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Abstract

The Ralstonia solanacearum species complex (RSSC), composed of three species and four

phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009,

a devastating potato bacterial wilt outbreak was declared in the central highlands of Mada-

gascar, which reduced the production of vegetable crops including potato, eggplant, tomato

and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between

2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum

(phylotype II). A previously published population biology analysis of phylotypes II and III

using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes

revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III

isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylo-

type I strains in Madagascar to understand their genetic diversity and structure. The collec-

tion included isolates from 16 fields of different Solanaceae species sampled in Analamanga

and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in

2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly preva-

lent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis

revealed a significant contrasting level of diversity according to elevation and sampling

region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates

were structured in two clusters, probably resulting from different historical introductions. Inter-

estingly, the most prevalent Malagasy phylotype I isolates were genetically distant from
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regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14

scheme can resolve differences from regional to field scales and is thus suited for decipher-

ing the epidemiology of phylotype I populations.

Introduction

Knowledge of a pathogen’s population biology is a key aspect of disease management [1, 2].

Assessing the genetic diversity and population structure unravels the genetic links between iso-

lates and is useful for developing preventive control strategies [3]. Multiple genotyping tech-

niques have been developed to identify pathogenic isolates, determine phylogenetic

relationships between isolates and reveal the genetic links between populations, e.g. for the

plant pathogens Erwinia amylovora [4] and Phytophthora ramorum [5].

MultiLocus Variable Number of Tandem Repeat (VNTR) Analysis (MLVA) is a PCR-based

genotyping method for amplifying VNTR loci. VNTR are tandemly repeated DNA sequences,

whose copy numbers may vary amongisolates. This variation can be due to two mutational

mechanisms during DNA replication: i) the unequal crossing over, frequent among minisatel-

lites with repeat units longer than 9 bp; and ii) the sliding of a strand of DNA followed by a

lack of repair ("Slipped Strand Mispairing" or SSM), common for microsatellites with repeat

units between 2 and 8 bp [6]. MLVA has the advantage of being highly discriminatory, robust,

reproducible and rapid [6, 7]. It has been widely used in medical microbiology [8] to trace the

origin of epidemics or the spread of virulent or antibiotic-resistant variants. Later developed

for plant pathogenic bacteria, MLVA schemes have proven to be useful for outbreak analysis,

epidemiological surveillance and the study of the genetic diversity and population structure of:

Clavibacter michiganensis subsp. michiganensis [9], Pseudomonas syringae pv. tomato and

maculicola [10], Xylella fastidiosa [11], Xanthomonas citri pv. citri [12, 13], Xanthomonas ory-
zae [14], Xanthomonas arboricola pv. pruni [3], Xanthomonas phaseoli pv. manihotis [15],

Xanthomonas vasicola pv. musacearum [16], Xanthomonas citri pv. viticola [17], and the Ral-
stonia solanacearum species complex [18–22].

The soil-borne and xylem-limited Ralstonia solanacearum species complex (RSSC) causes

bacterial wilt (BW) disease on an unusually broad host range, which includes over 50 botanical

families [23, 24]. RSSC is one the most devastating plant pathogenic pathogens in terms of the

damage it causes to crops [25], such as potato, tomato, tobacco, ginger and banana, as well as

leguminous and ornamental crops [24]. BW causes economic losses estimated at US $ 1 bil-

lion/year for the potato industry [23]. The RSSC is classified into four major phylogenetic

groups (named phylotypes) according to their geographical origin [26] and comprises three

species [27, 28]: R. pseudosolanacearum includes phylotypes I and III originating from Asia

and Africa, respectively; R. solanacearum includes phylotype II with IIA and IIB subdivisions

from the Americas; and R. syzygii includes the phylotype IV from Indonesia, Japan and Aus-

tralia. Each phylotype is subdivided into unique sequevars based on the partial endoglucanase

gene (egl) sequencing [29].

In Madagascar, BW disease was first reported in 1934 by Bouriquet on tobacco [30] and

artichoke [31]. Later, BW was described on potato, eggplant, groundnut, tomato [32], bean

and cabbage [33]. BW was well established in the central highlands, as well as in western and

eastern lowlands, where a few RSSC isolates were collected and identified as belonging to phy-

lotypes I and III [34] (Philippe Prior, 2006, unpublished work,). In 2009, major outbreaks were

reported in the main potato production areas of the central highlands [19]: BW, which usually

occurs on rain-fed potato crops during the rainy season, appeared in the winter season on irri-

gated potato crops previously unaffected by the disease [19, 35]. In addition, BW symptoms
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appeared very early during vegetative growth and the BW-tolerant cultivars, developed by the

National Centre for Rural Development and Applied Research (FIFAMANOR) and distrib-

uted to farmers, became susceptible to RSSC [19].

In 2013, a wide sampling campaign was conducted in Madagascar’s central highlands. A

total of 1224 isolates were collected: 10% belonged to phylotype I, 72% to phylotype IIB-1 and

18% to phylotype III [19]. Only the population genetics of phylotypes IIB-1 and III were ana-

lysed, using the MLVA schemes RS2-MLVA9 for phylotype II isolates and RS3-MLVA16 for

phylotype III isolates [19], derived from previously published studies [20, 21]. This study

revealed contrasted population structures between phylotype IIB-1 and phylotype III. Findings

suggest that phylotype IIB-1 isolates, reported in Madagascar for the first time, were intro-

duced and spread massively via latently infected potato seed tubers, whereas Malagasy phylo-

type III isolates appeared to be endemic [19].

The present study aims to develop and apply an optimized MLVA scheme specifically

designed for phylotype I isolates in order to: (i) assess the level of genetic diversity and struc-

ture of phylotype I populations isolated in Madagascar’s central highlands and lowlands, (ii)

compare the population genetic structures of phylotype I with Malagasy phylotypes IIB-1 and

III isolates and (iii) analyse the potential genetic links of the Malagasy phylotype I isolates with

isolates from other countries.

Materials and methods

Bacterial isolates and phylogenetic assignment

Two collections of Malagasy RSSC isolates belonging to phylotype I and maintained at the

Plant Protection Platform (Saint-Pierre, Réunion, France) were used in this study. The first

collection included 123 isolates from Analamanga (n = 28) and Itasy (n = 95), regions in the

central highlands (mean elevation = 1057.23 m). The second collection included 25 isolates

from the Atsinanana region in the lowlands (mean elevation = 28.31 m) (S1 Table). The

regional difference in elevation provided the opportunity to study the influence of altitude on

the genetic diversity and structure of phylotype I populations. In addition, the Analamanga

and Itasy regions are in the main vegetable producing areas in Madagascar, where a devastat-

ing BW outbreak occurred in 2013. In the Atsinanana region, several cases of BW were also

reported. Madagascar’s main seaport is in this region (Toamasina), which allowed the study of

the potential influence of frequent commercial exchanges of plant material on the genetic

diversity of phylotype I isolates.

The 148 Malagasy isolates were collected from stem fragments of seven plant species (Sola-
num lycopersicum, S. tuberosum, S. melongena, S. aethiopicum, S. nigrum, S. scabrum, Capsicum
annuum) collected from 16 fields (Fig 1) in the Atsinanana region (4 plots), the Analamanga

region (4 plots) and the Itasy region (8 plots). All the Malagasy isolates were checked by multi-

plex PCR [29] in order to confirm their assignment to RSSC and phylotype I.

In order to identify the potential genetic relationships between Malagasy and international

RSSC phylotype I isolates, 145 isolates from a representative worldwide collection (South-

West Indian Ocean, Africa, Asia, Americas) kept at the Plant Protection Platform (Saint-

Pierre, Réunion, France) were also included in this study (S2 Table).

All RSSC isolates were stored on Cryobank1microbeads (Microbank1, PRO-LAB DIAG-

NOSTICS, Neston, Wirral, U.K.) at -80˚C. After growth on nutrient broth and Kelman media

[36], 1 μl loop of a bacterial cell suspension was streaked onto agar plates to isolate colonies.

Single colonies were suspended in 400 μl of sterile HPLC-grade water and used as templates

for PCR amplification.
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The phylogenetic assignment of Malagasy phylotype I isolates was based on the multiplex

phylotype PCR [29] and the partial nucleotide sequences of the endoglucanase (egl) gene [29].

PCR amplification, sequencing and sequevar determination were performed as previously

described [37]. The newly generated sequences were deposited in the GenBank database under

accession numbers MN310771 to MN310886 and MW014321 to MW014325.

VNTR identification and selection for MLVA

In a first step, we worked with VNTR loci that had previously been identified throughout the

genomes of RSSC isolates belonging to different phylotypes [19, 20, 22, 38]. By using the Muscle

algorithm in Geneious v10.0.9 [39], these VNTR, flanked by their primers, were searched and

aligned with the reference genome of phylotype I (GMI1000) [40] and nine draft genome

sequences of phylotype I isolates: CFBP7058 (sequevar 13), CIR011-208 (sequevar 17), RD13.01

Fig 1. Collection area of RSSC phylotype I in Madagascar. The 16 sites where phylotype I isolates were collected in the three Malagasy regions (a:

Atsinanana; b: Analamanga; and c: Itasy) are indicated by black dots. Each white circle contains information about the plot number and the number of

isolates collected in each site.

https://doi.org/10.1371/journal.pone.0242846.g001
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(sequevar 31), TD13.01 (sequevar 31), CIV23 (sequevar 31), TF31.08 (sequevar 31), PSS04

(sequevar 15), TO10 (sequevar 47) and Y45 (sequevar 44) [41, 42]. The purpose of the align-

ment was to check the presence of the VNTRs in the different genomes of phylotype I and con-

firm that their characteristics met the following requirements [38]: absence of indel in the

VNTR, unicity of the VNTR sequence in the genome, non-overlapping VNTR, a very high

typeability rate (100% or almost 100%) for phylotype I isolates, 80% internal conservation of the

VNTR in the genomes [6], and a repeat unit between 5 and 10 nucleotides [43].

In a second step, we screened the reference GMI1000 genome with the Tandem Repeat

Finder v4.09 (https://tandem.bu.edu/trf/trf.html) [44] to detect new VNTR loci. New VNTRs

were validated by using the Phobos Tandem Repeat Finder [45]. Then, an alignment with the

nine draft genome sequences was conducted to localize the VNTR and confirm whether their

characteristics met the requirements described above.

Lastly, to check the distribution and specificity of the selected VNTR markers among RSSC

isolates, we screened with BLASTN [46] 114 publicly available RSSC genomes: 48 belonging to

phylotype I, 50 to phylotype II, 3 to phylotype III and 13 to phylotype IV (https://www.ncbi.

nlm.nih.gov/genome/browse/#!/prokaryotes/490/).

Primer design and assay optimization

PCR primers were designed from the flanking regions of VNTR loci using Primer3 v4.1.0 [47].

Selection was based on the following criteria: primer size from 18 to 23 bp, annealing tempera-

ture between 60˚C and 65˚C, percentage of guanine and cytosine from 50% to 70%, and total

length of PCR product between 100 bp and 500 bp. The probability of dimerization and hair-

pin were evaluated using the OligoAnalyzer v3.1 software package (https://eu.idtdna.com/calc/

analyzer). Oligonucleotides were synthesized by Macrogen, Inc. (Seoul, South Korea).

To perform a preliminary screening, simplex PCR were conducted to assess the amplifiabil-

ity, reproducibility and polymorphism of the selected VNTR loci. We used eight phylotype I

isolates (RUN0054, RUN0157, RUN0215, RUN0334, RUN0969, RUN1744, RUN1985 and

RUN3014) representing several sequevars (13, 14, 15, 17, 18, 31 and 47) from a worldwide col-

lection (French Guiana, Réunion, China, Thailand, Cameroon, Taiwan, Côte d’Ivoire). PCR

amplifications were performed in 15 μl reaction volumes containing 7.5 μl Terra PCR Direct

Buffer 2X (Terra™ PCR Direct Polymerase Kit, Clontech Laboratories, Inc.), 0.3 μl Terra PCR

Direct Polymerase Mix—1.25 U/μl, 1.5 μl 5X Q-solution (Qiagen1, Hilden, Germany), 2.3 μl

of a forward and reverse primer mix (2 μM each), 2.4 μl sterile HPLC-grade water, and 1 μl of

bacterial suspension as a template. PCRs were carried out in a GeneAmp PCR System 9700

Thermal Cycler (Foster City, CA 94404, USA) under the following conditions: an initial dena-

turation step at 98˚C for 2 min, 30 cycles of denaturation at 98˚C for 10s, annealing at 62˚C for

15s, extension at 68˚C for 1 min, and a final extension step at 68˚C for 30 min. Then, 6 μL of

PCR product was mixed with 1 ml of loading dye solution and loaded into a 1.5% (w/v) Sea-

Kem1 LE Agarose (Lonza, Basel, Switzerland) gel for electrophoresis. Ethidium bromide was

used to stain the gels and the G:BOX gel imaging system (Syngene, Cambridge, UK) enabled

the visualization of the bands under ultraviolet. The molecular weights were estimated by com-

parison with a 100 bp DNA ladder (Promega, Madison, Wisconsin, USA). VNTR loci showing

poor amplification and/or lacking diversity were removed at this step.

MLVA genotyping

A Multiplex PCR protocol was applied to analyse from 3 to 4 VNTR loci per reaction using the

Multiplex PCR kit (Qiagen, Courtaboeuf, France). The primers (Table 1) were pooled in four

different mixes according to their annealing temperature and the size of the PCR product.
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Each forward primer was marked with one of the fluorophore: 6-FAM, NED, PET and VIC

(Applied Biosystems, Life Technologies, Saint Aubin, France). The conditions of amplification

for the multiplex PCR were the same as for the simplex PCR, except the number of cycles (25

instead of 30). PCR products were diluted (at least 1:80) to avoid peak saturation.

In a 2 ml Eppendorf tube, 1080 μl formamide (Hi-Di™ formamide, Applied Biosystems) was

mixed with 20 μl size marker (GeneScanTM-500 LIZ1 Size Standard, Applied Biosystems).

Then, in each well of a 96-well plate, 11 μl of the mix was distributed with 1 μl of diluted PCR

product. The samples were denatured at 95˚C for 5 min, cooled immediately on ice and loaded

onto an ABI Prism 3130XL Genetic Analyzer for capillary electrophoresis. The reproducibility

of the MLVA genotyping was checked by including 3 phylotype I control isolates in each

96-well plate: RUN0054 (GMI1000, sequevar 18), RUN0157 (PSS04, sequevar 15) and

RUN3014 (TFB1.08, sequevar 31).

Data analysis

The genotyping results were analysed using Geneious v10.0.9. Fragment sizes were estimated

using the third order least squares algorithm and attributed to a bin size, which takes into

account small size variation due to experimental variation. To confirm the validity and repeti-

tion number for each VNTR locus, PCR products of isolates RUN0320, RUN3012, RUN3216

and RUN3277 were sequenced (Genewiz, Leipzig, Germany) and analysed using Geneious

v10.0.9. These sequences were also used to check for patterns in the flanking VNTR sequences

and internal repeat variations (i.e. copy homology). When a VNTR array was truncated, the

VNTR number was rounded to the nearest bin whole number [48–50]. The combination of

alleles (i.e. number of repetitions) for the 14 VNTR loci was considered as MLVA type (MT,

i.e. haplotype).

In order to assess the resolution of the RS1-MLVA14 scheme, a genotype accumulation

curve (GAC) was built, based on the genotyping of 291 phylotype I isolates (146 from Mada-

gascar and 145 from worldwide). The GAC represents the power of discrimination of our set

of loci in the population [51, 52]. The discriminatory power of the RS1-MLVA-14 scheme was

also evaluated by calculating the Hunter Gaston Discrimination Index (HGDI) [53]. It was

compared to the recently developed MLST-7 scheme [37], by using 94 worldwide isolates (S1

and S2 Tables) representing 9 sequevars of phylotype I and selected to maximize the phyloge-

netic diversity, as well as the diversity of country, host and date of isolation.

Using Arlequin v3.5.2.2 [54], the genetic diversity of Malagasy isolates was evaluated by cal-

culating several indices: Nei’s unbiased estimates of genetic diversity (Hnb), number of haplo-

types, number of alleles, number of private alleles. The allelic richness and private allelic

richness were evaluated using HP-RARE [55]. The intra-population diversity indices (Hnb,

number of haplotypes, mean number of alleles, number of private alleles, allelic richness and

private allelic richness) provide information on the level of genetic diversity in a population,

the population’s epidemiological profile (epidemic or endemic), and the mode of dispersion of

the inoculum (stochastic dispersion or dissemination by infected plant material, etc.).

For the robustness of analyses, we considered that a minimum number of samples was

required (size n� 14) to form a population. A population is defined a priori by a group of

individuals that could exchange genes. Different parameters, such as plant host, altitude and

collection area were considered for the analysis of the genetic diversity indices and to define

putative populations. The FST and RST index calculated with Arlequin (10 000 permutations)

provided information on the similarity or differentiation between populations due to the pres-

ence or absence of gene flows, mainly due to migration.
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We also determined a genetic structure of populations without a priori via the R package

Bios2mds [56]. This package is used for conducting metric multidimensional scaling (MDS), a

method that represents measurements of similarity (or dissimilarity) among pairs of objects as

distances between points of low-dimensional or multidimensional space [57]. Furthermore,

the genetic relationships among Malagasy isolates and between Malagasy and worldwide iso-

lates were computed using Phyloviz (http://www.phyloviz.net/) [58]. Different minimum

spanning trees (MSTs) were built with the goeBURST full MST algorithm using global optimal

eBURST (goeBURST) and Euclidean distances. They revealed the level of differentiation

between haplotypes: Single, Double or Triple Locus Variant (SLV, DLV, or TLV), and enabled

the identification of clonal complexes (CC). We defined CC as groups of SLV haplotypes in

which the founder(s) is (are) defined as the haplotype(s) comprising the largest number of

SLV.

Results

Development of the RS1-MLVA14 scheme

We developed an optimized MLVA scheme capable of characterizing phylotype I isolates with

greater reliability and discriminatory power. Consequently, we were able to overcome certain

issues, namely the absence of polymorphism, a low typeability rate and the presence of differ-

ent VNTRs in some loci [20, 59]. These problems were highlighted by our in-laboratory pre-

liminary tests with Malagasy isolates. Based on previously identified VNTR markers [20, 22,

38] and our present genome screening, we selected a final set of 14 VNTR loci to generate the

RS1-MLVA14 scheme (Table 1). VNTR markers were distributed on the chromosome (n = 4)

or the megaplasmid (n = 10) (S1 Fig), 5 being intergenic and 9 being intragenic. VNTR sizes

varied from 5 to 9 nucleotides and were repeated in the genomes from 1 to 25 times. In our

collection of 293 phylotype I isolates, all selected VNTR loci were polymorphic. The number

of alleles per locus ranged from 2 to 16 alleles and the allelic richness varied from 1.179 to

5.027. The VNTR marker GMIch_1844 showed the highest genetic diversity (Hnb = 0.738),

whereas the VNTR marker GMImp_1618 had the lowest (Hnb = 0.027). Our screening of 114

publicly available RSSC genomes (S3 Table) revealed that the 14 selected VNTR loci were

found in all the 48 phylotype I isolates (except in some incomplete genomes, where 3% of loci

could not be found, as already observed [20]). In addition, 10 VNTR loci were found in the 3

phylotype III isolates and 3 to 8 VNTR loci were found in the 50 phylotype II and 13 phylotype

IV isolates. Four VNTR loci (GMIch_0581, GMIch_3461, GMIch_1844, GMImp_0266)

appeared to be specific to phylotype I.

Genotypic resolution of the RS1-MLVA14 scheme

The genotypic resolution of our MLVA scheme was assessed by a genotype accumulation

curve (S2 Fig), which revealed that our set of loci is sufficient to discriminate between haplo-

types in our collection, given that nearly 100% of the genotypes could be detected with 13

markers.

The comparative study of the discriminatory power of RS1-MLVA14 and MLST-7 typing

schemes using 94 isolates representing 9 sequevars of phylotype I (S4 Table) showed that

RS1-MLVA14 reveals twice as many haplotypes as MLST-7: 27 MLVA Type (MT) instead of

14 Sequence-Type (ST). The discriminatory power is 1.38 times higher with the RS1-MLVA14

than with the MLST-7 (HGDI = 0.793 vs 0.574). RS1-MLVA14 was able to split some seque-

vars more broadly than MLST-7 (S4 Table). However, it should be noted that both MLST-7
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and RS1-MLVA14 schemes were unable to subdivide sequevars I-13, I-14, I-16, I-34, I-46,

each of which were represented by only a single ST and a single MT.

RS1-MLVA14 revealed genetic diversity among Malagasy phylotype I

populations and was discriminative at the field scale

The RS1-MLVA14 scheme was applied on 148 Malagasy isolates. The 14 VNTR loci were

amplified from all isolates except the GMIch_3461 locus, which was not amplified, despite sev-

eral assays in two isolates (RUN0306 and RUN0307). Nonetheless, the latter was retained for

the analysis of diversity (Hnb, allelic richness, private allelic richness), genetic structure (FST,

RST, MDS) and the genotype accumulation curve (GAC). Overall, 31 haplotypes were identi-

fied, including two major haplotypes: MT007 and MT004, which represented 30.14% and

16.44% of the isolates, respectively (S5 Table). The frequency of the other haplotypes varied

from 0.68% to 5.48%. Regarding the host of isolation (S3 Fig), the majority of haplotypes

(70.97%) were isolated from one host: 32% haplotypes were isolated from S. lycopersicum, 32%

from C. annuum, 18% from S. aethiopicum, 14% from S. tuberosum and 4% from S. melongena.

However, some haplotypes were found on several hosts: the most prevalent haplotype MT007

was found on four hosts (S. aethiopicum, S. lycopersicum, S. melongena and S. tuberosum);

MT015 was found on three hosts (S. aethiopicum, S. lycopersicum and S. tuberosum); and seven

haplotypes were found on two hosts, MT004 and MT006 (S. melongena, S. lycopersicum),

MT009 (S. melongena, S. scabrum), MT020 (S. lycopersicum, C. annuum), MT018 and MT022

(S. lycopersicum, S. tuberosum) and MT023 (S. nigrum, S. tuberosum) (S3 Fig).

The number of haplotypes per field varied from one to six (Fig 2). Interestingly, three hap-

lotypes MT004, MT006 and MT007 were present at both high and low altitudes (Fig 2). The

most prevalent haplotype MT007, identified in five fields (Fig 2), was found in the three stud-

ied regions (Fig 2). The haplotypes MT004 and MT006, identified in three and two fields,

respectively (Fig 2), were found in the regions of Itasy and Atsinanana (Fig 2). Four haplotypes

Fig 2. Distribution and frequency of phylotype I haplotypes collected in the 16 fields of the Atsinanana, Analamanga and Itasy regions. The 31

MLVA type (MT) are displayed. Each plot is indicated by a black dot and the number of isolates per plot (n) is mentioned.

https://doi.org/10.1371/journal.pone.0242846.g002
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(MT015, MT020, MT023 and MT024) were present in the highland regions of Analamanga

and Itasy (Fig 2). The 24 remaining haplotypes were identified in only one region: 9 haplotypes

in the Atsinanana region, 8 haplotypes in the Itasy region and 7 haplotypes in the Analamanga

region (Fig 2).

The overall genetic diversity of Malagasy phylotype I isolates was Hnb = 0.226. However,

there were marked differences between the three regions, with a Hnb value of 0.109, 0.318, and

0.430 for Itasy, Analamanga and Atsinanana regions, respectively. The average allelic richness

over loci and the average private allelic richness over loci also differ between the three regions,

1.54 and 0.05 in Itasy, 2.32 and 0.49 in Analamanga, and 2.98 and 1.28 in Atsinanana (S6

Table).

Genetic differentiation among a priori populations was very important and significant

between Itasy and Atsinanana regions (FST = 0.288���, RST = 0.381���), important and signifi-

cant between the Itasy and Analamanga regions (FST = 0.166���, RST = 0.252���), and moder-

ate but significant between the Atsinanana and Analamanga regions (FST = 0.109 ���, RST =

0.0897�) (S7 Table). An important and significant genetic differentiation (FST = 0.242���, RST

= 0.336���) was shown between populations from lowlands (0–100 m) and highlands (1200–

1500 m) and a moderate but significant differentiation according to the FST = 0.079��� (RST

value was not significant) between populations from mid-elevation (900–1200 m) and high-

land areas (1200–1500 m), and between lowland (0–100 m) and mid-elevation (900–1200 m)

(FST = 0.095��; RST value was not significant) (S7 Table).

RS1-MLVA14 revealed genetic structure among Malagasy phylotype I

populations and showed the singularity of the most prevalent genetic

cluster

The MDS representation showed that the Malagasy haplotypes could be grouped into two clus-

ters with a probability of 67.5% (Fig 3). Cluster 1 and cluster 2 included 25 and 6 haplotypes,

respectively. Haplotypes were assigned to these clusters with high probability (90.9%). Axis 1

and Axis 2 explained 81.7% and 9.2% of the variance, respectively (Fig 3).

A network representation (MST) revealed the genetic relationships between the 31 Mala-

gasy haplotypes (Fig 4). A major Malagasy clonal complex (MCC1), composed of isolates that

differed by only one VNTR, was identified. MCC1 gathered 23 haplotypes (cluster 1, 123 iso-

lates), from which two founder haplotypes (the most prevalent haplotypes, MT007 and

MT004) were predicted. Three minor Malagasy clonal complexes were identified: MCC2 (clus-

ter 1, 3 haplotypes, 12 isolates), MCC3 (cluster 2, 3 haplotypes, 6 isolates), and MCC4 (cluster

2, 2 haplotypes, 5 isolates).

Interestingly, the MDS and MST representations were congruent with the phylogenetic

assignment (i.e. sequevar) of the isolates based on egl partial sequences. Indeed, cluster 1

(MCC1, MCC2) grouped the isolates belonging to the sequevar 18, while cluster 2 gathered

isolates belonging to sequevar 33 (MCC4) and sequevar 46 (MCC3). Moreover, MCC1 was the

only CC which included isolates isolated from both highlands and lowlands. The remaining

CCs comprised isolates isolated from the highlands only (MCC2, MCC4) or from the lowlands

only (MCC3) (Fig 4). All CCs included isolates collected from several hosts except MCC3, for

which isolates were only collected from C. annuum (S3 Fig).

A global MST was built to display the genetic relationships between phylotype I isolates

from Madagascar (146 isolates, 31 haplotypes) and from worldwide isolates (145 isolates, 76

haplotypes) (Fig 5). Only the seven worldwide haplotypes, which had genetic links with the 31

Malagasy haplotypes, are shown in Fig 5.
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The global MST revealed 4 clonal complexes. Strikingly, Malagasy haplotypes in cluster 1

(MCC1, MCC2), corresponding to sequevar 18, appeared genetically distant from worldwide

phylotype I isolates. Indeed, the major Malagasy MCC1 differed to international haplotypes by

at least ten loci (except one strain from Guadeloupe, MT059, which differed by 2 loci). The

Malagasy minor MCC2 appeared closely related to MCC1 and unrelated to other worldwide

haplotypes. In contrast, Malagasy haplotypes in cluster 2 (MCC3 and MCC4, which corre-

spond to sequevars 46 and 33, respectively) appeared related to other worldwide haplotypes.

Indeed, the three Malagasy haplotypes (MT010, MT011, and MT014) belonging to MCC3

were very closely related to haplotypes from Mayotte and Côte d’Ivoire (single-locus variant).

Thus, they were grouped in the same CC. Interestingly, the haplotypes from Madagascar

(MT010, MT011 and MT014) and Mayotte (MT081) were isolated from the same host species,

Fig 3. Multidimensional scaling (MDS) of the Malagasy phylotype I (total = 31 haplotypes, 291 isolates). Cluster 1 and cluster 2 represent

the two groups of haplotypes.

https://doi.org/10.1371/journal.pone.0242846.g003
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C. annuum. The two Malagasy haplotypes, MT021 and MT025, belonging to MCC4 were

included in a CC, which gathered isolates from Rodrigues, Mauritius and Réunion. Interest-

ingly, within this CC, the haplotype MT025 isolated from S. lycopersicum was found both in

Mauritius and in Madagascar. S. tuberosum was also the host plant shared by the haplotypes

collected in Madagascar (MT021) and Mauritius (MT025, MT094).

Discussion

A growing interest in the use of MLVA on plant pathogenic bacteria for studying population

biology has been observed in recent years [4, 11, 13–17]. As far as the RSSC is concerned,

MLVA schemes have been applied to the global surveillance of phylotype III [38], to trace

potential sources of contamination by phylotype IIB-1 in England and Ethiopia [21, 60]. Very

recently, they have been used to study the genetic diversity and structure of phylotypes I and

Fig 5. Minimum spanning tree (MST) of the Malagasy and worldwide phylotype I. The haplotypes were identified by using goeBURST full MST in

PHYLOVIZ. Each MLVA type (MT) is displayed as a circle, the size of which is proportional to the number of isolates represented. The different colours

indicate the country. The branch thickness indicates the number of locus differences between the neighbouring haplotypes. MCC1, MCC2, MCC3,

MCC4 represent the Malagasy Clonal Complex 1, 2, 3 and 4. A clonal complex is composed of haplotypes that differ only by one VNTR locus. The

sequevar of the isolates are represented as I-18, I-33 and I-46.

https://doi.org/10.1371/journal.pone.0242846.g005

Fig 4. Minimum spanning tree (MST) of the Malagasy phylotype I as a function of the region where samples were collected. The haplotypes were

identified by using goeBURST full MST in PHYLOVIZ. Each MLVA type (MT) is displayed as a circle, the size of which is proportional to the number

of isolates represented. The different colours indicate the region where data was collected. The branch thickness indicates the number of locus

differences between the neighbouring haplotypes. MCC1, MCC2, MCC3, MCC4 represent the Malagasy Clonal Complexes 1, 2, 3 and 4. A clonal

complex is composed of haplotypes that differ only by one VNTR locus. I-18, I-33 and I-46 represents the sequevar of the isolates.

https://doi.org/10.1371/journal.pone.0242846.g004
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IIB-1 populations in Uganda [59]. The study of RSSC populations (phylotypes I, II and III) col-

lected in the central highlands of Madagascar in 2013 was the first project of such magnitude

(1224 isolates collected) [19]. Remarkably, this work revealed contrasting epidemiological pat-

terns between phylotype IIB-1 and phylotype III populations. The population biology of Mala-

gasy phylotype I had not yet been studied due to the absence of reliable MLVA markers to

amplify phylotype I isolates [19]. The objective of the present study was to: develop and apply

an optimized MLVA scheme to study the population genetics of Malagasy phylotype I; analyse

the genetic relationships with worldwide phylotype I; and compare the epidemiological situa-

tion of phylotype I with Malagasy phylotypes IIB-1 and III.

RS1-MLVA14 scheme, a genotyping tool adapted to study the population

genetics of phylotype I, both at field and global scales

By using previously identified VNTR markers [20, 22, 38], as well as by screening genomes for

new VNTR markers, we developed an optimized MLVA scheme adapted to RSSC phylotype I

isolates. The 14 selected VNTR markers were all present in phylotype I, to a lesser extent in

phylotype III and rarely found in phylotypes II and IV. This is consistent with the species

delineation of phylotypes I and III (belonging to R. pseudosolanacearum) compared to the phy-

lotype II (R. solanacearum) and phylotype IV (R. syzygii) [27, 28]. The RS1-MLVA14 scheme

showed a very high typeability because only one VNTR could not be amplified from 2 out the

293 phylotype I isolates tested. We assessed whether the RS1-MLVA14 scheme improved

genotypic resolution compared to MLST-7 [37]. MLST is the gold standard for epidemiologi-

cal surveillance and outbreak investigations of bacterial diseases. The value of the discrimina-

tory power of the RS1-MLVA14 scheme (HGDI = 0.793) was higher than for the MLST-7

scheme (HGDI = 0.574). This revealed greater genetic and haplotypic diversity and highlighted

the interest of this new MLVA scheme. VNTR loci with low diversity values are useful to estab-

lish phylogenetic relationships. Those with a high diversity have a strong discriminatory

power [61]. VNTR are supposed to have high mutation rates, which increases the likelihood of

homoplasy [62]. Another point is that molecular samples with lower values of HGDI may indi-

cate high levels of homoplasy. However, low values may also be due to low mutation rates [62].

The RS1-MLVA14 scheme combines VNTR loci with variable diversity values and retains the

phylogenetic signal, since our MDS and MST analyses showed that the isolates were grouped

according to their phylogenetic assignment (sequevar). These results suggest that the probabil-

ity of homoplasy is low. They support previous studies, such as the work on phylotype III of

the RSSC [38] or other plant pathogens [3, 17]. Lastly, we showed that the RS1-MLVA14

scheme can be used to explore the genetic diversity at the field scale (several haplotypes were

disclosed in single fields), as well as at a global scale. Thus, RS1-MLVA14 is well suited to deci-

phering the epidemiology of phylotype I populations.

RS1-MLVA14 unveiled contrasting genetic diversity and epidemiology

among Malagasy phylotype I populations

The analysis of phylotype I populations revealed contrasting genetic diversity depending on

the three Malagasy regions. Genetic diversity is greater in the lowlands than in highland areas.

In the lowlands, the Atsinanana region imports huge amounts of vegetables from other Mala-

gasy producing areas, such as Ambatondrazaka or wholesale markets in Antananarivo, the

Malagasy capital [63]. In addition, this region has the Toamasina seaport, where there is a

great deal of trade in plant material with foreign countries, which could be responsible for the

introduction of contaminated agricultural products in this lowland region. It might also

explain why the level of genetic diversity of phylotype I isolates is greater.
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Our findings showed a lower genetic diversity in phylotype I populations in the central Mal-

agasy highlands. Some haplotypes were found in different fields in the same region (for exam-

ple MT007 was detected in plots 7, 9 and 12 in the Itasy region), which suggests possible field

contamination from exchanges of infected plant material. Indeed, producers do not always

have access to healthy seeds [64]. Farmers often produce their own seeds or exchange seeds

with other farmers, with no sanitary guarantee. Trade in agricultural products might encour-

age the propagation of haplotypes between regions. Most vegetables from the Itasy region are

sold in the capital, Antananarivo (Analamanga region), at Madagascar’s wholesale markets,

where large volumes of agricultural products are traded [64].

Another interesting point shown by our study is that Malagasy phylotype I populations

(sequevars 18, 33 and 46) are genetically differentiated depending on the elevation.

Remarkably, a similar situation was observed in China, where the genetic structure of phy-

lotype I isolates (for sequevars 13, 14, 15, 17, 34, 44, 54 and 55) was associated with eleva-

tion [65]. Sequevar 18 seems to be adapted to both warm and cool temperatures in

Madagascar, since it was isolated in the lowlands at sea level in the Atsinanana region (tem-

perature range is from 17˚C to 30.1˚C), as well as in the highlands at an altitude of up to

1500m in the Analamanga region (from 8.9˚C to 26.6˚C) and the Itasy region (from 9.1˚C

to 28˚C) [66]. Interestingly, sequevar 31 isolated in the lowlands and up to altitudes above

1000m in Réunion [37], as well as in Côte d’Ivoire [67], exhibited a similar environmental

distribution. So far, sequevar 18 has always been reported from lowlands in the Americas

[68–70], Africa [67], Asia [71–73], Oceania [74] and on islands in the South-West Indian

Ocean [37, 75]. In contrast, even though a very limited number of isolates was used in our

study, sequevar 33 was only isolated at moderate and high elevations (above 900m) and

sequevar 46 was only isolated in lowlands (below 300m). Thus, in addition to the studies in

China [65], Réunion [37] and Côte d’Ivoire [67], our study in Madagascar shed new light

on the ecology of phylotype I isolates, which are often reported as only being composed of

tropical and subtropical isolates adapted to lowland areas. Altogether, the ecology of phylo-

type I isolates differs from that of phylotype IIB-1 and phylotype III isolates, which are con-

sidered as cold-tolerant and adapted to highland areas [19, 23, 24, 76, 77]. Further research

and massive sampling of phylotype I isolates would certainly provide a better understand-

ing of the differences in the prevalence of sequevars according to elevation and the factors

determining their differential environmental adaptation.

Our study of population structure showed that Malagasy phylotype I isolates were dis-

tributed in two genetic clusters, which displayed different epidemiological features. A strik-

ing result is the singularity of the most prevalent Malagasy isolates belonging to sequevar 18

(corresponding to cluster 1). Indeed, despite the fact that sequevar 18 is distributed world-

wide [37, 67–73, 75], our study revealed no genetic links between Malagasy isolates and

worldwide isolates (South-West Indian Ocean, Africa, Americas, Asia isolates). The closest

haplotype (one strain) was a double-locus variant from Guadeloupe. Cluster 1 could be

derived from the evolution of an ancient introduction of isolates that evolved locally. This

would explain the differentiation from worldwide isolates, with short-distance dissemina-

tion restricted to Madagascar. This work must be continued by integrating more Malagasy

and global phylotype I isolates to further our understanding of the singularity of isolates

belonging to cluster 1. In contrast, cluster 2, which included the least prevalent isolates in

Madagascar (sequevars 33 and 46), showed genetic links with isolates from South-West

Indian Ocean islands (Mayotte, Mauritius, Rodrigues and Réunion). So far, apart from the

recent introduction of phylotype I via rose cuttings in the Netherlands [78], no long-dis-

tance dissemination of phylotype I isolates has been reported. Only the spread of phylotype

IIB isolates via bananas, potato tubers and geranium cuttings [79–81] has been clearly
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documented. Interestingly, based on the egl sequence analysis, the phylotype I isolates

introduced in the Netherlands were assigned to sequevar 33 [82], the sequevar that is likely

to have been disseminated between Madagascar and other South-West Indian Ocean

islands. Moreover, the egl sequences from the Dutch isolates appeared 100% identical to egl
sequences from isolates from Madagascar, Mauritius [37], Rodrigues [37, 83] and India

[84]. This highlights the phylogenetic links between isolates from distant geographical

areas. As far as the sequevar 46 is concerned, it has now been reported in Madagascar and

Mayotte (South-West Indian Ocean) [75], as well as in more geographically distant areas,

such as Côte d’Ivoire [67] and Myanmar [85]. All these data strongly support the theory of

the global dissemination of phylotype I, which is probably linked to human activities and

the transport of contaminated material [86].

Comparative epidemiology of Malagasy phylotype I, IIB-1 and III

populations

Our study showed that the level of genetic diversity of Malagasy phylotype I populations was

globally low (Hnb = 0.226). This result was surprising since, according to McDonald and Linde

[1], phylotype I is considered to have a high evolutionary potential due to its natural ability to

transform and recombine [37, 86, 87]. The level of genetic diversity of Malagasy phylotype I

populations was quite similar to that of Malagasy phylotype IIB-1 populations (Hnb = 0.19)

and clearly lower than that of Malagasy phylotype III populations (Hnb = 0.40) [19]. As deter-

mined for Malagasy phylotype IIB-1 [19], the Malagasy phylotype I haplotypes appeared to be

closely related genetically and gathered into clonal complexes. Some haplotypes were shared

between fields in the same agroecological region and even between agroecological areas (at

low and high elevations). In contrast to the endemic nature of phylotype III [19], these results

suggest that the phylotype I isolates have a similar epidemic population pattern to phylotype

IIB-1 isolates.

In Madagascar’s central highlands above 1000 m elevation, phylotype I populations co-

occurred with populations of phylotype IIB-1 and III [19]. In addition, as for phylotypes IIB-1

and III [19], phylotype I populations were isolated from many solanaceous crops (S. lycopersi-
cum, S. tuberosum, S. melongena, S. gilo and C. annuum), and weeds (S. nigrum, S. scabrum).

Weeds play an important role. They often remain in the soil after harvesting and harbour path-

ogenic populations, which survive in the environment as a result [24, 88, 89]. Our data sup-

ports this because although our weed sampling was very limited, RS1-MLVA14 did not reveal

specific haplotypes on weeds. However, in the central Malagasy highlands, phylotype I popula-

tions were the least prevalent (10% instead of 18% for phylotype III and 72% for phylotype

IIB-1) [19]. This observation could be explained by the fact that phylotype IIB-1 populations

are reported to be better adapted to low temperatures compared to phylotype III populations

and even more so compared to phylotype I populations [76, 77, 90]. Interestingly, a compara-

tive pathogenicity test of Malagasy phylotypes I, IIB-1 and III isolates on eight potato varieties

showed that all isolates were strongly pathogenic at tropical lowland temperatures, but that

IIB-1 isolates were the most aggressive [18]. Similar comparative pathogenicity tests should

now be performed on different hosts at cold temperatures to determine whether temperature

influences the capacity of the three phylotype isolates to co-occur in the same cropping areas

and cause disease.

In conclusion, during this study, we developed an optimized MLVA scheme dedicated to

phylotype I populations. We showed that the RS1-MLVA14 scheme is highly resolutive at

global, regional and field scales, which makes it suitable for epidemiological studies. This work

on Malagasy phylotype I represents a first step. Our research was limited to three vegetable
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growing regions in Madagascar. A broader study has been launched with a wider spatial scale,

including all the vegetable cropping areas in Madagascar. The goal is to further our under-

standing of the migration routes and population biology of phylotype I in Madagascar and

between Madagascar and other countries.
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number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt,

banana Moko disease and potato brown rot. J Microbiol Methods. 2013; 92: 366–374. https://doi.org/

10.1016/j.mimet.2013.01.012 PMID: 23376194

21. Parkinson N, Bryant R, Bew J, Conyers C, Stones R, Alcock M, et al. Application of Variable-Number

Tandem-Repeat Typing to discriminate Ralstonia solanacearum strains associated with English water-

courses and disease outbreaks. Appl Environ Microbiol. 2013; 79: 6016–6022. https://doi.org/10.1128/

AEM.01219-13 PMID: 23892739
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dosolanacearum phylotype I causing bacterial wilt on Rodrigues Island, Indian Ocean. Plant Dis. 2016;

100: 2522. https://doi.org/10.1094/PDIS-06-16-0811-PDN

84. Ramesh R, Gaitonde S, Achari G, Asolkar T, Singh NP, Carrere S, et al. Genome sequencing of Ralsto-

nia solanacearum biovar 3, phylotype I, strains Rs-09-161 and Rs-10-244, isolated from eggplant and

chili in India. Genome Announc. 2014; 2: e00323-14, 2/3/e00323-14. https://doi.org/10.1128/genomeA.

00323-14 PMID: 24874667

85. Kyaw HWW, Tsuchiya K, Matsumoto M, Iiyama K, Aye SS, Zaw M, et al. Genetic diversity of Ralstonia

solanacearum strains causing bacterial wilt of solanaceous crops in Myanmar. J Gen Plant Pathol.

2017; 83: 216–225. https://doi.org/10.1007/s10327-017-0720-0

PLOS ONE MLVA of Malagasy Ralstonia pseudosolanacearum phylotype I

PLOS ONE | https://doi.org/10.1371/journal.pone.0242846 December 8, 2020 21 / 22

https://doi.org/10.1094/PHYTO-11-11-0300
http://www.ncbi.nlm.nih.gov/pubmed/22533876
https://doi.org/10.1094/PDIS-09-19-1929-RE
https://doi.org/10.1094/PDIS-09-19-1929-RE
http://www.ncbi.nlm.nih.gov/pubmed/31994983
https://doi.org/10.1094/PHYTO-09-13-0264-R
http://www.ncbi.nlm.nih.gov/pubmed/24283538
https://doi.org/10.1111/ppa.12209
https://doi.org/10.1111/ppa.12209
https://doi.org/10.3389/fpls.2017.01549
http://www.ncbi.nlm.nih.gov/pubmed/28955350
https://doi.org/10.1111/ppa.12577
https://doi.org/10.1094/PDIS-05-19-1068-PDN
https://doi.org/10.1094/PDIS-05-19-1068-PDN
https://doi.org/10.3389/fpls.2017.02209
http://www.ncbi.nlm.nih.gov/pubmed/29354148
https://doi.org/10.1094/PHYTO-99-10-1127
http://www.ncbi.nlm.nih.gov/pubmed/19740025
https://doi.org/10.1094/PHYTO-02-10-0059
http://www.ncbi.nlm.nih.gov/pubmed/20672871
https://doi.org/10.3389/fpls.2017.01895
https://doi.org/10.3389/fpls.2017.01895
http://www.ncbi.nlm.nih.gov/pubmed/29163615
https://doi.org/10.1094/PDIS.2003.87.4.450C
http://www.ncbi.nlm.nih.gov/pubmed/30831858
https://doi.org/10.3389/fpls.2017.01290
http://www.ncbi.nlm.nih.gov/pubmed/28785275
https://doi.org/10.1094/PDIS-09-17-1345-RE
https://doi.org/10.1094/PDIS-09-17-1345-RE
http://www.ncbi.nlm.nih.gov/pubmed/30192708
https://doi.org/10.1094/PDIS-06-16-0811-PDN
https://doi.org/10.1128/genomeA.00323-14
https://doi.org/10.1128/genomeA.00323-14
http://www.ncbi.nlm.nih.gov/pubmed/24874667
https://doi.org/10.1007/s10327-017-0720-0
https://doi.org/10.1371/journal.pone.0242846


86. Wicker E, Lefeuvre P, de Cambiaire J-C, Lemaire C, Poussier S, Prior P. Contrasting recombination

patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA.

ISME J. 2012; 6: 961–974. https://doi.org/10.1038/ismej.2011.160 PMID: 22094345

87. Coupat B, Chaumeille-Dole F, Fall S, Prior P, Simonet P, Nesme X, et al. Natural transformation in the

Ralstonia solanacearum species complex: number and size of DNA that can be transferred. FEMS

Microbiol Ecol. 2008; 66: 14–24. https://doi.org/10.1111/j.1574-6941.2008.00552.x PMID: 18662313

88. Pradhanang PM, Elphinstone JG, Fox RTV. Identification of crop and weed hosts of Ralstonia solana-

cearum biovar 2 in the hills of Nepal. Plant Pathol. 2000; 49: 403–413. https://doi.org/10.1046/j.1365-

3059.2000.00480.x

89. Tusiime G, Adipala E, Opio F, Bhagsari AS. Weeds as latent hosts of Ralstonia solanacearum in high-

land Uganda: implications to development of an integrated control package for bacterial wilt. Elphin-

stone J. Bacterial Wilt Disease. Elphinstone J. Berlin, Heidelberg; 1998.

90. Ciampi L, Sequeira L, French ER. Latent infection of potato tubers by Pseudomonas solanacearum.

Am Potato J. 1980; 57: 377–386. https://doi.org/10.1007/BF02854329

PLOS ONE MLVA of Malagasy Ralstonia pseudosolanacearum phylotype I

PLOS ONE | https://doi.org/10.1371/journal.pone.0242846 December 8, 2020 22 / 22

https://doi.org/10.1038/ismej.2011.160
http://www.ncbi.nlm.nih.gov/pubmed/22094345
https://doi.org/10.1111/j.1574-6941.2008.00552.x
http://www.ncbi.nlm.nih.gov/pubmed/18662313
https://doi.org/10.1046/j.1365-3059.2000.00480.x
https://doi.org/10.1046/j.1365-3059.2000.00480.x
https://doi.org/10.1007/BF02854329
https://doi.org/10.1371/journal.pone.0242846

