RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Molecular Plant-Microbe Interactions Année : 2021

RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants

Résumé

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Fichier principal
Vignette du fichier
2021_Nouwen_Molecular-Plant-Microbe-Interactions.pdf (2.31 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03274496 , version 1 (30-06-2021)

Licence

Paternité

Identifiants

Citer

Nico Nouwen, Jean-Francois Arrighi, Djamel Gully, Eric Giraud. RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants. Molecular Plant-Microbe Interactions, 2021, 34 (1), pp.88-99. ⟨10.1094/MPMI-07-20-0209-R⟩. ⟨hal-03274496⟩
31 Consultations
34 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More