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Abstract 15 

The understanding of plant organ size determination represents an important challenge 16 

especially because of the significant role of plants as food and renewable energy sources and 17 

the increasing need for plant-derived products. Most of the knowledge on the regulation of 18 

organ growth and the molecular network controlling cell division and cell expansion, the main 19 

drivers of growth, is derived from arabidopsis. The increasing use of crops, such as tomato, for 20 

research, is now bringing essential information on the mechanisms underlying size control in 21 

agronomical important organs. This review describes our current knowledge, still very scarce, 22 

of the cellular and molecular mechanisms governing tomato fruit size and proposes future 23 

research to better understand the regulation of growth in this important crop. 24 

 25 

Tomato fruit, an excellent model to study growth and development Fruit size regulation 26 

In flowering plants, fruits are crucial organs since they protect the seeds during their 27 

development and allow their dispersal after maturation. Fruits also form an essential part of 28 

human diet and largely contribute to human health by providing a large variety of compounds 29 

including fibres, vitamins or phenolic compounds. Among the fruits produced worldwide, 30 

tomato is one of the most consumed. Tomato (Solanum lycopersicum) fruit is a low caloric 31 

source with high nutritional qualities since it contains lycopene, ascorbic acid, flavonoids and 32 

potassium. In addition to its specific biochemical properties and nutrient importance, with a 33 

short life cycle, high seed production, tomato has become a broadly used model for research on 34 

fleshy fruit physiology and development, a niche that cannot be filled by the model plant 35 

arabidopsis (Arabidopsis thaliana) producing a dry fruit, the silique. Indeed, while the silique 36 

grows after fertilization with little tissue differentiation, until it reaches its final length and then 37 

enters a senescence program, the growth of the tomato fleshy fruit is accompanied by important 38 

tissue differentiation, followed by the entry in a complex biochemical program, the ripening, 39 

which makes the fruit attractive and ready to disperse seeds [1]. The tremendous genetic 40 

diversity present in both wild and cultivated tomatoes, for a large number of which genome 41 

sequences are available, provides an extensive reservoir of resources available for genetic 42 

studies and trait discovery [2]. Especially, the domestication of tomato, which triggered the 43 

modifications of a wide range of morphological and physiological characters compared to its 44 

ancestral parents, resulted in a huge diversity in fruit weight and shape [3], thus providing key 45 

experimental systems to study growth determination. The diversity in fruit weight is very well 46 
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exemplified when comparing the wild Solanum pimpinellifolium producing fruits weighing 47 

around 1 g with the domesticated Solanum lycopersicum var. lycopersicum bearing fruits of 48 

more than 1 kg. Despite this huge diversity in fruit size obtained through domestication, the 49 

underlying cellular changes and genetic networks are still poorly known. Most of the knowledge 50 

on the molecular networks regulating growth is derived from studying the arabidopsis leaf, a 51 

model that was very valuable to define the actors in this process [4]. However, since the wiring 52 

of the networks might vary between different species, the translatability can sometimes be 53 

difficult. With the rapid advances in deep sequencing, in quantitative genetics and gene editing 54 

technologies, it is now possible to directly identify the components and connections of 55 

regulatory networks and potentially modify them in crops for breeding. These technologies are 56 

easily applicable to tomato, making of this plant an excellent model to dissect the genetic 57 

networks determining fruit growth. In this review, we present the current knowledge of the 58 

cellular and molecular mechanisms that govern tomato fruit size, and discuss future outlook on 59 

research to understand organ size determination. 60 

61 

Tomato fruit growth: the pericarp, site of a complex set of cellular events determining 62 

final fruit size 63 

After a period of vegetative growth, the transformation of the shoot apical meristem (SAM) 64 

into an Inflorescence Meristem (IM) marks the onset of the reproductive phase. In several 65 

plants, including tomato, the vegetative growth continues concomitantly to the reproductive 66 

phase through the activation, at the basis of the last initiated leaf, of a lateral meristem, also 67 

named sympodial meristem, thus defining the sympodial growth character [5]. As for the 68 

vegetative axis, the inflorescence shows a sympodial development in most of the cultivated 69 

tomatoes. The IM differentiates into a Floral Meristem (FM) to give rise to one flower and a 70 

new IM arises from the FM. This type of development gives the zigzag pattern to the tomato 71 

inflorescence as illustrated in Figure 1A. Once the FM differentiates, the development of the 72 

flower primordium will determine the organisation of the flower composed of four types of 73 

organs: the sepals, the petals, the stamens and the carpel. Wild tomato flowers are generally 74 

composed of 5 sepals, 5 petals, 5 stamens fused in cone and the pistil resulting from 2 fused 75 

carpels, is formed by the ovary, the style and the stigma [6], while cultivated tomatoes can 76 

contain up to 10 fused carpels such as in the Giant Heirloom tomato variety [7]. The tomato 77 

fruit differentiates after fertilisation from a pre-existing structure after fertilisation, the ovary, 78 

and is composed by the pericarp, the locular tissue surrounding the seeds, the placenta, the 79 
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columella and the septum corresponding to the fused edge of the carpels (Figure 1B). The 80 

pericarp, corresponding to the fleshy part of the fruit differentiates from the ovary wall. During 81 

and after flower development, two cellular events, cell division and cell expansion, occurring 82 

in different cell types, at different developmental times and different rates will determine the 83 

final fruit size. Figure 2 illustrates in details the different steps of tomato fruit development, 84 

with a particular insight for the pericarp. 85 

Tomato flower development can be divided into 20 stages and carpel formation initiates at stage 86 

4 [6]. Between stage 11 and maturity, the ovary displays intensive growth: the volume of the 87 

ovary wall increases by 2-fold and its thickness by 25% [8]. This growth is mostly supported 88 

by anticlinal cell divisions, increasing the number of cells in a given cell layer. Only one cell 89 

layer originating from a periclinal cell division is added to the ovary wall after stage 11 to reach 90 

around 9 cell layers at maturity. At stage 18, the ovary reaches its mature stage and growth is 91 

then arrested. Flower development ends at the anthesis stage which corresponds to the 92 

pollination and the fertilization of the ovary, leading to fruit set and triggering the onset of fruit 93 

development. At anthesis, the cells composing the ovary wall of the mature ovary, i.e. the future 94 

pericarp, have a homogeneous size with a square shape [8,9]. The pericarp is made up of 95 

different tissues, the exocarp, the mesocarp and the endocarp, corresponding to distinct cell 96 

layers which behave differently at the cellular level (Figure 1C) [10]. At anthesis, the exocarp 97 

corresponds to the three outer layers (E1, E2, E3), the endocarp to the two inner layers (I2, I1) 98 

and between the two, the four central layers form the mesocarp (M) [8]. Interestingly, the 99 

histological analysis of 20 tomato lines showing a wide diversity in final fruit weight, has shown 100 

that the pericarp characteristics at anthesis are mostly conserved regarding thickness, cell area 101 

and number of cell layers [11], showing that the size of the pericarp and consequently that of 102 

the fruit, is mainly determined after anthesis.  103 

The successful fruit set is characterized by the growth resumption inside the ovary due to cell 104 

division activity [8,12]. After fruit set, tomato fruit growth is classically described as the 105 

succession of two phases, a phase of cell division followed by a phase of cell expansion. 106 

However, this view is very simplistic, since detailed quantification of cell division and cell 107 

expansion within the pericarp has shown that these two processes co-exist and overlap very 108 

early during fruit growth (Figure 2) [8,10,13]. In addition, cell layer-specific patterns of cell 109 

division and cell expansion have been described, highlighting the complex coordination of these 110 

two processes during fruit growth. For example, the different parts of the pericarp behave 111 

differently with the highest mitotic index found in the exocarp. Moreover, within the exocarp, 112 
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the three cell layers do not show similar division plane orientations. The outermost layer, E1, 113 

increases the number of cells through anticlinal divisions thus driving the increase in fruit 114 

perimeter and thus volume. The cells from the two other exocarp layers (E2 and E3), generate 115 

the new mesocarp cells layers (M’) through periclinal divisions. To a lesser extent, the endocarp 116 

layer I2 takes part in the formation of few new mesocarp layers [8]. Only few divisions, 117 

periclinal or oblique, occur in the mesocarp. Depending on the genotype, cell division in the 118 

pericarp extends until 5 to 25 Days Post Anthesis (DPA), respectively in the wild tomato 119 

Solanum pimpinellifolium and in a large cultivated tomato variety Levovil [13,14]. In the small 120 

cherry tomato wva106 variety, this period of 9 days after pollination results in an increase of 121 

cell number by 30-fold in E1 and 19-fold in E2 [8]. Depending on the genotype, the number of 122 

cell layers in the pericarp ranges from 9 to 26 cell layers [10,11,13]. 123 

Concomitantly to the intensive cell division period, the mesocarp cells (M) expand slightly 124 

before anthesis and then show a high rate of expansion directly after anthesis until 20 DPA, 125 

resulting in an increase of the initial volume by 1550-fold in the wva106 variety [8]. After the 126 

division phase, cells of the other layers enter progressively in expansion leading for example to 127 

an increase in volume of 12-fold for cells in the E1 and 400-fold in the I1. Contrary to the 128 

original mesocarp cells, the cells from the new mesocarp layer (M’) start to expand directly 129 

after their formation and continue until 36 DPA to reach an increase of 1350-fold in volume in 130 

the wva106 variety. As for the cell division, the orientation of cell expansion is important for 131 

pericarp growth. Indeed, a detailed phenotypic characterization of fruit cellular parameters in 132 

12 mutants presenting different fruit weight and tissue morphology has revealed that anisotropic 133 

cell expansion, expansion along the abaxial-adaxial axis, is an important parameter for pericarp 134 

thickness control [9].  135 

The intense cell expansion period during fruit growth is characterized by the occurrence of the 136 

endoreduplication process [15]. Endoreduplication is the result of a modified cell cycle, named 137 

endocycle, during which DNA synthesis occurs independently from mitosis [16,17]. 138 

Endoreduplication which leads to an increase in ploidy level, takes place already before anthesis 139 

since few nuclei of an 8C DNA content have been observed [8]. During fruit development, the 140 

iteration of endocycles leads to increased DNA content from 4C until 512C in some tomato 141 

cultivars [11]. In the pericarp, ploidy levels and cell areas are positively correlated [18]. 142 

Bourdon et al. (2012) showed that endoreduplication acts as a morphogenetic factor involved 143 

in cell size control according to the ‘karyoplasmic ratio theory’: it contributes to maintain 144 

homeostasis of cytoplasmic components in a highly structured cellular system, where multiple 145 
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physiological functions are integrated to support cell growth during fruit development [19]. The 146 

contribution of endoreduplication in the determination of cell size is supported by a dynamic 147 

model of tomato fruit development that includes cell division [20].  148 

After this intense growth period, the number of cells is multiplied by 15, the cell volume by 149 

170 and the pericarp volume by 2600-fold in the wva106 variety [8]. The pericarp is thus made 150 

of a heterogeneous population of cells with small cells on the outside and larger cells in the 151 

middle of the tissue [18]. This variation in final cell size might result from the different 152 

contribution of each cell layer to the fruit growth. Indeed, external layers could support the 153 

increase in volume through periclinal divisions and the inner layers might contribute to the 154 

increase in volume of the fruit mostly through expansion [8]. The occurrence in a coordinated 155 

manner of these two events triggers the transformation of a 1-2 mm ovary into a 2-10 cm fruit 156 

in diameter.  157 

Despite the existence of a large diversity in tomato fruit phenotypes, fruit pericarp growth can 158 

be described as the succession of overlapping and interconnected cellular events with different 159 

onsets, with different rates and duration in function of the cell layers: anticlinal, periclinal and 160 

oblique cell divisions, and isotropic and anisotropic cell expansion (Figure 2). As a 161 

consequence, the final fruit size can only be achieved through a strict spatial and temporal 162 

control and coordination of these events. The analysis of mutants, transgenic lines or tomato 163 

genotypes with altered fruit size and shape led to the identification of genes involved in some 164 

of these processes. In the following section, we describe genes that are involved in each process, 165 

and present how altering the different phases of fruit development starting from ovary 166 

development until the onset of ripening, can affect the final size of the fruit (Figure 3). We also 167 

point the still missing information that would allow building a genetic network for fruit growth 168 

determination. 169 

 170 

Final fruit size: a highly regulated process from the ovary development to fruit ripening 171 

Increasing carpel/locule number by altering meristem size  172 

Since the fruit is derived from the pre-existing ovary after fertilization, one can expect that an 173 

alteration in ovary size might affect final fruit size. A first mean to produce larger fruits by 174 

modifying the size of the ovary is well exemplified in the tomato beefsteak variety. In this 175 

variety, the number of locules, the cavities derived from fused carpels harboring the seeds, 176 
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reaches up to 10, thus leading to a fruit that weighs approximating 1 kg, while wild small 177 

tomatoes or small-fruited cultivars only contain two locules [21]. This increase in locule 178 

number, corresponding to carpel number, is determined as early as floral meristem development 179 

and organisation start [22,23]. Two natural mutations, lc (locule number) and fas (fasciated), 180 

mainly control the number of locules in tomato. Lc and fas are affected in the arabidopsis 181 

orthologous genes WUSCHEL (WUS) and CLAVATA3 (CLV3) respectively, which are involved 182 

in meristem organisation (Figure 3A). In arabidopsis, WUS encodes a transcription factor 183 

involved in the maintenance of stem cell identity within the shoot apical meristem [24]. An 184 

overexpression of AtWUS produces flowers with supernumerary organs lacking the most central 185 

organs [25]. In tomato, 2 single-nucleotide polymorphisms (SNP) in the downstream region of 186 

the putative orthologous gene, SlWUS, are responsible for the increase in locule number in the 187 

lc mutant [26]. The occurrence of these SNPs are hypothesized to suppress the binding of the 188 

transcriptional repressor AGAMOUS that negatively regulates WUS such as in arabidopsis 189 

[27]. As a result, the expression of SlWUS is increased in floral buds of lc which in turn may 190 

allow the maintenance of a larger stem cell population resulting in increased locule numbers 191 

[28,29]. As a second important locus for locule number determination in tomato, the fas locus 192 

harbours a modification in the promoter of CLAVATA3, SlCLV3 [23]. In arabidopsis, CLV3 193 

encodes a secreted glycopeptide involved in the restriction of meristem size through the 194 

activation of the receptor kinase CLV1 [30]. The loss-of-function mutant clv3 produces 195 

enlarged SAM and FM with supernumerary flowers [31]. In arabidopsis the production of 196 

double mutants demonstrated that a WUS/CLV3 negative feedback loop determines the 197 

organisation and the number of flower organs [32]. Interestingly, SlCLV3 shows similar pattern 198 

of expression as SlWUS [28], and lc and fas loci have synergistic effects on locule number and 199 

thus fruit size when combined. The presence of the fas locus alone increases inflorescence 200 

branching in addition to locule number [23]. The downregulation of SlCLV3 through RNAi 201 

approach shows similar phenotypes, but also has deleterious effects such as the development of 202 

ovaries within the initial ovary [28]. In addition, SlCLV3 is down-regulated in a fas background 203 

showing that the fas mutation is a partial loss-of-function of SlCLV3 [28]. Interestingly, Chu et 204 

al (2019) showed a positive trend between locule number and FM size resulting from the effects 205 

of lc and fas. Two additional mutants, fasciated and branched (fab) and fasciated inflorescence 206 

(fin), also display enlarged meristems, fasciated flowers with more floral organs and produce 207 

larger fruits as a consequence of additional carpels [23]. The genes underlying these phenotypes 208 

in the fab and fin mutants correspond to CLV1 and an arabinosyltransferase, respectively 209 

(Figure 3A). In fab, a missense mutation was found in CLV1 and in fin, missense and deletion 210 
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mutations leading to an absence of transcripts were found in a predicted HYDROXYPROLINE 211 

O-ARABINOSYLTRANSFERASE (HPAT). In arabidopsis, CLV1 encodes a receptor kinase 212 

which binds to CLV3 as to restrict WUS expression [33]. The rescue of arabinosyltransferase 213 

mutants by an arabinosylated CLV3 showed that CLV3 must be fully arabinosylated to perform 214 

its function [23]. In arabidopsis, the significance of arabinose modifications is less clear since 215 

null mutants for HPAT genes do not have a clv phenotype [34]. The fab and fin mutations have 216 

additive effect and thus act in the determination of meristem size through the WUS/CLV 217 

pathway. The loss of function of the EXCESSIVE NUMBER OF FLORAL ORGANS (SlENO) 218 

gene results in an increase of the FM size leading to the production of larger multilocular fruits, 219 

a phenotype that is much more pronounced in a lc mutation background [33]. SlENO encodes 220 

a transcription factor belonging to the superfamily APETALA2/ETHYLENE RESPONSIVE 221 

FACTOR (AP2/ERF), which is supposed to regulate directly SlWUS (Figure 3A) [33]. During 222 

domestication, a 85pb deletion in the SlENO promoter was selected leading to a reduction of 223 

its expression, and thus bigger fruits [33]. Among the actors putatively involved in locule 224 

number determination are the following genes: INHIBITOR OF MERISTEM ACTIVITY 225 

(SlIMA) and  KNUCKLES (SlKNU) encoding respectively, a MIni zinc-Finger (MIF) and a 226 

transcription factor belonging to the C2H2 zinc-finger protein family (Figure 3A) [35,36]. The 227 

loss-of-function of SlIMA and SlKNU enlarges fruit size through an increase in carpel number, 228 

while the overexpression leads to the opposite effect, i.e. a decrease in fruit size. Together with 229 

TOPLESS, these two proteins form a transcriptional complex that recruits Histone deacetylase 230 

19, as to regulate negatively the expression of SlWUS, and thus impair stem cell activity within 231 

the floral meristem [35]. 232 

In tomato, the control of meristem size by the WUS-CLV pathway is thus essential for fruit size 233 

determination through the regulation of locule number (Figure 3A). Interestingly, this trait has 234 

been selected during domestication to produce large fruit-bearing plants by modulating the 235 

WUS-CLV signalling module mainly through mutations in cis-regulatory elements [37,38]. 236 

Further research is now needed to identify the complete set of transcriptional regulators 237 

responsible for the modulation of this genetic network. 238 

Promoting cell division in the ovary and the fruit 239 

Cell division control during ovary development 240 

During flower development, cell division is the main driver for growth inside the ovary. The 241 

spatial modification of the rate or duration of cell division in the ovary will thus influence its 242 

final size and consequently final fruit size. Three QTLs, namely fs8.1, sun and ovate, controlling 243 



9 

 

fruit elongation within the cultivated tomato germplasm, are involved in the regulation of cell 244 

number along different growth axes of the ovary with fs8.1 being the only one to ultimately 245 

increase fruit weight (Figure 3B) [21,39].  246 

The fs8.1 locus is present in processing tomatoes, referred to as square tomatoes [40]. In plants 247 

harbouring the fs8.1 locus, the fruit shape index, corresponding to the ratio between the 248 

longitudinal and equatorial diameter, is different from plants harbouring the WT allele and leads 249 

to more elongated and heavier fruits [39]. This effect of fs8.1 originates from the elongation of 250 

the ovary through the increase in cell number in the proximal–distal direction without any 251 

change in the medio-lateral direction (Figure 3B). In the abaxial-adaxial direction, an increased 252 

number of cell layers was also found in the fruit possibly leading to thicker pericarp. While cell 253 

size was not altered in the ovary, cells were smaller in the mature fruit pericarp of the fs8.1 254 

fruits. So far, the identity of the gene underlying the fs8.1 locus remains unknown [39].  255 

Two other major QTLs control fruit elongation: these are sun and ovate that do not lead to an 256 

increased fruit weight, on the contrary to fs8.1, [41,42]. Ovate confers to fruits a pear shape by 257 

increasing cell number in the proximo-distal direction and decreasing cell number in the 258 

mediolateral direction in the ovary, thus leading to increased proximal end of the fruit (Figure 259 

3B) [43]. In sun, elongated fruits are formed which contain more cells along the proximo-distal 260 

direction within the pericarp and the columella, while less cells are produced in the medio-261 

lateral direction in the columella and the septum (Figure 3 B) [41]. As for ovate and fs8.1, the 262 

changes in sun occur during ovary development, but fruit elongation is mainly promoted shortly 263 

after anthesis. The genes underlying ovate and sun have been identified and correspond 264 

respectively to a member of the OVATE family protein (OFP) proposed to regulate cytoskleton 265 

organisation [44,45] and to a member of the IQ67-domain (IQD) protein family that is involved 266 

in Ca2+ signal transduction and cellular trafficking [46,47]. In ovate, the mutation results in a 267 

premature stop codon [44,45] while in sun the phenotype is caused by an interchromosomal 268 

duplication leading to increased expression of SlSUN [48]. However, the mode of action of 269 

these two genes in the control of cell division remains totally elusive and further research should 270 

provide insight into the relation between cellular trafficking and cell proliferation.  271 

In conclusion, sun, ovate and fs8.1 control different mechanisms regulating ovary and fruit 272 

elongation acting on different spatial and temporal features of cell division (Figure3B). The 273 

synergistic interaction between these 3 loci suggest that these three genes are involved in 274 

distinct pathways which may converge at a common node for the regulation of proximo-distal 275 

organ patterning (Figure 3B) [42,49]. These pathways may involve hormone regulation 276 
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[42,49], but this still remains to be deciphered. Recently, it was shown that an auxin application 277 

during ovary development leads to elongated pear-shaped fruits resulting from cellular changes 278 

similar to the effects of ovate [49]. However how these three genes involved in fruit shape 279 

determination exert their roles in the control of cell division patterning still requires more 280 

investigations to be understood. 281 

Cell division control during both the ovary and the fruit development 282 

The process of domestication in tomato has resulted in the selection of plants presenting a large 283 

diversity in fruit shape, but also in larger fruit size. About thirty QTLs related to fruit 284 

size/weight have been identified in tomato [50]. The fw2.2 locus (for fruit weight QTL of 285 

chromosome 2, number 2) is responsible for up to 30% of the fruit weight variation [51]. The 286 

gene underlying fw2.2 locus, SlFW2.2, encodes a protein containing a PLAC8 (Placenta-287 

specific gene 8 protein) motif predicted to be important for the membrane localisation of the 288 

protein and belongs to the multigene CELL NUMBER REGULATOR (CNR) family [52]. Two 289 

different alleles, a “large fruit allele”, present in modern tomatoes, and a “small fruit allele” 290 

inherited from wild tomato ancestors, differ mainly from polymorphisms in the upstream 291 

regulatory region of the gene and lead to spatial and temporal differences of expression [53]. 292 

The “large fruit” allele is expressed earlier during fruit development, while the “small fruit” 293 

allele is expressed later and maintained longer [54]. In plants harbouring the “large fruit” allele, 294 

the ovary is larger, mainly due to an increase in the number of cells without any change in cell 295 

size showing that SlFW2.2 is involved in regulation of cell number (Figure 3B) [53]. In 296 

addition, at early stage of fruit development, the mitotic index is increased without any change 297 

in cell size recorded in the placenta and the pericarp and is negatively correlated with the 298 

expression of SlFW2.2 [54,55]. The increase in cell division not followed by a modification of 299 

the thickness of the pericarp might indicate that SlFW2.2 act as a negative regulator of anticlinal 300 

cell divisions (Figure 3C). In several plants species, orthologues of SlFW2.2 are also involved 301 

in the regulation of the reproductive organ size such as in maize (Zea mays), where the 302 

overexpression of ZmCNR1 leads to the formation of small organs [52]. Despite many studies 303 

on FW2.2, the mechanism of action by which such a membrane protein can negatively regulate 304 

cell number and thus fruit size, as well as the exact changes occurring at the cellular level (cell 305 

division rate, cell division duration...) are not yet understood. 306 

Cell division control during fruit development 307 

Starting with the same pool of cells inside the ovary, a modification of the cell division rate or 308 

duration after anthesis can also affect the final size of the fruit. Among the QTLs related to fruit 309 
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weight/size, fw3.2 is the second major locus controlling tomato fruit mass [56]. The study of 310 

nearly isogenic lines that differ for the allele at fw3.2, has revealed that the increase in fruit size 311 

appears during fruit development. At mature stage, cytological analysis showed an increase in 312 

the number of cell layers within the pericarp, leading to larger fruit whereas cell size remains 313 

unchanged (Figure 3C) [56]. The increase in cell layer number and the delayed fruit ripening 314 

suggest an extension of the cell division period. The gene underlying fw3.2 was identified as 315 

being an orthologue of AtKLUH/CYP78A5 shown to control organ size in arabidopsis and 316 

encoding a CYTOCHROME P450 [56,57]. In plants carrying the large fruit allele of fw3.2, a 317 

mutation in the upstream region was proposed to lead to an increase in SlKLUH gene 318 

expression. However, recently, the pan-genome establishment after long read sequencing of 319 

100 diverse tomato lines, revealed that the increased expression of SlKLUH is caused by a 320 

tandem duplication of the gene at the fw3.2 locus [58]. This gene dosage effect at fw3.2 was 321 

confirmed by the use of CRISPR-Cas9 genome editing targeting one to several copies of 322 

SlKLUH [58]. Several orthologues of SlKLUH may also regulate fruit mass since in chile pepper 323 

a fw3.2 QTL associated with KLUH has been found as in tomato [56]. In maize leaves, the 324 

orthologue of SlKLUH, ZmPLA1,  triggers an extended phase of cell division allowing a higher 325 

biomass production and an improved seed yield when overexpressed [59]. Although KLUH 326 

seems to control cell division in different plant species, its mechanism of action, postulated to 327 

act through the production of a still unknown mobile signal, remains to be elucidated [57]. 328 

329 

Effect of altering the cell cycle machinery 330 

The correct control of cell number during flower or fruit development is thus a key component 331 

for final fruit size control. One way to study the impact of cell division on fruit growth is to 332 

target directly genes regulating the cell cycle. The progression throughout the successive phases 333 

of the mitotic cycle is controlled by heterodimeric protein complexes made of a catalytic subunit 334 

referred to as CYCLIN-DEPENDENT KINASE (CDK), and a regulatory subunit CYCLIN 335 

(CYC). The CDK-CYC complex is highly regulated at post-transcriptional level by proteolysis, 336 

phosphorylation or binding of regulatory proteins [60]. However, strongly altering the 337 

expression of cell cycle regulators can promote cell division rate, duration or pattern but also 338 

alter cell expansion, often not leading to an increase in fruit size, thus showing the 339 

interconnection existing between these two processes [61,62]. For example, gain and loss-of 340 

function of SlCCS52A (CELL CYCLE SWITCH 52A), encoding a protein part of the complex 341 

ANAPHASE PROMOTING COMPLEX/CYCLOSOMECCS52A (APC/CCCS52A ) targeting 342 

CYCLINs for destruction through proteolysis, lead to similar fruit phenotype namely a 343 
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reduction of size but differing at cellular level. Indeed, downregulation of SlCCS52A impaired 344 

cell expansion without affecting cell division showing the involvement only after the cell 345 

proliferation phase. The kinetics study of the gain-of-function lines fruit growth revealed an 346 

extent of cell expansion in late stages of fruit development and a reduction of anticlinal division 347 

supposed to promote the increase in volume of the fruit [62]. This extend of cell expansion was 348 

accompanied by an increased ploidy level supporting the proposed role of endoreduplication in 349 

promoting growth.  350 

Unfortunately, of all genes described above that are involved in the control of cell division, no 351 

direct connection to the regulation of the cell cycle machinery has been described. Obtaining 352 

this information would help finding potential common targeted components of this machinery 353 

and thus further building the gene regulatory network determining tomato fruit size. In addition, 354 

too few mutants affecting the endocycle have been studied and for mutants affected in cell 355 

expansion, as described below, often, no information is available on cell ploidy. To demonstrate 356 

the role of endoreduplication in cell expansion control, the analysis of both parameters in 357 

mutants should be done systematically. 358 

 359 

Altering cell expansion 360 

Cell expansion starts right after fruit set in the mesocarp cells, extends till ripening [8,10,11,13] 361 

and is responsible for a rapid and major increase in fruit size. Among the QTLs controlling fruit 362 

mass, fw11.3 explained as much as 8% of fruit weight variation [50]. The CELL SIZE 363 

REGULATOR (CSR) gene underlies the fw11.3 locus [63]. SlCSR encodes a protein of unknown 364 

function with a low level of expression in the fruit, only after the cell division phase. Cytological 365 

analysis of near isogenic lines showed an increase in pericarp thickness resulting from an 366 

increase in mesocarp cell size without any change in the number of cell layers [63]. The 367 

expression of the mutated allele in the wild type background highlighted that the allele 368 

increasing fruit weight encodes a truncated protein acting as a dominant allele acting as a gain 369 

of function. The orthologous gene for SlCSR in arabidopsis belongs to the FANTASTIC FOUR 370 

proteins (FAF) involved in the regulation of SAM size through a negative regulation of AtWUS 371 

[64]. SlCSR and AtFAFs are likely to share the same biochemical function within the cell but 372 

in different tissues [63]. This function needs to be investigated in addition to the speculated 373 

involvement of SlCSR, based on co-expression data, in the antagonistic action of auxin and 374 

cytokinin on cell enlargement [63]. 375 
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In tomato, the up-regulation of several transcription factors belonging to the GROWTH 376 

REGULATING FACTOR (GRF) family led to pleiotropic effects including shorter cotyledons, 377 

large flowers and higher plants [65]. In these plants expressing higher levels of SlGRF1 to -5, 378 

fruit size and weight are increased resulting from an increased size of the epidermal cells [65]. 379 

The SlGRF genes are thought to regulate growth by different means since opposite phenotypes 380 

on cell size are observed in the cotyledons and fruits of the SlGRF1 to -5 mutants. These 381 

differences are also observed in arabidopsis leaves with AtGRF1 and -2 controlling cell size 382 

whereas AtGRF5 regulates cell proliferation [66,67]. Further studies would be needed to 383 

specify the function of each individual SlGRF in the control of these cellular processes and to 384 

identify the targets of these transcription factors. 385 

The overexpression lines for the putative transcription factor, FRUIT SANT/MYB-LIKE1 386 

(SlFSM1) harbour smaller fruits [68] characterized by a thinner pericarp resulting from a 387 

decreased cell expansion. In these plants, cell expansion in leaves and hypocotyl is also 388 

impaired showing that SlFSM1 acts as a suppressor of cell expansion in various organs. The 389 

closest orthologues of SlFSM1, the Antirrhinum RADIALIS (AmRAD) and arabidopsis RAD-390 

like 2 (AtRL2) are involved in the asymmetries and radially symmetric flowers, respectively 391 

[69,70]. Looking for the protein partners of SlFSM1 allowed the identification of FRUIT 392 

SANT/MYB BINDING PROTEIN 1 (SlFSB1) and SlMYB1 was found to interact with SlFSB1 393 

[68]. Based on this interaction study using the tomato proteins and the AtRAD model network 394 

in arabidopsis, a binding competition of SlFSB1 by SlFSM1 and SlMYB1 was proposed as the 395 

mechanism involved in the regulation of differential cell expansion during fruit development 396 

[68,70]. It will be necessary to verify this model by altering the expression of these different 397 

players in single and higher order mutants and study the effect on fruit growth. 398 

In some cases, the alteration in pericarp thickness can be uncoupled from fruit size. For instance 399 

the loss-of-function of the GUANYLATE-BINDING PROTEIN1 (SlGBP1), induces a 400 

decrease in pericarp thickness through a decrease in cell size; however, the final fruit size 401 

remains unchanged [71]. In these plants, the difference in pericarp thickness only appears after 402 

20 DPA, and is accompanied by an early stop of cell expansion and the re-entry in division state 403 

of the cells indicating that SlGBP1 is involved in the maintenance of the differentiation program 404 

in pericarp cells through a yet unknown mechanism.  405 

406 

Hormone and fruit growth regulation 407 

Auxin and cell division 408 
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The modification of genes involved in hormonal regulation can impact on fruit size since 409 

important changes in hormone contents occur during fruit growth [72]. In pre-anthesis ovary in 410 

arabidopsis, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) factors repress the auxin 411 

signal by sequestering the AUXIN RESPONSE FACTOR (ARF), transcription factors which 412 

regulate the expression of auxin response genes. Hence the ovary remains in a phase of 413 

dormancy, in which cell division activities are inhibited [73]. Fertilization triggers an increase 414 

in auxin content leading to the destruction of the Aux/IAA and the release of the ARFs which 415 

then become available to transcribe their target genes and consequently trigger the resumption 416 

of the cell division process [74]. In tomato, treatment of unpollinated ovary by auxin can mimic 417 

the fecundation and leads to the development of pathenocarpic fruit [75]. The increase in auxin 418 

concentration inside the ovary following pollination is an important trigger for the growth of 419 

the ovary [72]. In tomato, the ARF family consists in 22 proteins [76]. SlARF9 expression is 420 

triggered by pollination and reaches the highest expression at 6 DPA, a pattern similar to auxin 421 

accumulation in the fruit [72]. The loss- and gain-of-function of SlARF9 result in larger and 422 

smaller fruits respectively [77]. Both at early and mature fruit stages, the SlARF9 RNAi lines 423 

show a decrease in cell sizes and more cell layers in the pericarp. In contrast, fruits from the 424 

pTPRP-SlARF9 line present an early increase in cell size and a decrease in cell layer number at 425 

later stages. Thus, SlARF9 seems to act as a negative regulator to fine-tune cell division during 426 

fruit growth [77]. Surprisingly the decrease in SlARF5 expression, using an amiRNA, leads to 427 

similar small fruit phenotype as the SlARF9 overexpression [78]. No obvious difference on 428 

fruit morphology was observed in early dividing fruit of amiSLARF5 lines but at later stages, 429 

the pericarp contained less cell layers, due to a shorter period of cell division, and larger cells 430 

compared to wild type plants. SlARF5 could thus be a positive regulator of cell division [78]. 431 

Auxin can also modulate the regulation of auxin responsive genes through the action of 432 

repressor proteins such as SlIAA17 [79]. SlIAA17 is highly expressed in the fruit at 10 DPA 433 

when cell expansion starts and its expression declines gradually up to the breaker stage. This 434 

peak of expression corresponds to one of the bimodal peak of auxin occurring at 10 and 30 DPA 435 

[12]. The study of SlIAA17 by RNAi approach has shown that the decrease in expression of this 436 

gene leads to the production of larger fruits through an increase of the pericarp cellular size 437 

without modification in the number of cell layers [79]. SlIAA17 interacts with several ARF 438 

proteins including SlARF5 [80]. Interestingly, the decrease of SlIAA17 and SlARF5 expression 439 

leading to opposite phenotype could corroborate with a repressor function of SlIAA17 on 440 

SlARF5. The role of auxin in regulating fruit growth seems complex and depending on the 441 

developmental stage of the fruit, different responsive proteins are involved. Additional research 442 
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is thus needed to understand the role of these auxin responsive genes and their possible 443 

connections during the course of fruit development.  444 

Gibberellins and cell expansion 445 

Many studies have demonstrated the important role of GA for fruit growth regulation using 446 

mutants or exogenous treatments [81,82]. As for auxin, a treatment of unpollinated ovaries with 447 

gibberellins (GA) leads to the formation of parthenocarpic fruit [83]. Auxin and GA pathways 448 

are interconnected as GA treatment induces an increase in auxin content and, in turn, auxin 449 

induces GA biosynthesis [84]. Nevertheless, GA seems to be mainly involved in cell expansion 450 

process in the fruit. PACLOBUTRAZOL RESISTANCES 2 (PRE2), belonging to the bHlH 451 

transcription factor family, is induced by GA and mediates plant response to GA [85]. SlPRE2 452 

overexpression lines exhibit a slight increase in fruit diameter whereas loss-of-function lines 453 

show a decrease in fruit size [86]. In RNAi lines for SlPRE2, the mesocarp cell size is reduced 454 

leading to a thinner pericarp. SlPRE2 seems to show similar function as AtPRE1 since both 455 

proteins are involved in cell elongation through GA modulating response [86–88]. The 456 

downregulation of another transcription factor involved in GA pathway, SlGRAS2, leads to a 457 

reduction of pericarp cell size and thus smaller fruit [89]. SlGRAS2 is expressed from ovary 458 

wall at anthesis to 10 DPA fruit. In the RNAi lines targeting SlGRAS2, the ovary wall is thinner 459 

but no change in the final number of cell layers in the pericarp was observed showing the 460 

involvement in SlGRAS2 in cell expansion regulation. In these lines, both GA biosynthesis and 461 

signal transduction pathways are inhibited.  462 

The increased expression of the transcription factor CYCLIN DOF FACTOR 4 (SlCDF4) under 463 

the control of PHOSPHOENOLPYRUVATE CARBOXYLASE promoter (pPPC2) used for a 464 

fruit specific expression with highest expression during the cell expansion phase [90], leads to 465 

the production of larger fruits through an increase in both cell layers and cell sizes [91]. In these 466 

plants, the hormone content is modified with higher GA and lower auxins levels. SlCDF4 may 467 

play a dual role on auxin and gibberellin synthesis thus regulating both cell division and 468 

expansion. The increase in fruit size and in GA content had already been observed with the 469 

overexpression of another member of the family, SlCDF3 [92] although its effect at cellular 470 

level was not described. As for auxin, GA plays an important role all along fruit development 471 

for cell enlargement control, but many of the genes involved in GA signal transduction still 472 

need to be discovered. In addition, even if a crosstalk between auxin and gibberellins seems to 473 

exist, its regulation to maintain the balance between cell division and cell expansion is not 474 

properly understood. 475 
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 476 

Concluding remarks and future outlook 477 

Tomato fruit is a complex 3-dimensional structure that relies on cell division and cell expansion 478 

to develop fully. These two processes occur in different cell types at different developmental 479 

stages and at different rates creating a high complexity of interconnected events, requiring a 480 

highly fine coordination. This complexity and fine coordination were already described for the 481 

planar arabidopsis leaf, often used as model to study growth mainly in 2-D, along two axes 482 

‘base-to-tip’ and the ‘middle-to-margin’ [93] while in the silique, cell expansion is the main 483 

driver of growth after fertilisation [94]. In tomato, the large diversity in fruit shape results from 484 

growth patterns occurring along three axes -“proximo-distal”, “medio-lateral” and “abaxial-485 

adaxial”- making of this organ an excellent model, although challenging, to study growth in 3-486 

D. In tomato, final fruit size can be altered through changes in cell division, in its direction, 487 

duration or rate, but these changes can occur as early as in the ovary or in the developing fruit 488 

itself, in different zones of the fruits, and according to cells dividing in an anticlinal, periclinal, 489 

or oblique manner. Similarly, an alteration in cell expansion either anisotropic or isotropic can 490 

influence the final fruit size. Due to this large diversity of events that can influence final fruit 491 

size, yet not all described in detail, the changes that can affect positively fruit size are difficult 492 

to apprehend fully, since they can occur alone or in combination. Capturing the effects of the 493 

alteration of one or several events at a 3-D level will definitely provide essential information to 494 

better apprehend the high complexity of cellular events needed to form a fully grown and 495 

functional fruit but will require computational models to integrate multiple cellular parameters. 496 

So far only a few models have been developed to integrate some, but not all, cellular parameters 497 

possibly influencing final fruit size in tomato [20,95,96]. 498 

 499 

Through the study of mutants and the identification of genes underlying important QTLs, a 500 

number of fruit growth regulators influencing cell division or cell expansion have been 501 

identified. In many cases, these potential homologues of these genes/QTLs were also described 502 

in other plants species. For example, homologues of FW2.2 have been found in papaya (Carica 503 

papaya), peach (Prunus persica), grape vine (Vitis vinifera) [97] in which they are associated 504 

with fruit weight QTLs, and also in physalis (Physalis floridana) or rice (Oryza sativa) in which 505 

they regulate leaves, floral organs, berries, and seeds size, and plant height and seed size, 506 

respectively [97]. A homologue of SlSUN may also underlie fruit shape variation in cucumber 507 

[98] and an orthologue of SlKLUH may regulate fruit weight in chile pepper [56]. In several of 508 
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these plants, functional studies are not always easy to carry to understand the mode of action of 509 

these genes and for the search of new growth regulators. The availability of genome sequences 510 

for multiple wild and cultivated tomato plants, the possibility to edit the genome of tomato and 511 

easily transform it make that information obtained from tomato on the mechanisms underlying 512 

size control could be used to search for genes controlling organ size in other crops and/ or for 513 

engineering favourable alleles. However, although several genes/QTLs involved in organ size 514 

determination have been identified, in numerous cases, their nature, exact effect on the cellular 515 

processes are often not described and the mode of action of these regulators remains poorly 516 

understood. It is regretful that of the almost 30 FW QTLs identified so far only for 3, the gene 517 

behind the QTL is known, even if the function of the related protein is often not understood. 518 

This lack of knowledge on the genetic regulation of several processes determining fruit growth 519 

does not allow to build a solid regulatory network that could be manipulated in order to modify 520 

fruit growth. The important nodes and their associated partners need to be discovered. The 521 

construction of this network can be achieved through the identification of proteins partners of 522 

the growth regulating proteins, their targets or regulatory elements. With additional information 523 

on the exact effect and mechanism of action for each regulator, rational combinations between 524 

mutants of genes enhancing for example cell division and cell expansion could be a good 525 

solution for modifying fruit size and thus probably fruit quality. These combinations could be 526 

achieved by crossing mutants or through the use of CRISPR-Cas9 genome editing technologies 527 

that allow the production of deletions, but also creating targeted insertions, exchanging amino 528 

acids and modulating gene expression for one or several targeted genes [99,100]. 529 

Tomato domestication led to the selection of favourable traits essentially aiming at improving 530 

yield through the increase of fruit size or fruit number. Polymorphism/mutations in several of 531 

the genes described in this review, such as FAS, OVATE, SUN or FW2.2 contributed to this 532 

improvement. However, often, this selection was at the expense of other desirable traits such 533 

as nutritional features or stress tolerance. For example, modern commercial tomato varieties, 534 

which often produce numerous and/or large fruits, contain lower amounts of important flavour 535 

metabolites (sugars, acids, amino acids, volatiles…) than old varieties [101], suggesting a trade-536 

off between quality and size/yield. This trade-off originates from a loss of genetic diversity in 537 

domesticated cultivars, which, probably randomly/indirectly, triggered the loss of favourable 538 

alleles or the co-selection of unfavourable alleles in the absence of positive selection [101–103]. 539 

The analysis of the genome, transcriptome and metabolome in more than 400 tomato accessions 540 

has shown that changes in metabolite content through domestication might have been caused 541 
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by a linkage of genes nearby the selected alleles of genes associated with larger fruits [104]. In 542 

the actual context of climate change, a loss of crop yield due to the increasing occurrence of 543 

environmental stresses together with the actual consideration of consumers preferences toward 544 

fruits of better quality create a need to combine yield-related traits and tolerance-to-stress and/or 545 

quality-related traits. To achieve rapidly these combinations, molecular engineering using 546 

CRISPR-cas9 technology could be exploited for producing superior tomato varieties with 547 

multiple favourable traits by specifically targeting genes involved in fruit growth, fruit flavour 548 

and response to stress. Wild relatives or old varieties show a better adaptation to environmental 549 

constraints or can produce larger amounts of fruit quality related metabolites [101,103,105], de 550 

novo domestication could help combining these traits. In a wild tomato, Zsögön et al. (2018) 551 

have targeted six important loci, including OVATE, FW2.2 and CLV3, for key domestication 552 

traits through molecular engineering using CRISPR-cas9 technology to create loss of function 553 

alleles, and have succeeded in improving most of the targeted traits in these plants [106]. 554 

However, as mentioned previously, this targeted molecular breeding will only be possible 555 

through a better knowledge of the genetic basis of the traits of interest including fruit size 556 

control. 557 

In conclusion, the combination of in-depth understanding of gene regulatory networks, of their 558 

effects at cellular level when mutated with the use of genome editing represent a promising 559 

engineering strategy for future crop improvement and tomato represents an excellent model 560 

both for obtaining this knowledge and for direct application (see also outstanding questions). 561 
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801 

Figure Legends 802 

Figure 1. Inflorescence architecture, fruit tissues and pericarp cell layers. A: Inflorescence of 803 

wva106 variety showing the zigzag inflorescence pattern. B: Tomato fruit at mature stage and 804 

equatorial cross section. C: cellular drawings of a pericarp section at mature stage. The names 805 

of cell layers are according to Renaudin et al. (2017) [8]. 806 

Figure 2. Different developmental stages of tomato fruit development (cultivar wva106) at 807 

fruit, pericarp and cellular level. From inside to outside the circle, the different phases of 808 

development (cell division phases, cell expansion phase and ripening) are shown as pictures of 809 

ovaries and fruits (stage 11 to 40 DPA), fruit equatorial cross sections and cellular drawings of 810 

pericarp sections (s: stage, A: anthesis and number for DPA). Dividing cells are represented in 811 

blue and expanding cells in orange. The scale has been conserved along the development, 812 



24 

except for the stages marked with a * and a ** for which a magnification of x10 and of x2.5 813 

has been done for optimal visualisation.  814 

Figure 3. Molecular mechanisms determining tomato fruit growth. A. Genes influencing fruit 815 

locule number through the regulation of meristem size. B. Genes influencing fruit size and 816 

shape though the regulation of cell division patterns in the ovary. From the left to the right are 817 

represented a longitudinal section of a tomato flower, a longitudinal (top) and a transversal 818 

(bottom) section of an ovary with the different division patterns (proximo-distal, adaxial-819 

abaxial and medio-lateral, the genes influencing these cell division patterns, the models 820 

explaining the changes in cell division pattern in mutants of these genes and the consequences 821 

on fruit shape and size of these mutations. C. Genes influencing fruit growth through the 822 

regulation of cell division and /or expansion in the pericarp and consequences on pericarp 823 

thickness. Abbreviations: ARF (AUXIN REPONSE FACTOR), CDF (CYCLIN DOF 824 

FACTOR), CLV (CLAVATA), CSR (CELL SIZE REGULATOR), ENO (EXECESSIVE 825 

NUMBER OF FLORAL ORGANS), FSM (SANT/MYB-like), FW (FRUIT WEIGHT), GBP 826 

(GUANYLATE-BINDING PROTEIN), GRAS (GIBBERELLIC ACID INSENSITIVE, 827 

REPRESSOR OF GAI, and SCARECROW), GRF (GROWTH REGULATING FACTOR), 828 

HPAT (HYDROXYPROLINE O-ARABINOSYLTRANSFERASE), IAA (INDOLE-3-829 

ACETIC ACID), IMA (INHIBITOR OF MERISTEM ACTIVITY), KNU (KNUCKLES), PRE 830 

(PACLOBUTRAZOL RESISTANCES) and WUS (WUSCHEL). Ab: abaxial; Ad: Adaxial; 831 

M: medio; L: lateral; P: proximal; D: distal. 832 
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