
HAL Id: hal-03270230
https://hal.inrae.fr/hal-03270230

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Statistical modelling of bacterial promoter sequences for
regulatory motif discovery with the help of
transcriptome data: application to Listeria

monocytogenes
Ibrahim Sultan, Vincent Fromion, Sophie Schbath, Pierre Nicolas

To cite this version:
Ibrahim Sultan, Vincent Fromion, Sophie Schbath, Pierre Nicolas. Statistical modelling of bacterial
promoter sequences for regulatory motif discovery with the help of transcriptome data: application
to Listeria monocytogenes. Journal of the Royal Society Interface, 2020, 17 (171), pp.20200600.
�10.1098/rsif.2020.0600�. �hal-03270230�

https://hal.inrae.fr/hal-03270230
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
21

 

royalsocietypublishing.org/journal/rsif
Research
Cite this article: Sultan I, Fromion V, Schbath
S, Nicolas P. 2020 Statistical modelling of

bacterial promoter sequences for regulatory

motif discovery with the help of transcriptome

data: application to Listeria monocytogenes.

J. R. Soc. Interface 17: 20200600.
http://dx.doi.org/10.1098/rsif.2020.0600
Received: 26 July 2020

Accepted: 10 September 2020
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
bioinformatics, computational biology,

systems biology

Keywords:
DNA motifs, transcriptional regulatory network,

Markov chain Monte Carlo, transcriptomics,

bacteria
Authors for correspondence:
Ibrahim Sultan

e-mail: i.ibrahim.sultan@gmail.com

Pierre Nicolas

e-mail: pierre.nicolas@inrae.fr
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5127043.
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Statistical modelling of bacterial promoter
sequences for regulatory motif discovery
with the help of transcriptome data:
application to Listeria monocytogenes

Ibrahim Sultan, Vincent Fromion, Sophie Schbath and Pierre Nicolas

Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France

IS, 0000-0001-6084-529X; VF, 0000-0002-9194-5426; SS, 0000-0003-3574-8222; PN, 0000-0002-1133-0609

Automatic de novo identification of the main regulons of a bacterium from
genome and transcriptome data remains a challenge. To address this task,
we propose a statistical model that can use information on exact positions
of the transcription start sites and condition-dependent expression profiles.
The central idea of this model is to improve the probabilistic representation
of the promoter DNA sequences by incorporating covariates summarizing
expression profiles (e.g. coordinates in projection spaces or hierarchical clus-
tering trees). A dedicated trans-dimensional Markov chain Monte Carlo
algorithm adjusts the width and palindromic properties of the corresponding
position-weight matrices, the number of parameters to describe exact position
relative to the transcription start site, and chooses the expression covariates
relevant for each motif. All parameters are estimated simultaneously, for
many motifs and many expression covariates. The method is applied to a
dataset of transcription start sites and expression profiles available for Listeria
monocytogenes. The results validate the approach and provide a new global
view of the transcription regulatory network of this important pathogen.
Remarkably, a previously unreported motif is found in promoter regions of
ribosomal protein genes, suggesting a role in the regulation of growth.
1. Introduction
Automatic de novo identification of the main regulons of an organism as
‘simple’ as a bacterium remains a challenge, despite motif discovery in DNA
sequences being an old problem of bioinformatics for which many approaches
have been developed [1,2]. The representation chosen for the motifs is at the
heart of the methodology. Word-based representations usually consist of con-
sensus strings written in an alphabet allowing degenerate symbols. Scoring
then relies on a hypothesis testing framework to detect deviation from a null
hypothesis, such as that of Markov sequence [3] or of equal occurrence frequen-
cies between co-expression clusters [4,5]. Position-weight matrices (PWMs)
allow more precise representations, typically accounting for frequencies of the
four DNA nucleotides (A,C,G,T) at each position within the motif. Beside
this probabilistic representation of nucleotide composition within motif occur-
rences, a full probabilistic model involves also a model for the background
sequence (outside motif occurrences) and a model for the positions of motif
occurrences in the sequence set. Motif discovery is then cast as the problem
of estimating PWMs. The first algorithms implementing these ideas [6,7]
remain among the most powerful and widely used tools to search for motifs
based only on nucleotide composition properties. Due to motif degeneracy
and limited number of occurrences, these approaches are usually successful
only when it is possible to define datasets enriched for particular motifs. This
is most often done based on experimental data. Hence, transcriptional regulat-
ory network reconstruction tends to be an incremental process in which new
components of the network are added one by one.
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Chromatin immunoprecipitation (ChIP) is the experimen-
tal technique that had the deepest impact on the field of
motif discovery [2]. Nevertheless, its need for a priori selection
of combinations of transcription factors (TFs) and biological
conditions is an intrinsic limitation for de novo motif discovery
at system level. Furthermore, ChIP experiments require either
specific antibodies to recognize TFs or genetic engineering of
functionally active tagged TFs. In parallel to ChIP, microarrays
and RNA-Seq have been extensively applied to compare gene
expression between growth conditions and/or between
specific mutants and results have been used early for bacterial
transcriptional network reconstruction [8,9]. With the goal to
explore globally the transcription regulatory network of a bac-
terium, expression profiles across many conditions can be
collected without focusing on specific TFs and without genetic
engineering [10,11]. Genome-wide maps of transcription start
sites (TSSs) constitute another type of transcriptome data
which is increasingly available for bacteria [12,13] and can
focus the search on regulatory motifs.

The development of specific methods for de novo motif
discovery using expression profiles has attracted less attention
than the use of ChIP data. The task is also more difficult
because the data are not directly connected to a specific
TF–DNA interaction. Nevertheless, diverse approaches have
been proposed based on different methodological concepts
such as: mutual information in FIRE [14], enrichment test in
GEMS [4], or regression of expression data y given sequence
data x in REDUCE [15] and MatrixREDUCE [16]. The first
two approaches involve transforming the expression data
into one-dimensional categorical values, while the third
approach can directly accommodate multidimensional con-
tinuous expression data. The algorithm implemented in
RED2 [5] intends to bypass the need for clustering of the
first two approaches by computing mutual information or
applying enrichment tests on overlapping sets of genes that
are close in the expression space (neighbourhoods). These
approaches face the difficulty of finding appropriate summary
or probabilistic models for expression data.

The viewpoint adopted in this work steps back from the
causality relationship by which TF binding sites should
explain expression profiles. Instead, it sees the expression
data only as a potential source of information on where
motifs occur. In probabilistic terms, our approach consists of
modelling sequence data x given expression data y (i.e. x|y).
This choice makes it possible to build directly upon the
powerful sequence modelling approaches for de novo motif
discovery based on PWMs and full probabilistic modelling
of the sequences, establishing a continuum between discovery
of motifs related and unrelated to the available expression
data. Hence, it becomes possible to envision the simultaneous
use of the expression data and of all the statistical properties of
the sequence. In [10], we previously proposed an approach for
the discovery of sigma factor binding sites based on modelling
x|y. This model was tailored for sigma factor binding sites
whose specificity is to delineate and partition the promoter
space [17]. Regulation by sigma factors tends thus to corre-
spond to a preponderant and non-overlapping level of
regulation that is particularly well captured by the structure
of a hierarchical clustering tree and did not justify modelling
the occurrence of more than one motif per sequence. Incorpor-
ation of positional information proved helpful in the case of
sigma factor binding sites whose positions are strongly
constrained with respect to the TSS [10].
Prompted by results obtained on sigma factors [10,11], this
work develops a coherent probabilistic model of the DNA
sequences to address the task of automatic de novo identifi-
cation of the main regulons (not restricted to sigma factors)
of a bacterium from genome and transcriptome data. For
this purpose, the proposed model introduces two main novel-
ties: overlaps between motif occurrences are allowed and
covariates summarizing expression profiles are incorporated
into the probability of occurrence in a given promoter
region. These covariates can correspond to positions of the
genes on axes such as obtained by PCA [18] or ICA [19,20]
but we also show how to use positions in hierarchical cluster-
ing trees [8,21]. All the parameters are estimated in a Bayesian
framework using a dedicated trans-dimensional Markov chain
Monte Carlo (MCMC) algorithm. In order to validate the
approach, we applied it to the food-borne pathogen Listeria
monocytogenes on which a wealth of transcriptomics data
have been collected owing to its status of model organism
for the study of host–pathogen interactions and bacterial tran-
scriptomics [22]. Sources of transcriptome data for this
bacterium include a landmark study using RNA-Seq and
high-density tiling arrays [23], an early use of genome-wide
TSS mapping [24], and a comprehensive work done to aggre-
gate available transcriptome datasets in a single database [25].
2. Methods and data
2.1. Probabilistic model of promoter sequences
2.1.1. Model overview
We consider a dataset composed of N DNA sequences,
denoted by x, and C expression covariates, denoted by y.
All the sequences have the same length L and are aligned
with respect to experimentally determined TSSs. To carry
out motif discovery from these data, we developed here
the integrative probabilistic model of x|y whose structure is
illustrated in figure 1.

Briefly, DNA sequences are modelled as drawn from a
collection of M motif models (PWMs), denoted by
(u1, . . . , uM), and a Markov background, denoted by θ0, con-
ditionally on the positions of motif occurrences. These
positions are encoded in a layer of latent variables
a ¼ (am,n)m¼1:M, n¼1:N , with am,n [ {0, 1, . . . , L} being the pos-
ition of motif m in sequence n (0 encodes the absence of
occurrence). Motif occurrences a are modelled as drawn
taking into account possible preferential position with respect
to TSS and covariates. For simplicity, the model assumes zero
or one occurrence per sequence (ZOOPS, [6]) of each motif but
occurrences of different motifs are allowed and may overlap.
Statistical inference is carried out in a Bayesian framework
and parameters are thus treated as random variables drawn
from prior distributions. The complete mathematical descrip-
tion of the model is found in electronic supplementary
material, S1 appendix section A1, whereas the presentation
below focuses on the most salient points. A detailed directed
acyclic graph (DAG) representing relationships between all
variables (parameters, latent variables, observed data) is
shown in electronic supplementary material, figure S1.

2.1.2. Incorporating expression data as covariates
Information from expression data summarized in y is incor-
porated into the probability of occurrence of a motif via a
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probit regression framework [26]. The standard version of
this model would write the probability of occurrence of
motif m in sequence n (i.e. the event {am,n > 0}) as

p(am,n . 0jy, b) ¼ F(bm,0 þ
X

c¼1:C
bm,cyn,c), (2:1)

where yn,c is the numerical value of covariate c for sequence n,
β contains the regression coefficients (bm,c [ R), and Φ is the
cumulative distribution function of the standard normal
distribution.

We developed an extension for this model that dichoto-
mizes expression covariates according to automatically
adjusted cut-offs (electronic supplementary material, S1
appendix A1.2); exactly as if co-expression clusters defined
on the basis of y·,c were also entered as covariates. This exten-
sion is very appealing because it can account for sharp
changes in the probability of occurrence as a function of pos-
ition in expression space. Importantly, it allows any
amplitude of change, unlike sharp changes obtained by
increasing |βm,c| in the standard probit which makes the
probability to jump between 0 and 1.

To allow automatic selection and dichotomization (both
choices affecting model dimension) of the covariates relevant
for the occurrences of motif m, the model involves the
following variables:

— tm,c∈ {0, 1} which indicates whether covariate c should be
taken into account;

— bm,c [ R which is, when tm,c = 1, a coefficient specific to
covariate c; βm,0 being the intercept parameter;

— gm,c∈ {0, 1} which indicates, when tm,c = 1, whether vector
y·,c is dichotomized;

— hm,c [ {1, . . . , N � 1} which corresponds, when tm,c = 1
and gm,c = 1, to the rank in the vector y·,c of the cut-off
value used for dichotomization.
In keeping with the probit regression framework, the
probability of occurrence of motif m in sequence n writes
then as

p(am,n . 0jy, t, b, b, h) ¼ F
�
bm,0 þ

X

c
bm,cI{tm,c ¼ 1}~ym,n,c

�
,

(2:2)

where I is the indicator function (I{z} ¼ 1 if z is true, 0 other-
wise) and ~ym,n,c corresponds to yn,c after possible
dichotomization. This model can capture a great diversity
of relationships between expression covariates and prob-
ability of motif occurrence (electronic supplementary
material, figure S2 ABC).

Further extending the model described by equation (2.2),
we also consider covariates that come in the form of trees.
Indeed, the dichotomization proposed above makes it poss-
ible to incorporate whole tree structures in the regression
model. In this case, dichotomization involves the choice of
node in the tree instead of a cut-off value along an axis.
Different probabilities of motif occurrence are then associated
to inside and outside the sub-tree hanging under this node
(electronic supplementary material, figure S2 D).
2.1.3. Modelling position with respect to TSS
DNA sequences are aligned with respect to experimentally
determined TSSs. The position of motif occurrence encoded
in am,n then corresponds to a precise position relative to the TSS.

Given an occurrence of motif m in sequence n (event
{am,n > 0} modelled by the extended probit), the probability
density function of its exact position is modelled as a step
function (electronic supplementary material, S1 appendix
A1.3.1). This model involves a parameter for the number of
breakpoints (denoted by km) and two vectors (denoted by
dm and λm) which give the positions of the breakpoints and
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the probability of finding the occurrence in each of the corre-
sponding segments.

2.1.4. Allowing motif occurrences to overlap
The model allows motif occurrences to overlap (electronic
supplementary material, S1 appendix A1.3.1–2). This feature
underpins the simplifying assumption of mutual indepen-
dence between the occurrences of the M motifs made when
modelling the position with respect to the TSS and the link
with expression data. Another key benefit of allowing such
overlaps is to permit updating motif width (wm) without
having to avoid collisions of motif occurrences.

When a number on,l≥ 1 of motifs overlap position l in
sequence n, nucleotide xn,l is modelled as drawn from the
arithmetic mean of the relevant PWM columns, namely

p(xn,lja, r, u, on,l � 1) ¼ 1
on,l

X

m[On,l

um,l�am,nþrm ,xn,l , (2:3)

where On,l denotes the set of motifs that overlap position l,
θm,w,u is the probability of nucleotide u at position w of
motif m, and rm is a variable recording which column of
the PWM corresponds to the position referenced by am,n.
The resulting density can be seen as the marginal of an
equal-weight mixture.

2.1.5. Palindromic motifs
The dimeric nature and symmetry of many TFs explain that
numerous known binding motifs are palindromic in the sense
that symmetric positions with respect to the centre of the
motif appear as mirrored according toWatson–Crick base pair-
ing rule (A : T and C : G). Palindromic constraints on PWMs
reduce the dimension of the model, thereby increasing the
amount of data available to estimate each parameter and
decreasing the size of the search space for parameter values.

Identifying as many motifs as possible simultaneously is
however incompatible with imposing a strict palindromic
structure to all PWMs. It is thus interesting to dynamically
set and release palindromic constraints in the course of the
algorithm but this implies important changes in the number
of free parameters that cannot be implemented efficiently in
the MCMC framework. For this reason, we developed a
more flexible representation that allows intermediate states
between non-palindromic and fully palindromic structures
(electronic supplementary material, S1 appendix A1.3.3). Sev-
eral variables are used to define the active constraints on
um ¼ (um,w,u)w¼1:wm ,u[{A,C,G,T}: pm∈ {0, 1}, indicates if motif m
has a (possibly partial) palindromic structure; cm, records
the position of the centre of symmetry; qm,w∈ {0, 1}, indicates
whether columns w and 2cm−w are paired. Intermediate
states allow the number of free parameters to gradually
increase or decrease. They also fit situations where a biological
motif is only partially palindromic.

2.1.6. Bayesian inference
The model ingredients described above allow the complete
data likelihood to be written,

p(x, a j y, r, u, u0, b, h, d, l)
¼ p(x j a, r, u, u0)p(a j y, b, h, d, l):

(2:4)

From equation (2.4) and the prior distributions for the parame-
ters (electronic supplementary material, S1 appendix A1.4),
Bayes’ rule defines the joint posterior on which Bayesian
inference is based

p(a, v, u0, w, p, c, q, u, r, k, d, l, t, b, g, h j x, y), (2:5)

where the parameters underscored (not found in equation (2.4))
determine the dimension of other parameters.

A MCMC algorithm was built to sample this joint pos-
terior. To cope with the high dimension of the target, the
algorithm is a block MCMC sampler [27] composed of 15
types of steps designed to update separate subsets (blocks)
of variables. A sweep combines the different steps. Updates
of the parameters of the probit models use the data augmen-
tation scheme proposed by [26] (latent variable zm,n).
Similarly, in keeping with the usual treatment of mixture
models [28], a latent variable (denoted by bn,l) is introduced
at each position of the sequence set to ‘disambiguate’ motif
overlaps. The reversible-jump methodology [29] allows the
changes of dimension needed to update the Markov order
of the background (variable v), the active covariates and
their possible dichotomization (block tm,c, gm,c, hm,c), and the
variables encoding the palindromic structure of the motif
(block pm, cm, qm). Under circumstances where the probability
distribution of the variables whose dimension is modified
can be integrated-out, the reversible-jump can be done in a
Gibbs manner, i.e. by direct sampling from the conditional
distribution. This is done for the joint update of (tm,c, gm,c,
hm,c) and the joint update of ( pm, cm, qm). The algorithm
was implemented in a C++ program named Multiple

whose correctness was carefully checked by successive con-
ditional simulations to reveal analytical and coding errors
[30]. Details of the MCMC algorithm are found in electronic
supplementary material, S1 appendix A2.

2.2. Dataset for application to Listeria monocytogenes
2.2.1. Transcription start sites and expression profiles
Promoter sequences were defined as the 121 bp spanning
from position −100 to +20 relative to each TSS based on a
repertoire of 2299 TSSs mapped at 1 bp resolution on
L. monocytogenes EGDe genome sequence [24]. The choice of
−100 was in keeping with the size of the regions that we pre-
viously found to be enriched for the presence of known TF
binding sites [11]. To remove sequence overlaps on the
same strand, we used a simple greedy procedure that incor-
porated non-overlapping promoters one-by-one in the order
of decreasing read-count (reflecting the level of experimental
support and transcriptional activity for the TSS [24]). This led
to a set of 1545 non-overlapping promoter regions (67% of the
initial list of TSSs).

For the expression data, we relied on the compendium
dataset established by aggregation of many different studies
to build the Listeriomics website [25]. As downloaded, the
data had dimensions 3159 × 254, where each row corresponds
to a gene of L. monocytogenes EGDe and each column corre-
sponds to the log of an expression ratio (log fold-change)
comparing two samples (mutants, growth conditions, strains
…) from a same study. Some columns and rows contained
many missing values due to the heterogeneity of technol-
ogies. The number of columns was reduced from 254 to 165
after discarding the columns with a number of missing
values higher than 1.5 times the median. In parallel, the
number of rows was reduced from 3159 to 2825 based on
the same criterion. Finally, the gene name associated with
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each TSS [24] permitted matching 1512 out of 1545 non-over-
lapping promoter sequences to one of these 2825 genes with
expression data. This resulted in an expression matrix of
dimension 1512 × 165 whose 165 columns represented 31
published expression studies, and included 17 RNA-Seq
and 25 tiling array profiles.
lishing.org/journal/rsif
J.R.Soc.Interface

17:20200600
2.2.2. Covariates for motif discovery
Both hierarchical clustering and projection methods were
used as dimension reduction techniques to summarize the
expression matrix. As projection methods, we applied PCA
and ICA implemented in functions prcomp (package
stats) and fastICA [31] of Rwithout scaling the expression
data. For PCA, we kept the 20 first components of the PCA
(accounting for 68.8% of the total variance) after examining
the rate of decrease of the residual variance. When applying
ICA, the target dimension (number of components) is fixed
before numerical optimization and the algorithm can con-
verge to different projections that share only a subset of
components. In keeping with the idea developed by [20],
we chose the target dimension K = 40 after examining the
stability of the components and only stable components
were used. Here, we used average-link clustering based on
absolute Pearson correlation coefficient (r) between columns
of the source matrix (dimension 1512 × K) and a cut-off
|r|≥ 0.8 to compare components between runs. The algor-
ithm was run 100 times which led to 26 components found
in at least 80% of the runs.

Two types of hierarchical clustering were applied corre-
sponding to different options of hclust function (package
stats): Ward and average-link based on Pearson distance
(1− r, where r is Pearson correlation coefficient). The dis-
tances between genes needed to build the trees were
computed after centring and scaling rows (genes) of a sym-
metric expression matrix obtained by duplicating each
column with a negative sign to remove the effect of the
arbitrary orientation of the log fold-changes.

The final set of 50 covariates used in the motif discovery
analysis consisted of the 20 first PCA components (covariates
numbered 1–20), the 26 stable ICA components (covariates
21–46), and the hierarchical clustering trees obtained by
Ward and average-link methods (covariates 47 and 48). The
two trees were further duplicated (covariates 49 and 50)
to make it possible for the model to use two nodes of the
same tree.
3. Results
3.1. Exploration of the posterior landscape
Trajectories of the variables describing the M motif com-
ponents during MCMC runs confirmed that the algorithm
was able to adjust simultaneously the characteristics of many
PWMs. To illustrate the behaviour of the algorithm, figure 2a
depicts the parallel evolution in the MCMC run of two
PWMs in terms of width and nucleotide composition. As
shown in electronic supplementary material, figure S3, the
algorithm uses gradual activation/deactivation of palindromic
constraints to switch between non-palindromic and palindro-
mic PWMs during its exploration of the posterior.

For de novo motif discovery, it is important to identify
when stability of a motif component across tens of thousands
of MCMC sweeps, as seen for the second motif shown in
figure 2a, is not caused by slow-mixing but truly reflects attrac-
tion to peaks of the posterior density and should therefore be
treated as a relevant motif prediction. Reaching similar motif
components independently from different starting points is
indicative of the second scenario. We thus performed 10 inde-
pendent parallel runs of the MCMC algorithm. Each run
consisted of 50 000 MCMC sweeps from a random starting
point and M was fixed to 75 (12 to 14 days on Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30GHz). Only the last 10 000
sweeps (with a thinning interval of 100 sweeps) were used
in our analysis to characterize the posterior distributions.

The 10 runs produced information on 750 (10 × 75) motif
components that were named from M1.0 (random seed 1,
motif 0) to M10.74. We analysed and compared these motif
components to extract distinct well-supported motifs that
were not only stable across the last 10 000 sweeps but were
also found in at least two runs. To declare that two motif
components corresponded in fact to the same motif, we com-
pared the sets of positions in the sequences that were
predicted to be covered by each motif. These summarize
the information carried by the different ingredients of the
model (PWM, preferential position with respect to TSS, link
with expression data). Namely, after listing positions with
estimated posterior probability of coverage greater than 0.5,
the pairwise distance between two motif components i and
j was computed as

d(i, j) ¼ 1� 2N(i, j)
N(i)þN(j)

, (3:1)

where N(i) and N( j ) denote the total number of positions
covered by each motif and N(i, j ) is the number of positions
covered by both motifs. Accordingly, d(i, j ) = 0 if these pos-
itions are exactly the same and d(i, j ) = 1 if they differ
completely. A special case of d(i, j ) = 1 corresponds to
N(i) = 0 which concerned 190 of the 750 motifs and typically
reflected instability during the last 10 000 sweeps (e.g. M0.1
in figure 2a). In the same run, the minimal distance observed
between two motif components was 0.59 and 92:7% of the
motif components were at a distance greater than or equal
to 0.9 of any other motif components. This confirmed that,
within a run, motif components converge to distinct motifs.

The list of distinct well-supported motifs was established
after average-link hierarchical clustering of the 750 motifs
based on the distance defined in equation (3.1). As illustrated
in figure 2b, this tree was cut at two different heights: 0.75 to
define high-level clusters that separate well-distinct motifs;
0.25 to define low-level clusters containing very similar
motifs. A representative motif was selected in each high-
level cluster containing at least one low-level cluster (the
member of the low-level clusters with the highest N(i)).
This procedure identified the set of 40 representative motifs
reported in table 1.

Figure 3 shows several examples of links between
expression covariates and motif occurrences captured by the
extended probit model, including covariates that were dichot-
omized and trees. A total of nine motifs were strongly linked
(i.e. with posterior probability greater than or equal to 0.9) to
a covariate of type vector (M20.1, M26.1, M33.8, M38.10,
M58.7, M61.3, M62.3, M68.1 and M71.2) out of which three
are represented in figure 3a–c. For M38.10 and M68.12, a
marked preference for the dichotomized version was observed
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Figure 2. Exploration of the posterior landscape. (a) Evolution of two motif components across the 50 000 sweeps of the algorithm. Coloured dot points correspond
to PWM columns, colour indicates the most likely nucleotide (green for A, blue for C, orange for G, red for T) and diameter reflects the information content of the
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45 000). (b) Hierarchical clustering of motif components to extract stable motifs. Only a portion of the tree is represented (80 motif components out of 750). Filled
circles correspond to motifs belonging to the final list of 40 representative stable motifs. Their high-level clusters (defined by height 0.75) are represented by
different colours. A star symbol indicates position of M68.1 whose evolution is represented in subplot a.
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(figure 3c). Remarkably, all these nine associations concerned
covariates defined by ICA (none defined by PCA). Of note,
as expected given that we allowed some redundancy between
the covariates, a strong link with a specific covariate did not
cover all the cases of clear association between the presence/
absence of a motif and the expression covariates (e.g. M29.8,
figure 3d,e,f). Posterior probability greater than or equal
to 0.9 of association with any of the trees concerned five
motifs (M9.1, M12.4, M29.8, M69.4 and M38.10) but strong
association with a specific tree (ward or average-link) was
observed for only two of them, illustrating again some
redundancy between covariates.

To further understand the contributions of different ingre-
dients of our model to the identification of these 40 motifs,
we examined the results of five submodels that did not incor-
porate one or several of three ingredients (position with
respect to TSS, expression profiles and palindromic struc-
tures). The results show that all the motifs were not
sensitive to the same model ingredients and many were
sensitive to several ingredients (electronic supplementary
material, S1 appendix A3) which attests to the interest of an
integrative statistical model.

3.2. Validation by comparison with known motifs
and regulons

The 40 distinct well-supported motifs exhibit considerable
diversity in terms of abundance, preferred position with
respect to TSS, link with expression data, and PWM character-
istics (width, information content, palindromic structure).
Table 1 summarizes the main characteristics of each motif.
Figure 4 provides a graphical representation for two of these
motifs. Similar figures are available for all motifs in electronic
supplementary material, figure S1 and the numerical PWMs
are found in electronic supplementary material, file S1. Lists
of genes associated with each motif and precise positions of
occurrences are reported in electronic supplementary material,
files S2 and S3.



Table 1. Summary of the 40 stable motifs identified in L. monocytogenes EGD-e.

motifa no.b no. (0.8− 0.2)c Wd IC1e Palf Posg FCh runsi commentj

M71.2 1325 1174–1435 9 3 2 −12 [1] 0.4 7 : 10 SigA -10

M71.8 1308 848–1506 6 2 2 −1 [1] 0.5 3 : 16 TSS (A)

M36.4 1033 552–1382 6 3 0 −36 [2] 0.5 4 : 10 SigA -35 (TTG)

M55.7 836 117–1486 5 0 1 −27 [38] 0.6 3 : 7 SigA -10 extension (CT)

M8.3 792 331–1273 5 1 0 0 [1] 0.5 2 : 15 TSS (G)

M9.10 735 447–1165 8 4 0 −17 [1] 0.5 4 : 8 SigA (extended -10, TG)

M61.5 561 171–1153 5 5 0 14 [10] 0.4 3 : 8 RBS (GGAGG)

M67.8 471 150–1159 14 6 0 −65 [35] 0.4 2 : 10 T-rich element

M26.1 252 107–640 13 5 1 −82 [20] 0.7 2 : 10 SigA -10 reverse strand

M27.6 240 153–590 6 5 0 −37 [2] 0.5 6 : 6 SigA -35 (TTGAC)

M29.8 122 91–150 12 4 2 −16 [2] 3.1 8 : 10 SigB -10

M9.1 116 43–368 22 2 6 −76 [35] 1.2 2 : 8 loose

M18.2 108 47–355 6 6 0 7 [12] 0.5 2 : 8 RBS (GAGGTG)

M12.4 97 71–109 7 4 0 −35 [3] 3.9 10 : 10 SigB -35

M69.4 87 59–128 15 8 12 −35 [51] 1.8 10 : 10 CcpA (CRE-box)

M42.8 62 14–295 17 0 0 −87 [56] 0.6 2 : 4 loose

M31.4 39 16–81 23 8 22 −44 [58] 1.9 2 : 2 Rex

M68.1 31 20–47 20 5 16 −53 [24] 3.0 10 : 10 LiaR

M58.7 27 14–40 19 6 10 −51 [53] 3.2 2 : 10 —

M62.3 26 18–34 20 13 18 −21 [60] 1.9 10 : 10 Fur

M38.10 22 18–38 15 8 14 −29 [23] 2.4 9 : 10 LexA

M53.9 20 8–50 20 8 18 −51 [55] 1.5 3 : 10 VirR

M2.6 19 12–53 9 4 0 −49 [2] 1.1 3 : 5 Spx

M13.7 19 7–48 21 5 0 −58 [68] 0.9 3 : 3 —

M54.1 14 6–40 23 8 0 −60 [56] 1.0 2 : 5 —

M61.6 14 9–16 25 14 18 −38 [2] 0.8 5 : 10 BglR2

M61.4 13 7–25 25 6 0 −45 [54] 1.2 2 : 2 —

M50.10 13 7–43 21 4 12 −83 [28] 0.9 2 : 2 —

M70.6 11 7–19 24 22 22 −51 [53] 1.3 10 : 10 —

M3.1 9 4–20 21 9 20 −47 [55] 1.5 6 : 10 —

M33.8 8 7–13 22 10 0 −31 [15] 2.8 9 : 10 SigL

M20.1 7 5–7 25 17 1 −75 [1] 6.6 10 : 10 —

M49.4 7 6–11 23 11 20 −52 [5] 10.5 10 : 10 PrfA

M17.4 7 5–14 24 8 18 −44 [57] 1.1 3 : 4 CcpB

M2.1 6 4–8 22 9 16 −38 [50] 1.1 2 : 5 —

M61.3 6 5–10 25 23 2 −51 [1] 3.1 10 : 10 —

M73.4 6 4–7 20 3 0 −49 [2] 5.0 6 : 6 —

M18.6 4 3–8 25 10 23 −61 [50] 1.2 6 : 7 —

M29.1 3 2–6 25 1 0 −46 [56] 1.6 2 : 10 loose

M59.2 2 0–13 23 0 0 −55 [56] 2.4 4 : 5 loose

aunique motif identifier build as Mxx.yy where yy identifies the run and xx the motif in the run;
bnumber of promoter regions where the motif is predicted to occur (estimated posterior probability ≥ 0.5), used to order the motifs;
cnumber of TSSs when the posterior probability cut-off is set to 0.8 (very likely) or 0.2 (possible);
dmotif width corresponding to the number of columns included in the PWM with posterior probability ≥ 0.5;
enumber of columns in the PWM with high information content, i.e. 2þP

u[{A,C,G,T} um,w,u log2 (um,w,u) � 1;
festimated number of paired columns in the PWM reflecting the degree of palindromness (in boldface when high);
gmedian position of occurrence for the middle of the motif with respect to the TSS (inter-quartile range reported between brackets), both numbers are derived from the estimated

probability density function for the position described by the variables Km, λm,. and dm,.;
hmaximum across the 165 pairs of conditions for the median of the expression values (log fold-change) associated with the TSSs counted in the second column;
inumber of parallel runs (out of 10) in which this motif was found as obtained by clustering based on amount of overlaps between occurrences, written in the format xx:yy where xx

and yy are the numbers obtained with cut-offs 75% of overlap and 25% of overlap, respectively;
jlink to known TFs if identified or other observations.
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Figure 3. Estimated links between expression covariates and motif occurrences. Examples are shown for different motifs and covariates (indicated in subplot titles).
Colour scale from blue to yellow reflects the estimated probability of motif occurrence given by the extended probit model (i.e. summarizing the information from
the expression data). Red dots indicate sequences in which the motif is found (estimated posterior probability of motif occurrence greater than or equal to 0.5).
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Three complementary approaches were used to connect the
40 motifs discovered by our de novo approach to known regu-
lons. The first was comparison with lists of genes collected
from tables published in several expression studies and pos-
itions of transcription factor binding sites recorded in the
RegPrecise database [32]; the second approachwas comparison
with 188 reference PWMs derived from sequence alignments
extracted from the propagated RegPrecise database (accessed
in July 2018) for different taxonomic groups in the Firmicutes
phylum: Listeriaceae (25 PWMs) and Staphylococcaceae
(39 PWMs) and Bacillales (124 PWMs). The third approach con-
sisted of dedicated literature searches associated with a careful
manual examination of (i) genes downstream the promoters in
which the motif was predicted to occur (ii) conditions in
which the log fold-change deviated themost from 0 (iii) charac-
teristics of PWMs and preferred positions of motif occurrences
with respect to TSSs. These lines of observation provided
convergent clues for many of the identified TFs.

Connections to known TFs are reported in the rightmost
column of table 1. Most of the motifs with a high number
of occurrences were found to describe general characteristics
of promoter regions (variations on the following themes:
SigA −10 and −35 boxes, nucleotide composition around
TSS, Ribosome Binding Site). Systematic comparison with
RegPrecise PWMs was particularly informative for the identi-
fication of BglR2, CcpA, CcpB, Fur, LexA, LiaR and Rex.
Among the other identified TFs, SigB and SigL were ident-
ified based on position with respect to the TSS, comparison
with sigma factor consensus defined for Bacillus subtilis [10],
as well as overlap with previous experimental data on SigL
(also known as RpoN or sigma54) and SigB regulons in
L. monocytogenes [33–35]. Electronic supplementary material,
figure S5 provides a graphical representation of the predic-
tion of the SigB regulon from the joint occurrence of boxes
−10 and −35 in comparison with previous studies. In brief,
89 promoter regions are predicted to contain both the −10
and −35 boxes, 88 out of them were previously reported as
probable members of the SigB regulon in either [34] or [35].
Spx was identified based on (i) its position with respect to
the TSS just upstream SigA −35 box, (ii) literature data on
the Spx regulon of L. monocytogenes [36] and (iii) sequence
properties reported for the Spx motif in B. subtilis described
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Figure 4. Two examples of motifs for known TFs rediscovered by our algorithm. These motifs were identified as corresponding to the binding sites of LiaR (M68.1
subplot a) and as the −10 box of the SigB binding sites (M29.8 subplot b). First row: sequence logo. Second row: estimated probability distribution function for the
5’-end of the occurrence (in blue) and probability of having the position covered by the occurrence (in orange). These probabilities are conditional on the presence of
the motif in the promoter sequence. Third row: average log fold-change of expression level for downstream genes across the 165 pairs of conditions that were used
to define the expression covariates.
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as an AGCA element at position −44 [37]. PWMs found for
PrfA and VirR, two key transcription regulators involved in
L. monocytogenes virulence, were in line with previously
described sequence properties [38,39]. Taken together, corre-
spondences with known motifs validate our approach for
de novo discovery.

3.3. New insights into the L. monocytogenes
transcription network

The de novo re-identification of many known motifs suggests
that new biologically relevant observations can be made from
(i) new predictions of occurrences for known motifs and (ii)
predictions of new motifs. The first aspect developed in elec-
tronic supplementary material, S1 appendix A4 encompasses
cases of regulons that have been experimentally studied in
L. monocytogenes (Fur, LiaR and LexA) and regulons that
have not yet been mapped in this bacterium (CcpA, Rex
and Spx). For instance, our results indicate that the LiaR reg-
ulon involved in the response to cell envelope stress may be
approximately two-times larger than previously identified by
differential expression analysis of the liaS-deletion mutant
versus wild-type [40] and that the CcpA (Catabolite control
protein A) regulon is almost as large as in B. subtilis [41],
suggesting an overlooked role in L. monocytogenes.
Among the predicted regulons listed in table 1 that have
not been linked to known motifs, the most spectacular
by its size is associated with motif M58.7 whose central
PWM columns correspond to the palindromic consensus
ACGTAYYCGT (logo shown in electronic supplementary
material, figure S4). The 27 predicted targets exhibit remark-
able functional homogeneity, consisting almost exclusively of
genes encoding the translation apparatus, including riboso-
mal proteins (electronic supplementary material, file S2). At
the other end in terms of number of occurrences, M2.1 is a
palindromic motif with four out of six occurrences found
upstream of genes encoding oxidoreductases (electronic
supplementary material, figure S2 and file S2).
3.4. Comparison with other methods
We compared our results to those of different well-established
algorithms able to handle the dataset of 1512 sequences and
1512 × 165 expression matrix for de novo motif discovery.
These algorithms are based on PWM estimation from the
sole sequence dataset (MEME, [6]) or search specifically
for motifs connected to the expression data using motif
representations that can be either consensus string written in
IUPAC degenerated symbols (FIRE and RED2, [5,14]) or
PWMs (MatrixREDUCE, [16]). Each of these algorithms
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returns an internally computed significance score for each
predicted motif. The significance cut-offs used here were
either default cut-offs (thereby following the recommenda-
tion of their authors) or somewhat low or relaxed cut-offs
(for MEME and RED2) when it seemed relevant to increase
the number of motifs returned. Input data, parameter
settings and results are detailed in electronic supplementary
material, S1 appendix A5.

Motif discovery without auxiliary data using MEME with
different settings (zero- or third-order Markov background,
with or without palindromic constraints) returned only up
to eight motifs with E-value less than or equal to 1 (see elec-
tronic supplementary material, S1 appendix A5.1). These
motifs included motifs describing general properties of the
L. monocytogenes promoter regions, such as SigA −10 box,
the presence of a RBS and of T-rich elements (our M59.9),
as well as more specific motifs that are relatively abundant
and/or of high information content (IC1 in table 1): M70.6,
CcpA and Fur. A variant of the sequence element described
by M20.1 and M61.3 is also found. MEME which implements
an expectation-maximization algorithm for maximum likeli-
hood inference was the slowest of the four algorithms (still
substantially faster than one run of our algorithm), taking
between 18 h and 35 h depending on the settings.

The three algorithms (MatrixREDUCE, FIRE and RED2)
searching for motifs related to expression data returned only
short motifs (lengths up to 9) due to the use of k-mers as
seeds in the initial steps of the searches (see electronic sup-
plementary material, S1 appendix A5.2–4). With some
parameter settings, they were all able to retrieve SigB −10
box (M29.8) which presents the particularity of being abundant
and to exhibit a strong link to expression profile. It is also short
and contains adjacent high information content PWM columns
which makes it ideally suited for approaches based on k-mers
(figure 4b). MatrixREDUCE also discovered a short motif that
corresponds to the central part of PrfA. This motif presents
the particularity of exhibiting, by far, the strongest link with
expression data among all the motifs that we discovered (see
column FC in table 1). Thus, comparison of our results with
those of these four algorithms illustrates the utility of the stat-
istical model described in this work: it combines the good
behaviour of purely sequence-based approaches, like MEME,
with the benefits of using expression data.
4. Discussion
The methodology developed in this work provides a new
integrated framework for the discovery of regulatory motifs
in bacteria with the help of transcriptome data (exact
positions of TSSs and expression profiles).

By modelling the sequence and incorporating expression
data as covariates, the method inherits the good behaviour of
pure sequence-based approaches grounded onwell-established
statistical models of DNA sequences, such as implemented in
MEME [6]. This can be connected to earlier works that have
incorporated external data in sequencemodels formotif discov-
ery via the definition of informative priors to favour motifs
whose occurrences are found in regions of the genome that
are more likely to contain binding sites; for instance because
they are conserved between species or depleted in nucleosomes
[42–44]. In our work, the relevant covariates that describe how
the probability of occurrence of a motif differs between
promoters are automatically selected together with the coeffi-
cients that specify their contributions and this is achieved
simultaneously for many motifs. We also show how we can
account for covariates with complex structures such as the pos-
itions of the sequences in a tree. The idea of using a tree whose
topologyandbranch lengths reflect similarities between activity
profiles is to provide an alternative to the use of a predefined set
of co-expression clusters. It is also found in the previous model
and algorithm that we specifically developed for de novo
discovery of sigma factor binding sites [10]. However, proba-
bilistic models are completely different. In [10], to give to
sequences which are close in the tree (hence in the expression
space) a greater chance to harbour binding sites for the same
sigma factor, the occurrences of the different possible motifs
are modelled as resulting from an ‘evolution’ process along
the branches of the tree. The motivation for introducing here
the use of a probitmodelwas to handlemore complex represen-
tations of the expression space than a single tree. With our
extended probit model, several concurrent descriptions of the
expression space can coexist (trees, continuous vectors) and
the algorithm selects and combines the most relevant for each
motif, with the possibility to dichotomize continuous vectors
according to automatically adjusted cut-off values. This
contrasts with selection of expression summary measures
beforehand to which other approaches are subjected. It also
makes the algorithm particularly well adapted to exploit com-
pendium of expression data (the dataset considered in this
work aggregates results from 31 published studies).

Another novel aspect of our sequence model is to allow
overlaps between motif occurrences. This is a key ingredient
to simplify the model and to facilitate MCMC updates when
searching for multiple motifs. Importantly, we show here that
in the same run the different PWM components converge to
distinct motifs, thereby providing a alternative to the heuristic
consisting of searching for motifs one-at-a-time and masking
predicted occurrences in subsequent searches to avoid redis-
covery of the same motifs (as implemented in MEME [6]). In
this aspect, our model based on explicit modelling of motif
occurrence overlaps appears as a proper statistical framework
to implement what [45] named ‘repulsion’ and for which
they proposed incorporating ad hoc repulsive forces between
parallel MCMC runs. Binding sites do overlap in bacterial gen-
omes [46] and our choice of modelling the contribution of
different motifs that overlap by averaging the nucleotide emis-
sion probability density functions (PWM columns) is the
simplest but probably not the most biologically realistic.
Indeed, we also considered a more complicated model in
which PWM columns contribute as a function of their infor-
mation content. This satisfies the intuition that if two motifs
overlap and one has a strong preference for a nucleotide at a
particular position whereas the other has no or little preference,
the motif with the strong preference tends to ‘impose’ its
choice. In electronic supplementary material, S1 appendix
A1–2, we refer to this model as the θ-dependent weight mixture
model of motif overlap and we describe its implementation.
Because of its drawbacks (a dependence structure making
that θ can no longer be marginalized out) we have decided
to use here only the simple model of motif overlap.

Each run of our algorithm takes ≈2 weeks on a dataset
like the one studied in this study. High computational cost
is inherent to the MCMC machinery, even if, to some
extent, the code could probably be optimized. This cost is
compensated by the purpose of the approach which is to
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integrate a large amount of heterogeneous information on
sequences, TSSs, and expression profiles in order to retrieve,
at once, a maximum number of motifs. In practice, most of
the time is spent in the update of a where each possible pos-
ition of occurrence are evaluated for each motif at each
sweep. Thus, time complexity is approximately proportional
to the total length of the sequences times the total width of
the PWMs plus a small term roughly in the square of the
total width for taking motif occurrence overlaps into account.
Furthermore, the analysis that we conducted is based on sev-
eral runs that serve to unambiguously identify peaks in the
posterior landscape. These peaks are identified by the conver-
gence of several runs to the same neighbourhood in a space
of very large dimension. Here, we limited our analysis to
10 runs that were conducted in parallel. These 10 runs ident-
ified 40 stable motifs but it would not be surprising to find
several other motifs by adding more runs, since some of
the biologically known motifs have here only be found by
two or three runs (Rex, Spx, CcpB). Future studies on other
datasets may include more runs.

As mentioned in the introduction, L. monocytogenes was
well suited for a proof-of-principle application of the
method. Its regulatory network contains features shared with
the related Gram-positive model bacterium B. subtilis and fea-
tures that are specific, such as those involved in pathogenicity.
Comparison of our list of 40 motifs with literature data vali-
dated the method by proving its ability to re-discover, in a
pure de novo manner, regulons of many known TFs.

In essence, the method is based on the search for ‘over-
represented’ motifs whose modelling significantly improves
the probabilistic representation of the DNA sequence as
measured in the likelihood. It is thus only adapted to identify
the regulons of TFs playing the coordinating roles of regulat-
ing the expression of several to many transcription units.
These so-called global transcription factors are opposed to
local TFs that account for the vast majority of TFs in bacteria
but regulate only one or very few targets in a specific bio-
logical pathway [47,48]. For regulons of TFs that have been
previously subjected to analyses by transcriptomics (e.g.
SigB, LexA, Fur, LiaR, PrfA, VirR), our results contain
de novo predictions based on the presence of motif occur-
rences made in a unified framework incorporating
experimentally determined TSS position and expression
data. This is interesting since contributions of direct and
indirect regulations have not always been fully disentangled
in the literature by identification of transcription factors
binding sites. Our results also contain the first published
global predictions for the regulons of several TFswhose impor-
tance is suggested by knowledge in other bacteria such as B.
subtilis, but which have not yet been experimentally studied
in L. monocytogenes (CcpA, Rex and Spx). Detection of Spx
binding sites is a particularly striking achievement since its
consists of a very short motif with a constrained position of
occurrence directly upstream of SigA−35 boxwhich remained
elusive until the use of dedicated ChIP experiments and
regression analyses in B. subtilis [37].

A motivation of our work was to discover new important
regulons. An interesting result, is the identification of the par-
tially palindromic motif M58.7 whose occurrences upstream of
genes encoding the translation apparatus suggest a role in con-
trol of growth rate. In the Gram-positive model bacterium
B. subtilis, as well as in Escherichia coli, there exists a mechanism
known as the stringent response [49,50]. In both bacteria, and
probably also in L. monocytogenes [51], this regulatory mechan-
ism acts by decreasing the production of the translation
apparatus components when the resources in the medium
become too scarce. Univocal coupling between available
resources and growth rate is however not necessarily the most
appropriate in all circumstances. The existence of dedicated
regulatory mechanisms that control the growth rate, even in
the presence of nutrients, may thus not seemunexpected, in par-
ticular for an intracellular pathogen like L. monocytogenes. The
new regulon that we detected in L. monocytogenes might be
an instance of such a mechanism whose biological role and
regulatory molecules remain to be identified.
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