 2
0,1

)
1{X1∈S}

]
= O(h−d

n (h2
n + Δn)),

where V h is defined in (B7). The previous bound multiplied by h2d
n goes to 0. Using that

E[ahn (1, 2)𝓁hn,11{X1∈S}] = 0 and (B11), the variance of the term on the right in Cn is smaller than

nE[E[ahn (1, 2)𝓁hn,11{X1∈S}|X2]2] ≤ nE[E[|ahn(1, 2)||X2]2]||𝓁hn ||2
S

= O(n(h4
n + Δ2

n)),

which, multiplied by h2d
n , goes to 0 by hypothesis. Hence hd

nCn → 0, in probability and the proof
is complete. ▪

Lemma 2. Under Assumptions (H1), (H2), and (H3), if nhd
nΔn → 0, we have

hd
n

n∑
i=1

⎛⎜⎜⎝
f̂

LR
n,i − f0,i

f0,i

⎞⎟⎟⎠ = oP(1).
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Proof. The decomposition is as follows

hd
n

n∑
i=1

⎛⎜⎜⎝
f̂

LR
n,i − f0,i

f0,i

⎞⎟⎟⎠ (B6)

= hd
n(n − 1)−1

n∑
i=1

n∑
j≠i

(Khn(i, j) − fhn,i

f0,i

)
+ hd

n

n∑
i=1

( fhn,i − f0,i

f0,i

)
+ hd

nΔn

n∑
i=1

qi

f0,i
.

The expectation of the last term is nhd
nΔn ∫ q(x) dx which goes to 0 by assumption. We can now

focus on the first and second term of the decomposition.
Treatment of the second term in (B6). Using that ∫ K(u) du = 1, the considered term is a

centered empirical sum. Using Lemma 7, its variance is then bounded by

E

⎡⎢⎢⎣
(

hd
n

n∑
i=1

fhn,i − f0,i

f0,i

)2⎤⎥⎥⎦ ≤ nh2d
n ∫

(fhn(x) − f0(x))2

f0(x)
dx

≤ nh2d+4
n ∫

g(x)2

f0(x)
dx

(
∫ u2K(u) du

)2

,

which goes to 0.
Treatment of the first term in (B6). Using that ∫ K(u) du = 1, one can verify that it is a

degenerate U-statistic. Here the variance cannot be computed directly because the leading term

E

[
(Khn (1,2)−fhn ,1)

2

f 2
0,1

]
is not necessarily finite. Hence we decompose according to the Xi in Sbn and the

others, with bn = (𝜖∕nhd
n)1∕𝛽 where 𝛽 is given in (H3) and 𝜖 > 0. We introduce

k(x, y) =
Khn(x, y)

f0(x)
,

and define the linear operator QP ∶ L2(P) → L2(P) as

QP[w](x, y) = w(x, y) − E[w(x,X1)] − E[w(X1, y)] + E[w(X1,X2)].

Because E[k(X1, y)] = E[k(X1,X2)] = 1 for all y ∈ Rd, one sees that

n∑
i=1

n∑
j≠i

(Khn(i, j) − fhn,i

f0,i

)
=

n∑
i=1

n∑
j≠i

QP(k)i,j

=
n∑

i=1

n∑
j≠i

(QP(k1Sbn
)i,j + QP(k1Sc

bn
)i,j).

Because the summation over QP(k1Sbn
) is a degenerate U-statistics, we get that
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E

⎡⎢⎢⎣
(

hd
n(n − 1)−1

n∑
i=1

n∑
j≠i

QP(k1Sbn
)i,j

)2⎤⎥⎥⎦
= O(h2d

n )E

[
(Khn(1, 2) − fhn,1)

2

f 2
0,1

1Sbn
(X1)

]
.

Defining the kernel K̃ = K2∕vK and f̃ h = f0 ⋆ K̃h, we obtain

E

[
(Khn(1, 2) − fhn,1)

2

f 2
0,1

1Sbn
(X1)

]

≤ E

[
E[Khn(1, 2)

2|X1]
f 2
0,1

1Sbn
(X1)

]

= vKh−d
n ∫Sbn

f̃ hn
(x)

f0(x)
dx

= vKh−d
n

(
∫Sbn

∫
f (x − hnu)

f0(x)
K̃(u)du dx

)

≤ vKh−d
n 𝜆(Sbn)

(
sup
x∈Sbn

sup
u∈[−1,1]d

f (x + hnu)
f0(x)

)
.

For the term with QP(k1Sc
bn
), we obtain that

E

[||||||
n∑

i=1

n∑
j≠i

QP(k1Sc
bn
)i,j

||||||
]
≤ n(n − 1)E[|QP(k1Sc

bn
)1,2|]

≤ 4n(n − 1)E[|k1,2|1Sc
bn
(X1)]

= 4n(n − 1)∫Sc
bn

fh(x) dx.

From Lemma 8, we deduce that ∫Sc
bn

fh(x) dx ≤ c2b𝛽n = c2𝜖∕nhd
n. To conclude, we have shown that

there exists a constant C̃ > 0 such that

E

[||||||hd
n(n − 1)−1

n∑
i=1

n∑
j≠i

QP(k)
||||||
]
≤ C̃(

√
hd

n𝜆(Sbn ) + nhd
nb𝛽n)

= C̃(
√

hd
n𝜆(Sbn ) + 𝜖).

Invoking (H3) and because 𝜖 is arbitrarily small, the limit as n→∞ is 0. ▪

Lemma 3. Under (A1) and (A2), we have

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)2

1{Xi∈S} = OP(1).



34 MAZO and PORTIER

Proof. Using (C2), we have that, with probability going to 1,

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)2

1{Xi∈S}

≤
⎛⎜⎜⎜⎝n−1

n∑
i=1

𝓁̇(Xi)2 sup
𝜃∈B(𝜃0,𝛿)

f𝜃(Xi)2

f 2
0,i

1{Xi∈S}

⎞⎟⎟⎟⎠n||𝜃̂n − 𝜃0||2
2

≤ ||𝓁̇ sup
𝜃∈B(𝜃0,𝛿)

f𝜃||2
Rd b−2n||𝜃̂n − 𝜃0||2

2,

which is a tight sequence because of (C3). ▪

Lemma 4. Under (A1) and (A2), we have

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)
= OP(1).

Proof. In virtue of (A2), the map 𝜃 → log f𝜃(x) is differentiable at 𝜃0, for P-almost every x ∈ Rd

with derivative 𝓁̇𝜃0(x) (this is obtained in van der Vaart (1998), in the proof of theorem 5.39). Using
stability properties for the composition, the map 𝜃 → f𝜃(x) = exp(log(f𝜃(x))) is differentiable at 𝜃0,
for P-almost every x ∈ Rd with derivative 𝓁̇𝜃0(x)f0(x). We are in position to apply lemma 19.31 in
van der Vaart (1998), with rn =

√
n and m𝜃 = f𝜃∕f0. From the mentioned lemma, as

√
n(𝜃̂n − 𝜃0)

is tight, defining

Ti(𝜃) =
[(

f𝜃,i − f0,i

f0,i

)
− (𝜃 − 𝜃0)T𝓁̇𝜃0,i

]
,

t(𝜃) = ∫ [f𝜃(x) − f0(x) − (𝜃 − 𝜃0)T𝓁̇𝜃0(x)f0(x)] dx,

we obtain

|||||
n∑

i=1
{Ti(𝜃̂n) − t(𝜃̂n)}

||||| = oP(1).

Actually, recalling that ∫ 𝓁̇𝜃0 (x)f0(x) dx = 0, we find that, for all 𝜃 ∈ Θ, t(𝜃) = 0. Hence, we obtain

n∑
i=1

(
f𝜃̂n,i − f0,i

f0,i

)
= n1∕2(𝜃̂n − 𝜃0)T

[
n−1∕2

n∑
i=1

𝓁̇𝜃0,i

]
+ oP(1).

where the first term is a OP(1). ▪

B.5 Auxiliary results
Recall some definitions, for any h > 0,

Vh(X1) = E[(Kh(1, 2) − fh,1)2|X1],
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ah(x, y) =
Kh(x − y) − fh(x)

f0(x)
,

uh(x, y, z) = ah(x, y)ah(x, z)1{x∈S}, (B7)

as well as the short-cut g(i, j, k) for g(Xi, Xj, Xk).

Lemma 5. Under (H1) and (H2), if S ⊂ Rd is such that for all x ∈ S, f 0(x) > b > 0, we have, for any
h > 0,

Vh(X1) ≤ hdC0, (B8)

E[E[uh(1, 2, 2)|X1]2] ≤ h−2dC1, (B9)

E[uh(1, 2, 3)2] ≤ h−2dC1, (B10)

E[|ah(1, 2)||X2] ≤ 2, (B11)

E[E[uh(1, 2, 2)|X2]2] ≤ h−2dC2 + C3, (B12)

E[uh(1, 2, 2)2] ≤ h−3dC4 + C5, (B13)

E[E[uh(1, 2, 3)|X2,X3]2] ≤ h−dC6 + C6, (B14)

where the constants Ck, k= 0, … , 7 depend on K and f 0 only.

Proof. Remark that because K is bounded and ∫ |K(u)| du < ∞, we have ∫ |K(u)|k du < ∞, for
any k≥ 1. Note that, for every h > 0,

Vh(X1) ≤ E[Kh(2, 1)2|X1] ≤ h−dvK||f0||Rd .

We obtain (B9) by writing

E[E[uh(1, 2, 2)|X1]2] = E

[
Vh(X1)2

f 4
0,1

1{X1∈S}

]
≤ h−2dv2

K||f0||2
Rd b−4.

To establish (B10), note that

E[uh(1, 2, 3)2] = E

[
Vh(X1)2

f 4
0,1

1{X1∈S}

]
= E[E[uh(1, 2, 2)|X1]2].

For (B11), write

E[|ah(1, 2)||X2] = ∫ |Kh(x − X2) − fh(x)| dx

≤ ∫ Kh(x − X2) dx + ∫ fh(x) dx = 2.



36 MAZO and PORTIER

Inequality (B12) follows from the lines

E[E[uh(1, 2, 2)|X2]2] = ∫
(
∫

(Kh(x − y) − fh(x))2

f0(x)
1{x∈S} dx

)2

f0(y) dy

≤ 2∫
(
∫

Kh(x − y)2 + fh(x)2

f0(x)
1{x∈S} dx

)2

f0(y) dy

≤ 2b−2 ∫
(
∫ Kh(x − y)2 + fh(x)2 dx

)2

f0(y) dy

≤ 2b−2 ∫ (h−dvK + ||fh||Rd)2f0(y) dy

≤ 4b−2(h−2dv2
K + ||f0||2

Rd ).

To show (B13), write

E[uh(1, 2, 2)2] = E

[
(Kh(1, 2) − fh,1)4

f 4
0,1

1{X1∈S}

]
.

Using that (a+ b)4 ≤ 8(a4 + b4), we obtain

E[uh(1, 2, 2)2] ≤ 8E

[(
Kh(1, 2)4 + f 4

h,1

f 4
0,1

)
1{X1∈S}

]
≤ 8b−4

(
h−3d||f0||Rd ∫ K(u)4 du + ||f0||4

Rd

)
.

For (B14), we have

E[E[uh(1, 2, 3)|X2,X3]2 ]

= E

[
E

[(
Kh(3, 1) − fh,3

f0,3

)(
Kh(3, 2) − fh,3

f0,3

)
1{X3∈S}|X1,X2

]2
]
.

We develop and compute bounds for each term. The larger term will be the one associated with
the product of the kernels. We have, by Jensen’s inequality, for any (y, z) ∈ Rd × Rd,

𝜓h(y, z) ∶=
(
∫

(
Kh(x − y)Kh(x − z)

f0(x)

)
1{x∈S} dx

)2

≤ b−2
(
∫ Kh(x − y)Kh(x − z) dx

)2

= b−2h−2d
(
∫ K(u)K((y − z)∕h + u) du

)2

≤ b−2h−2d ∫ K(u)K((y − z)∕h + u)2 du.

Then we obtain
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E

[
E

[(
Kh(3, 1)

f0,3

)(
Kh(3, 2)

f0,3

)
1{X3∈S}|X1,X2

]2
]

= ∫ ∫ 𝜓h(y, z)f0(y)f0(z) dydz

≤ b−2h−2d ∫ ∫ ∫ K(u)K((y − z)∕h + u)2f0(y)f0(z) dydzdu

= h−db−2 ∫ ∫ ∫ K(u)K(v + u)2f0(z + hv)f0(z) dvdzdu

≤ h−db−2||f0||Rd ∫ ∫ K(u)K(v + u)2 dvdu

= h−db−2||f0||Rd vK .

Moreover, as

E

[(
Kh(3, 1)

f0,3

)(
fh,3

f0,3

)
1{X3∈S}|X1,X2

]
= ∫

(
Kh(x − X1)fh(x)

f0(x)

)
1{x∈S} dx

≤ ||f0||Rd b−1,

and

E

[(
fh,3

f0,3

)2

1{X3∈S}|X1,X2

]
= ∫

fh(x)2

f0(x)
1{x∈S} dx ≤ ||f0||Rd b−1.

we finally obtain the result. ▪

Lemma 6. Under (H1) and (H2), if S ⊂ Rd is such that for all x ∈ S, f 0(x) > b > 0, we have that

lim
h→0

hd
E

[(
Kh(1, 2) − fh,1

f0,1

)2

1{X1∈S}

]
= vK𝜆(S).

Proof. Write

E

[(
Kh(1, 2) − fh,1

f0,1

)2

1{X1∈S}

]

= E

[
Vh(X1)

f 2
0,1

1{X1∈S}

]

= E

[
E[Kh(1, 2)2|X1]

f 2
0,1

1{X1∈S}

]
− E

[
f 2
h,1

f 2
0,1

1{X1∈S}

]
.

The right-hand side is bounded by b−2||f0||Rd , hence its participation in the stated limit is 0. For
the left-hand side term, use K̃ = K2∕vK and write
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hd
E

[
E[Kh(1, 2)2|X1]

f 2
0,1

1{X1∈S}

]
= hd ∫ ∫

f0(y)
f0(x)

Kh(x − y)21{x∈S} dydx

= ∫ ∫
f0(x − hu)

f0(x)
K(u)21{x∈S} dudx

= vK ∫ ∫
f0(x − hu)

f0(x)
K̃(u)1{x∈S} dudx

= vK𝜆(S) + vK ∫ ∫
(f0(x − hu) − f0(x))

f0(x)
K̃(u)1{x∈S} dudx.

It remains to note that the term in the right goes to 0, as h→ 0, in virtue of the Lebesgue dominated
convergence theorem. ▪

Lemma 7. Under (H1) and (H2), we have, for every x ∈ Rd and h > 0,

|f0 ⋆ Kh(x) − f0(x)| ≤ g(x)h2 ∫ ||u||2
2K(u) du.

Proof. Note that ∫ K(u) du = 1 and, by symmetry, ∫ uK(u) du = 0. Write

|f0 ⋆ Kh(x) − f0(x)| = ||||∫ (f0(x − hu) − f0(x))K(u) du
||||

=
||||∫ (f0(x − hu) − f0(x) − (hu)T∇f0(x))K(u) du

||||
≤ ∫ |f0(x − hu) − f0(x) − (hu)T∇f0(x)| K(u) du,

and use (H1) to conclude. ▪

Lemma 8. Under (H1), (H2), and (H3), there exists c2 > 0 such that ∫Sc
bn

fhn(x) dx ≤ c2b𝛽n.

Proof. Note that

∫Sc
bn

fh(x) dx = P(Sc
bn
) + ∫Sc

bn

(Khn ⋆ f0 − f0) dx

= P(Sc
bn
) + ∫ (Khn ⋆ 1Sc

bn
(x) − 1Sc

bn
(x))f0(x) dx.

The term in the left is bounded by cb𝛽n as supposed in (H3). For the term in the right, define Sbn,hn =
{y + hnu ∶ u ∈ [−1, 1]d, y ∈ Sbn}. Note that, by (H2), as soon as x ∉ Sbn,hn , Khn ⋆ 1Sc

bn
(x) = 1,

hence

|Khn ⋆ 1Sc
bn
(x) − 1Sc

bn
(x)| ≤ 1Sbn ,hn

.

Moreover, for any x ∈ Sbn,hn , we have, by (H3), that

f0(x) ≤ sup
y∈Sbn

sup
u∈[−1,1]d

f0(y + hnu) ≤ bn sup
y∈Sbn

sup
u∈[−1,1]d

f0(y + hnu)
f0(y)

= bnC,
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hence, 1Sbn ,hn
≤ 1f0(x)≤Cbn , leading to

||||∫(Khn ⋆ 1Sc
bn
(x) − 1Sc

bn
(x))f0(x) dx

|||| ≤ ∫ 1f0(x)≤Cbn f0(x) dx ≤ (Cbn)𝛽 .
▪

APPENDIX C. PARAMETRIC MAXIMUM LIKELIHOOD ESTIMATOR

In this section are reported some classical results on the maximum likelihood estimator of the
density. When the model is well specified, we need the consistency and the asymptotic normality
of the estimated parameter 𝜃0.

(A1) The set Θ ⊂ Rq is compact. The model  = {f𝜃 ∶ 𝜃 ∈ Θ}, a collection of densities on Rd,
is identifiable, that is, for every 𝜃1 ≠ 𝜃2 in Θ, f𝜃1 ≠ f𝜃2 and the envelop FΘ(x) = sup 𝜃∈Θf𝜃(x)
is such that E[log(FΘ,1)] < +∞. There exists an R+-valued measurable function 𝓁̇ with
E𝓁̇(X1)2 <∞ for every x ∈ Rd, for every 𝜃1 and 𝜃2 in Θ,

| log(f𝜃1 (x)) − log(f𝜃2 (x))| ≤ 𝓁̇(x)||𝜃1 − 𝜃2||2.

There exists 𝛿 > 0 such that the function 𝓁̇ × sup 𝜃∈B(𝜃0,𝛿)f𝜃 is bounded.

It follows from (A1) that the class of functions  is Glivenko–Cantelli (van der Vaart &
Wellner, 1996, theorem 2.7.11), that is,

sup
𝜃∈Θ

|||||n−1
n∑

i=1
(log(f𝜃(Xi) − E[log(f𝜃(X1)])

||||| → 0. (C1)

Whenever f0 ∈  , it holds that 𝜃̂n → 𝜃0, in probability (Newey & McFadden, 1994, theorem
2.1) or (van der Vaart, 1998, lemma 5.35). For now, asking the above Lipschitz condition to guar-
antee the Glivenko–Cantelli might seem a bit restrictive (Newey & McFadden, 1994, lemma 2.4),
but this condition will also be required to derive asymptotic normality of 𝜃̂n as well as to obtain
uniform convergence (over x ∈ Rd) of f𝜃̂n

(x) to f𝜃0 (x). Indeed, we have that for any 𝛿 > 0, with
probability going to 1, 𝜃̂n ∈ B(𝜃0, 𝛿). Hence, using the mean-value theorem, we find

|f𝜃̂n
(x) − f𝜃0 (x)| ≤ ||𝜃̂n − 𝜃0||2𝓁̇(x) sup

𝜃∈B(𝜃0,𝛿)
f𝜃(x) (C2)

for every x ∈ Rd. Conclude using that 𝓁̇ × sup 𝜃∈B(𝜃0,𝛿)f𝜃 is bounded and the convergence in
probability of 𝜃̂n to 𝜃0.

(A2) The true parameter 𝜃0 an interior point of Θ ⊂ Rq. The model  is differentiable in
quadratic mean at 𝜃0, that is, there exists a measurable vector-valued function 𝓁̇𝜃0 , with
E[||𝓁̇𝜃0(X1)||2

2], such that

∫
[√

f𝜃 −
√

f𝜃0 −
1
2
(𝜃 − 𝜃0)T𝓁̇𝜃0

√
f𝜃0

]2

d𝜆 = o(||𝜃 − 𝜃0||2
2).
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The matrix  = E[𝓁̇𝜃0 (X1)𝓁̇𝜃0 (X1)T] is invertible.

As a consequence of the previous set of conditions (van der Vaart, 1998, lemma 5.39), we have

n1∕2(𝜃̂n − 𝜃0) = −1n−1∕2
n∑

i=1
𝓁̇𝜃0 (Xi) + oP(1). (C3)

where E[𝓁̇𝜃0(X1)] = 0. In particular, it holds that
√

n(𝜃̂n − 𝜃0) = OP(1).


