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1. INTRODUCTION

Particulate systems play an increasing role in industrial
applications, and the particulate size distribution is indeed
more and more important when dealing with product
quality. More specifically, in many industrial applications,
a key issue is to guarantee that the size distribution
remains close enough to a specific reference value, i.e
centred on a reference mean value with a variance as small
as possible, or to correspond to a specific size distribution.
As a matter of example, in the case of ice cream, it is
well known that the quality, that is the hardness and
the texture of the ice cream, depends on the ice crystal
size distribution (CSD). For example, depending on the
mean crystal size, or more precisely on the dispersion
of crystal sizes (that is on the shape of the CSD), the
obtained texture of the ice cream is more or less grainy.
Some physical properties of the ice cream, as for example
its viscosity, also depend on the CSD (Casenave et al.
(2014), Casenave et al. (2013), Casenave et al. (2012)).
In the context of the production of granulated additive
particles (in the mentioned example of the production of
anti-foam agents, for instance), it is essential to produce
particles whose size remains close to that of the detergent
powder so that the solid mixture remains as homogeneous
as possible to make sure that both can dissolve at the same
time (Henri et al. (2006a), Henri et al. (2006b)).

2. POPULATION BALANCE MODELS

The dynamics of particulate systems are basically de-
scribed by partial integro-differential equations, i.e. partial
differential equations (PDE’s) that contain an integral
term. These belong to the category of population balance
models (Ramkrishna (2000)).

Fig. 1. Flow sheet of the production process of granulated
particles

2.1 The agglomeration process

As a matter of illustration, let us first consider the pro-
duction of granulated particles mentioned above. The (in-
dustrial) process is indeed composed of a (high-shear)
granulator and a fluidised bed reactor (see Figure 1). The
fine fresh powder inflow rate (F0) and a binder liquid enter
the granulator in which particles agglomerate. The particle
outflow rate (F1) goes through the fluidised bed reactor
where it is dried and undergoes a second agglomeration.
In the fluidised bed reactor, the finer particles are removed
by a vertical air flow. The air and these particles are then
separated in a filter. The particle flow rate (F3) is recycled
at the top of the process. The fluidized bed particle outflow
rate (F2) is divided in three flow rates into a sieve:

F2 = F4,fines + F4,larg + F4,interm (1)

where F4,fines, F4,larg and F4,interm represent the flow
rates of the finer particles that are recycled at the top
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∗ ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve
Belgium (e-mail: denis.dochain@uclouvain.be)

∗∗ MISTEA, Universit Montpellier, INRAE, Institut Agro, Montpellier,
France (e-mail: fceline.casenave@supagro.inra.fr)

Abstract: This paper deals with the modelling and control application for three case studies of
particulate systems: one agglomeration process (for anti-foam agents in washing machine soap),
and two crystallization processes, one related to one ice-cream crystallization, the other related
to the pharmaceutical industry.

Keywords: Particulate systems, population balance model, partial differential equations,
adaptive linearizing control.

1. INTRODUCTION

Particulate systems play an increasing role in industrial
applications, and the particulate size distribution is indeed
more and more important when dealing with product
quality. More specifically, in many industrial applications,
a key issue is to guarantee that the size distribution
remains close enough to a specific reference value, i.e
centred on a reference mean value with a variance as small
as possible, or to correspond to a specific size distribution.
As a matter of example, in the case of ice cream, it is
well known that the quality, that is the hardness and
the texture of the ice cream, depends on the ice crystal
size distribution (CSD). For example, depending on the
mean crystal size, or more precisely on the dispersion
of crystal sizes (that is on the shape of the CSD), the
obtained texture of the ice cream is more or less grainy.
Some physical properties of the ice cream, as for example
its viscosity, also depend on the CSD (Casenave et al.
(2014), Casenave et al. (2013), Casenave et al. (2012)).
In the context of the production of granulated additive
particles (in the mentioned example of the production of
anti-foam agents, for instance), it is essential to produce
particles whose size remains close to that of the detergent
powder so that the solid mixture remains as homogeneous
as possible to make sure that both can dissolve at the same
time (Henri et al. (2006a), Henri et al. (2006b)).

2. POPULATION BALANCE MODELS

The dynamics of particulate systems are basically de-
scribed by partial integro-differential equations, i.e. partial
differential equations (PDE’s) that contain an integral
term. These belong to the category of population balance
models (Ramkrishna (2000)).

Fig. 1. Flow sheet of the production process of granulated
particles

2.1 The agglomeration process

As a matter of illustration, let us first consider the pro-
duction of granulated particles mentioned above. The (in-
dustrial) process is indeed composed of a (high-shear)
granulator and a fluidised bed reactor (see Figure 1). The
fine fresh powder inflow rate (F0) and a binder liquid enter
the granulator in which particles agglomerate. The particle
outflow rate (F1) goes through the fluidised bed reactor
where it is dried and undergoes a second agglomeration.
In the fluidised bed reactor, the finer particles are removed
by a vertical air flow. The air and these particles are then
separated in a filter. The particle flow rate (F3) is recycled
at the top of the process. The fluidized bed particle outflow
rate (F2) is divided in three flow rates into a sieve:

F2 = F4,fines + F4,larg + F4,interm (1)

where F4,fines, F4,larg and F4,interm represent the flow
rates of the finer particles that are recycled at the top

Modelling and control of particulate
systems - three industrial(ly based) case

studies

D. Dochain ∗ C. Casenave ∗∗ C. Henri ∗ L. Noon ∗
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of the process, of the larger particles that are crushed and
recycled to the fluidised bed reactor, and of the interme-
diate particles that are the desired product, respectively.

Let us assume that there is no germination, growth or
breakage, and that both the granulator and the fluidised
bed reactor are operated in perfectly mixed conditions
with a constant reacting medium volume. We obtain the
following population balance equation from mass balance
on the number of particles n(v, t) of size volume v in the
granulator (index 1) and in the fluidised bed reactor (index
2)(Henri et al. (2006b)):

∂n1(v, t)

∂t
=

1

2

∫ v

0

β1(t, u, v − u)n1(u, t)n1(v − u, t)du

−
∫ ∞

0

β1(t, u, v)n1(u, t)n1(v, t)du+ F0(v, t)

+F3(v, t) + F4,fines(v, t)− F1(v, t) (2)

∂n2(v, t)

∂t
=

1

2

∫ v

0

β2(t, u, v − u)n2(u, t)n2(v − u, t)du

−
∫ ∞

0

β2(t, u, v)n2(u, t)n2(v, t)du

+F1(v, t) + F5(v, t)− F3(v, t)− F2(v, t) (3)

with

F1(v, t) =
q1n1(v, t)

V1
, F2(v, t) =

q2n2(v, t)

V2
(4)

F4,fines(v, t) =

{
F2(v, t) if v < vsieve,fines
0 if v ≥ vsieve,fines

(5)

F4,larg(v, t) =

{
F2(v, t) if v ≥ vsieve,larg
0 if v < vsieve,larg

(6)

F3(v, t) =

{
F1(v, t) + F5(v, t) if v < vsieve,fines
0 if v ≥ vsieve,fines

(7)

In the above equations, q1, q2, V1, V2, β1(t, u, v), β2(t, u, v)
are the volumetric outflow rates, the volumes and the
coalescence kernels in the granulator and in the fluidised
bed reactor, respectively. The first two terms on the right-
hand side of both equations (2)(3) are the birth and
death rates of agglomerates resulting from agglomeration,
respectively.

Equation (7) assumes that the fines are instantaneously
removed from the fluidised bed reactor. The fines particles
have a size-volume v such that v < vbed,fines.

2.2 The crystallization process

As a second example, let us consider the crystallization
of ice cream. A schematic view of the pilot crystallizer is
shown on Figure 2 (Casenave et al. (2014)). The pilot
plant is located at IRSTEA Antony (France). The ice
cream crystallizer is a 0.40 meter long cylindric scraped
surface heat exchanger, with inner diameter of 0.05 meter.
The mix sorbet, which is mainly composed of sugar, gum
and water, is first put in a mix storage tank which is
refrigerated at a temperature T0 of 5◦C. The mix sorbet is
then fed to the crystallizer by a piston pump. Within the
vessel jacket of the crystallizer, a refrigerant fluid, whose
temperature Te is called the evaporation temperature,

is continuously vaporizing to cool down the mix sorbet.
When the temperature of the mix sorbet goes below the
saturation temperature Tsat, the crystallization occurs.
Some ice crystals appear on the inner wall of the cylinder
and are scraped by two scraper blades which turn with a
rotation speed Nscrap and therefore mix the ice.

The dynamics of the ice cream crystallization are deduced
from mass and energy balance equations. The mass bal-
ance results in a population balance model for the number
n(L, t) of crystals per cubic meter of length L. The mass
balance considers transport, crystal growth, nucleation
and breakage, while the radial diffusion is assumed to be
negligible. If the plug flow reactor is approximated, from
an input-output point of view, by a Continuous Stirred-
Tank Reactor (CSTR) with a transport delay 1 (to account
for the fluid transport in the freezer), then we get the
following equation :

∂n

∂t
= −Dn− ∂(Gn)

∂L
+Nδ(L−Lc) +Bb (8)

where δ denotes the Dirac function. D is the dilution rate,
i.e. the ratio of the mass flow rate mfr over the product
of the density of the solution ρs and the volume V of the
freezer (D =

mfr

ρsV
). L and Lc are the crystal length variable

and the initial crystal length, and G, N , Bb are the growth
rate, nucleation rate, and net increase of crystals number
by breakage, respectively.

The growth and nucleation rates are expressed by 2 :

G = β(Tsat − T ), and N = αS (Tsat − Te)
2
, (9)

where Tsat is the saturation temperature, and α, β are
some kinetic parameters.
Because of the scraper, the crystals can also be broken. We
assume that a particle of size L′ is broken into two particles
of the same length L. The volume of ice is considered
unchanged by the fragmentation and a spherical shape
is assumed. Under these assumptions, the net increase of
particles by breakage Bb, can be expressed as 3 :

Bb = εNscrap φ
ν
i

(
2 22/3 LΨ(

3
√
2L)− LΨ(L)

)
, (10)

with Nscrap the dasher rotation speed, ε a breakage co-
efficient, φi the ice fraction and ν the breakage power
coefficient which is taken equal to 0.

Under the same hypotheses, the energy balance equation
is written as follows :
dU

dt
= −D(U − U0)︸ ︷︷ ︸

transport

+ heS(Te − T )︸ ︷︷ ︸
wall heat transfer

+ µγ̇2

︸︷︷︸
viscous dissipation

(11)
where U and T are the respective volumetric internal
energy and temperature at the outlet of the freezer, U0

is the internal energy at the inlet of the freezer, Te is the
evaporation temperature, he is the convective heat transfer
coefficient and µ is the viscosity. The effective shear rate
γ̇ is expressed as γ̇ = 2πχNscrap with χ the viscous

1 The transport delay does not appear in the equation (8) and (11)
because the input variables, that is the crystal size distribution and
the temperature of the mix at the inlet of the freezer, are constant.
2 Only heterogeneous nucleation at the freezer wall (r = Re) is
considered here.
3 Under these assumptions, the relation between L′ and L is given
by L′ = 21/3L.
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of the process, of the larger particles that are crushed and
recycled to the fluidised bed reactor, and of the interme-
diate particles that are the desired product, respectively.

Let us assume that there is no germination, growth or
breakage, and that both the granulator and the fluidised
bed reactor are operated in perfectly mixed conditions
with a constant reacting medium volume. We obtain the
following population balance equation from mass balance
on the number of particles n(v, t) of size volume v in the
granulator (index 1) and in the fluidised bed reactor (index
2)(Henri et al. (2006b)):

∂n1(v, t)

∂t
=

1

2

∫ v

0

β1(t, u, v − u)n1(u, t)n1(v − u, t)du

−
∫ ∞

0

β1(t, u, v)n1(u, t)n1(v, t)du+ F0(v, t)

+F3(v, t) + F4,fines(v, t)− F1(v, t) (2)

∂n2(v, t)

∂t
=

1

2

∫ v

0

β2(t, u, v − u)n2(u, t)n2(v − u, t)du

−
∫ ∞

0

β2(t, u, v)n2(u, t)n2(v, t)du

+F1(v, t) + F5(v, t)− F3(v, t)− F2(v, t) (3)

with

F1(v, t) =
q1n1(v, t)

V1
, F2(v, t) =

q2n2(v, t)

V2
(4)

F4,fines(v, t) =

{
F2(v, t) if v < vsieve,fines
0 if v ≥ vsieve,fines

(5)

F4,larg(v, t) =

{
F2(v, t) if v ≥ vsieve,larg
0 if v < vsieve,larg

(6)

F3(v, t) =

{
F1(v, t) + F5(v, t) if v < vsieve,fines
0 if v ≥ vsieve,fines

(7)

In the above equations, q1, q2, V1, V2, β1(t, u, v), β2(t, u, v)
are the volumetric outflow rates, the volumes and the
coalescence kernels in the granulator and in the fluidised
bed reactor, respectively. The first two terms on the right-
hand side of both equations (2)(3) are the birth and
death rates of agglomerates resulting from agglomeration,
respectively.

Equation (7) assumes that the fines are instantaneously
removed from the fluidised bed reactor. The fines particles
have a size-volume v such that v < vbed,fines.

2.2 The crystallization process

As a second example, let us consider the crystallization
of ice cream. A schematic view of the pilot crystallizer is
shown on Figure 2 (Casenave et al. (2014)). The pilot
plant is located at IRSTEA Antony (France). The ice
cream crystallizer is a 0.40 meter long cylindric scraped
surface heat exchanger, with inner diameter of 0.05 meter.
The mix sorbet, which is mainly composed of sugar, gum
and water, is first put in a mix storage tank which is
refrigerated at a temperature T0 of 5◦C. The mix sorbet is
then fed to the crystallizer by a piston pump. Within the
vessel jacket of the crystallizer, a refrigerant fluid, whose
temperature Te is called the evaporation temperature,

is continuously vaporizing to cool down the mix sorbet.
When the temperature of the mix sorbet goes below the
saturation temperature Tsat, the crystallization occurs.
Some ice crystals appear on the inner wall of the cylinder
and are scraped by two scraper blades which turn with a
rotation speed Nscrap and therefore mix the ice.

The dynamics of the ice cream crystallization are deduced
from mass and energy balance equations. The mass bal-
ance results in a population balance model for the number
n(L, t) of crystals per cubic meter of length L. The mass
balance considers transport, crystal growth, nucleation
and breakage, while the radial diffusion is assumed to be
negligible. If the plug flow reactor is approximated, from
an input-output point of view, by a Continuous Stirred-
Tank Reactor (CSTR) with a transport delay 1 (to account
for the fluid transport in the freezer), then we get the
following equation :

∂n

∂t
= −Dn− ∂(Gn)

∂L
+Nδ(L−Lc) +Bb (8)

where δ denotes the Dirac function. D is the dilution rate,
i.e. the ratio of the mass flow rate mfr over the product
of the density of the solution ρs and the volume V of the
freezer (D =

mfr

ρsV
). L and Lc are the crystal length variable

and the initial crystal length, and G, N , Bb are the growth
rate, nucleation rate, and net increase of crystals number
by breakage, respectively.

The growth and nucleation rates are expressed by 2 :

G = β(Tsat − T ), and N = αS (Tsat − Te)
2
, (9)

where Tsat is the saturation temperature, and α, β are
some kinetic parameters.
Because of the scraper, the crystals can also be broken. We
assume that a particle of size L′ is broken into two particles
of the same length L. The volume of ice is considered
unchanged by the fragmentation and a spherical shape
is assumed. Under these assumptions, the net increase of
particles by breakage Bb, can be expressed as 3 :

Bb = εNscrap φ
ν
i

(
2 22/3 LΨ(

3
√
2L)− LΨ(L)

)
, (10)

with Nscrap the dasher rotation speed, ε a breakage co-
efficient, φi the ice fraction and ν the breakage power
coefficient which is taken equal to 0.

Under the same hypotheses, the energy balance equation
is written as follows :
dU

dt
= −D(U − U0)︸ ︷︷ ︸

transport

+ heS(Te − T )︸ ︷︷ ︸
wall heat transfer

+ µγ̇2

︸︷︷︸
viscous dissipation

(11)
where U and T are the respective volumetric internal
energy and temperature at the outlet of the freezer, U0

is the internal energy at the inlet of the freezer, Te is the
evaporation temperature, he is the convective heat transfer
coefficient and µ is the viscosity. The effective shear rate
γ̇ is expressed as γ̇ = 2πχNscrap with χ the viscous

1 The transport delay does not appear in the equation (8) and (11)
because the input variables, that is the crystal size distribution and
the temperature of the mix at the inlet of the freezer, are constant.
2 Only heterogeneous nucleation at the freezer wall (r = Re) is
considered here.
3 Under these assumptions, the relation between L′ and L is given
by L′ = 21/3L.
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dissipation coefficient. The quantity S = 2Re

R2
e−R2

i

is the

ratio of the circumference over the surface of the section
of the freezer, Re and Ri denoting the maximum and
minimum diameters of the cylindrical freezer, respectively.

Fig. 2. Schematic view of the ice cream crystallizer

3. POPULATION MODEL VALIDATION

A key issue in population balance models is to select
the appropriate functions that characterize the different
mechanisms that are involved in the transformation of the
size distribution of the particles. For the ice cream crys-
tallization process, detailed information on the selection of
the growth, nucleation and breakage terms can be in found
in (Benkhelifa et al (2011)) and (Benkhelifa et al (2008)).
For the agglomeration, the selection and the validation on
industrial data of the agglomeration kernels β1(t, u, v) and
β2(t, u, v) has been performed as follows.

The coalescence kernel βi(t, u, v) (i= 1,2) is often separated
into a time-dependent rate-constant and a size-dependent
kernel (Nilpawar et al. (2005) Biggs et al (2003)):

βi(t, u, v) = βi,0(t)β
∗
i (u, v) (12)

The size-dependent kernel β∗
i (u, v) describes the aggre-

gation rate as a function of the two colliding particles
volumes.

In our study, the aggregation rate constants β1,0(t) and
β2,0(t) have been considered as fitting parameters. The
literature provides a wide range of size-dependent ag-
gregation kernels : some of them are based on physical
models, others are empirically-based. In our study, the use
of four kernels has been investigated: the size-independent
kernel (SIK), the equipartition of kinetic energy kernel
(EKE), the equipartition of translational momentum ker-
nel (ETM) and a square kernel (SQR):

SIK : β∗
i (u, v) = 1 (13)

EKE : β∗
i (u, v) = (u+ v)2

√(
1

u3
+

1

v3

)
(14)

ETM : β∗
i (u, v) = (u+ v)2

√(
1

u6
+

1

v6

)
(15)

SQR : β∗
i (u, v) =

(
1

u+ v

)2

(16)

The SIK is chosen for its simplicity. It favours all inter-
actions equally. This model is fully empirical and offers
a good comparison with the three other kernels which are
physically-based (Hounslow et al (2001)). The EKE kernel
is presented by (Hounslow et al (2001)). In this model,
it is assumed that collisions occur as a consequence of
random motion. This kernel favours large-small particle
interactions. In the ETM kernel, each granule is assumed
to be subject to the same randomly fluctuating impulses
(Hounslow (1998)). The last kernel favours small-small
particle interactions.

Fig. 3. Particle size distribution at the output of the
fluidised bed reactor

As a matter of illustration and validation, the different
distributions at the outlet of the fluidised bed reactor
are shown in Figure 3, as compared to experimental
distribution data. Figure 3 shows that the ETM kernel
shape exhibits a better fit to the experimental distribution.
With the EKE kernel a lot of particles remains in the range
100-1000 microns. The distribution obtained with the SIK
kernel is not in good agreement with the experimental
data.

4. REDUCED ORDER MODELS

The analysis of such models in the context of infinite
dimensional systems is an increasingly active research
area (e.g. Beniich et al. (2017)). Control design can be
performed directly from the PDE model (this known as
early lumping (Ray (1978)), see for example (Palis (2019))
or (Beniich et al. (2019)). Yet the PDE models are often
discretized for control design (late lumping). One typical
approach in particulate systems is to consider the moments
of increasing order. The number of moments equations
that are finally kept, and the closure of the truncated
system are some important questions.

4.1 Ice cream crystallization

In the ice cream case study (Casenave et al. (2014)) for
instance, the first four moment equations are independent
of the higher order ones, and the energy balance equation
only involves moments of order 3 or less, so that the
considered reduced system finally reduced to a set of 5
ordinary differential equations (ODE’s).

The method of moments consists in multiplying the popu-
lation balance equation by Lj and then integrating it from

L = 0 to L = ∞. Applying the method of moments to our
crystallization model, we get, for all j ≥ 0:

dMj

dt
= −DMj + j GMj−1 +N Lj

c +B
(
21−

j
3 − 1

)
Mj+1

(17)
where the jth order moment Mj is given by :

Mj(t) =

∫ ∞

0

LjΨ(L, t)dL (18)

and
B = εNscrap. (19)

with Ψ(L, t) the crystal size distribution and L the crystal
length.

The saturation temperature is supposed to depend only
on M3, that is Tsat = Tsat(M3). As a consequence, G and
N can be expressed as functions of the variables M3 and
T , and M3 and Te respectively (i.e. G = G(M3, T ) and
N = N(M3, Te)).

Moreover, if we consider the ice crystals as spherical
particles (as in Benkhelifa et al (2011)), then we have:

φi =
π

6
M3, (20)

Since both the volume and the pressure are assumed to be
constant, the internal energy U is equal to the enthalpy H
which is indeed composed of two terms:

• the enthalpy related to the crystallization:

−∆Hρiφi

where −∆H ρi and φi are the specific fusion latent
heat, the mass density of the ice, and the ice fraction,
respectively;

• the enthalpy of the solute and of the water:

ρs (ω0Cs + (1− ω0)Cw)T

where ρs, ω0, Cs, Cw and T are the mass density
of the solution, the initial mass fraction of solute
(sucrose), the solute specific heat capacity, the water
specific heat capacity, and the temperature, respec-
tively.

This means that equation (11) can be rewritten with the
temperature T as the state variable:

dT

dt
=D (T0 − T ) +K2 (Te − T )

+N2
scrapK3µ+K1

(
3GM2 +NL3

c

)
(21)

with the following quantities :

K0 = ρs (ω0 Cs + (1− ω0)Cw) , T0 =
U0

K0
, (22)

K1 =
π

6

∆H ρi
K0

, K2 =
heS

K0
, K3 =

(2πχ)2

K0
. (23)

Finally, if the viscosity µ is assumed to depend only on
the third moment M3, the temperature T , and the dasher
rotation speed Nscrap (i.e. µ = µ(M3, T,Nscrap)), then
the system composed of the first four moment equations
and the temperature equation is closed. In fact all the
dynamical quantities of this system are functions of the
moments M0, M1, M2, M3, the temperature T and the
input variables Te, D and Nscrap. The moment based
reduced model reads then as follows :

dM0

dt
=−DM0 +N +BM1 (24)

dM1

dt
=−DM1 +GM0 +NLc + c1BM2 (25)

dM2

dt
=−DM2 + 2GM1 +NL2

c + c2BM3 (26)

dM3

dt
=−DM3 + 3GM2 +NL3

c (27)

dT

dt
=D (T0 − T ) +K2 (Te − T )

+N2
scrapK3µ+K1

(
3GM2 +NL3

c

)
(28)

with µ = µ(M3, T,Nscrap), G = G(M3, T ), N =
N(M3, Te), B = B(Nscrap) and the following constants :

c1 = 2
2
3 − 1, c2 = 2

1
3 − 1. (29)

M0, M1, M2 and M3 represent the number of particles,
the sum of characteristic lengths and the images of the
total area and volume of the crystals per cubic meter at
the outlet of the freezer respectively. Their respective units
are [m−3], [m−2], [m−1] and [−].

A detailed identification procedure for the reduced model
of the ice crystallization process can be found in (Casenave
et al. (2014)).

4.2 Pharmaceutical crystallization proccess

In our study for the crystallization in the pharmaceutical
industry, the context was the scaling up of the process. Our
study (Noon (2007)) was based on experiments performed
in batch reactors. For the low scale experiments, breakage
phenomena can be neglected 4 , and nucleation (germina-
tion) is explicitly included in the boundary conditions
(since the reactor is seeded: this privileges what is known
as the secondary germination (Mullin (2001))), i.e. for
L = 0.

The population balance model reduces to:

∂n

∂t
=−∂(Gn)

∂L
(30)

n(0, t) =
N(t)

G(t)
(31)

where N(t) is the nucleation (secondary germination) rate.

In line with experimental evidence, the growth rate G(t)
is assumed to be independent of the size of the crystals,
and is a function of the solute concentration C(t) and of
its saturation concentration Csat. Indeed crystallization is
closely related to the notion phase change between liquid
and solid, and that of the solubility which is the thermo-
dynamic equilibrium parameter between liquid phase and
solid phase. This phase equilibrium is usually represented
by a concentration vs temperature curve (at constant pres-
sure), as it is represented in Figure 4 (glycine-water). From
such a curve, we can deduce a relation of the saturation
concentration as a function of the temperature, Csat(T ). It
is known that crystallization can take place in a zone close

4 for large scale operation, these are not negligible anymore and is
clearly part of the upscaling study of the crystallization process, but
this part of the study cannot be reported here.
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L = 0 to L = ∞. Applying the method of moments to our
crystallization model, we get, for all j ≥ 0:

dMj

dt
= −DMj + j GMj−1 +N Lj

c +B
(
21−

j
3 − 1

)
Mj+1

(17)
where the jth order moment Mj is given by :

Mj(t) =

∫ ∞

0

LjΨ(L, t)dL (18)

and
B = εNscrap. (19)

with Ψ(L, t) the crystal size distribution and L the crystal
length.

The saturation temperature is supposed to depend only
on M3, that is Tsat = Tsat(M3). As a consequence, G and
N can be expressed as functions of the variables M3 and
T , and M3 and Te respectively (i.e. G = G(M3, T ) and
N = N(M3, Te)).

Moreover, if we consider the ice crystals as spherical
particles (as in Benkhelifa et al (2011)), then we have:

φi =
π

6
M3, (20)

Since both the volume and the pressure are assumed to be
constant, the internal energy U is equal to the enthalpy H
which is indeed composed of two terms:

• the enthalpy related to the crystallization:

−∆Hρiφi

where −∆H ρi and φi are the specific fusion latent
heat, the mass density of the ice, and the ice fraction,
respectively;

• the enthalpy of the solute and of the water:

ρs (ω0Cs + (1− ω0)Cw)T

where ρs, ω0, Cs, Cw and T are the mass density
of the solution, the initial mass fraction of solute
(sucrose), the solute specific heat capacity, the water
specific heat capacity, and the temperature, respec-
tively.

This means that equation (11) can be rewritten with the
temperature T as the state variable:

dT

dt
=D (T0 − T ) +K2 (Te − T )

+N2
scrapK3µ+K1

(
3GM2 +NL3

c

)
(21)

with the following quantities :

K0 = ρs (ω0 Cs + (1− ω0)Cw) , T0 =
U0

K0
, (22)

K1 =
π

6

∆H ρi
K0

, K2 =
heS

K0
, K3 =

(2πχ)2

K0
. (23)

Finally, if the viscosity µ is assumed to depend only on
the third moment M3, the temperature T , and the dasher
rotation speed Nscrap (i.e. µ = µ(M3, T,Nscrap)), then
the system composed of the first four moment equations
and the temperature equation is closed. In fact all the
dynamical quantities of this system are functions of the
moments M0, M1, M2, M3, the temperature T and the
input variables Te, D and Nscrap. The moment based
reduced model reads then as follows :

dM0

dt
=−DM0 +N +BM1 (24)

dM1

dt
=−DM1 +GM0 +NLc + c1BM2 (25)

dM2

dt
=−DM2 + 2GM1 +NL2

c + c2BM3 (26)

dM3

dt
=−DM3 + 3GM2 +NL3

c (27)

dT

dt
=D (T0 − T ) +K2 (Te − T )

+N2
scrapK3µ+K1

(
3GM2 +NL3

c

)
(28)

with µ = µ(M3, T,Nscrap), G = G(M3, T ), N =
N(M3, Te), B = B(Nscrap) and the following constants :

c1 = 2
2
3 − 1, c2 = 2

1
3 − 1. (29)

M0, M1, M2 and M3 represent the number of particles,
the sum of characteristic lengths and the images of the
total area and volume of the crystals per cubic meter at
the outlet of the freezer respectively. Their respective units
are [m−3], [m−2], [m−1] and [−].

A detailed identification procedure for the reduced model
of the ice crystallization process can be found in (Casenave
et al. (2014)).

4.2 Pharmaceutical crystallization proccess

In our study for the crystallization in the pharmaceutical
industry, the context was the scaling up of the process. Our
study (Noon (2007)) was based on experiments performed
in batch reactors. For the low scale experiments, breakage
phenomena can be neglected 4 , and nucleation (germina-
tion) is explicitly included in the boundary conditions
(since the reactor is seeded: this privileges what is known
as the secondary germination (Mullin (2001))), i.e. for
L = 0.

The population balance model reduces to:

∂n

∂t
=−∂(Gn)

∂L
(30)

n(0, t) =
N(t)

G(t)
(31)

where N(t) is the nucleation (secondary germination) rate.

In line with experimental evidence, the growth rate G(t)
is assumed to be independent of the size of the crystals,
and is a function of the solute concentration C(t) and of
its saturation concentration Csat. Indeed crystallization is
closely related to the notion phase change between liquid
and solid, and that of the solubility which is the thermo-
dynamic equilibrium parameter between liquid phase and
solid phase. This phase equilibrium is usually represented
by a concentration vs temperature curve (at constant pres-
sure), as it is represented in Figure 4 (glycine-water). From
such a curve, we can deduce a relation of the saturation
concentration as a function of the temperature, Csat(T ). It
is known that crystallization can take place in a zone close

4 for large scale operation, these are not negligible anymore and is
clearly part of the upscaling study of the crystallization process, but
this part of the study cannot be reported here.
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to the solubility curve. This zone is called the metastable
zone (in Figure 4, it is defined by the zone between the
blue curve and the green curve). As a consequence, the
growth rate G(t) and the nucleation rateN(t) are typically
modelled as a function of the sursaturation ratio

S =
C(t)− Csat(T )

Csat(T )

Moreover Arrhenius type dependence with respect to the
temperature, exp(−E/RT ) (with E an activation energy
and R the ideal gas constant) is considered, It is also
known that the nucleation rate N(t) depends on the third
order moment M3 (which represents the total volume of
the crystals) (see Mullin (2001)). Therefore G(t) and N(t)
can be modelled as follows:

G(t) = kge
− Eg

RT

(
C(t)− Csat(T )

Csat(T )

)g

(32)

N(t) = kne
−En

RT

(
C(t)− Csat(T )

Csat(T )

)n

M3 (33)

where kg and kn are kinetic constants.

Fig. 4. Solubility curve and metastable zone

In the present instance, the population balance is com-
pleted by a mass balance equation for the solute concen-
tration C and by an energy balance, and once we apply
the methods of moments, we obtain the following set of
ODE’s for the whole system dynamics:

dM0

dt
= kne

−En
RT

(
C(t)− Csat(T )

Csat(T )

)n

M3 (34)

dM1

dt
= kge

− Eg
RT

(
C(t)− Csat(T )

Csat(T )

)g

M0 (35)

dM2

dt
= 2kge

− Eg
RT

(
C(t)− Csat(T )

Csat(T )

)g

M1 (36)

dM3

dt
= 3kge

− Eg
RT

(
C(t)− Csat(T )

Csat(T )

)g

M2 (37)

dC

dt
=−3ρkvkge

− Eg
RT

(
C(t)− Csat(T )

Csat(T )

)g

M2 (38)

dT

dt
=−∆H

Cp
3ρkvkge

− Eg
RT

(
C(t)− Csat(T )

Csat(T )

)g

M2

+
UA

MCp
(Te − T ) (39)

where kv, ∆H, Cp, U , A, M and Te are a volumetric shape
factor, the heat of reaction, the specific heat of the solute,
the heat exchanger coefficient, the heat exchange surface,
the mass of solute, and the heat exchanger temperature,
respectively.

Parameter identification via a least square method has
been performed for the above model (Noon (2007)).

5. CONTROL

For the above case study, a linear temperature profile
(from 50oC to 31oC over a period of 30 hours) has been
applied as a reference profile over the batch period by
implementing a simple PI controller whose control input
was the heat exchanger temperature Te (see Figure 5).
Such temperature guarantees that the process remains the
metastable zone (see Figure 6).

Fig. 5. Temperature profile in the batch reactor

Fig. 6. Solute concentration in the batch reactor

A detailed control design has been performed also for
the ice cream crystallization process (Casenave et al.
(2013)). In the ice cream industry, the type of final desired
product (large cartons (sqrounds) or ice creams on a
stick) determine the viscosity at which the ice cream has
to be produced. One of the objectives of the ice cream
crystallization processes is therefore to produce an ice
cream of specified viscosity. In practice this means that the
objective is to control the viscosity µ of the product at the
outlet of the freezer, or more precisely at the measurement

point, located a bit further than the outlet of the freezer.
At this measurement point, the temperature of the ice
cream is close to the saturation temperature Tsat(M3).
In other words, the output variable to be controlled is
y = Tsat(M3). A detailed study showed that the best
control input will be the compressor rotation speed Vcomp.
In the present instance, it is more precisely a cascade
control that has been considered with two control loops:
a primary loop to control Tsat via the action of the
heat exchanger temperature Te, and a secondary loop to
control Te with Vcomp. An adaptive linearizing controller
has been designed on the basis of the moment model (24)-
(28)(Casenave et al. (2013)). Figure 7 shows experimental
results of the application of the cascade adaptive controller
to the freezer.

Fig. 7. Control of the ice cream crystallization: experimen-
tal results

6. CONCLUSIONS

In this paper we have reviewed three case studies of
modelling and control of particulate systems with one
industrial agglomeration process and two crystallization
processes (one industrial pharmaceutical process, one pilot
scale ice cream crystallization process). Note that our ap-
plication studies have also been applied to other industrial
particulate systems, like nanoparticles production.
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point, located a bit further than the outlet of the freezer.
At this measurement point, the temperature of the ice
cream is close to the saturation temperature Tsat(M3).
In other words, the output variable to be controlled is
y = Tsat(M3). A detailed study showed that the best
control input will be the compressor rotation speed Vcomp.
In the present instance, it is more precisely a cascade
control that has been considered with two control loops:
a primary loop to control Tsat via the action of the
heat exchanger temperature Te, and a secondary loop to
control Te with Vcomp. An adaptive linearizing controller
has been designed on the basis of the moment model (24)-
(28)(Casenave et al. (2013)). Figure 7 shows experimental
results of the application of the cascade adaptive controller
to the freezer.

Fig. 7. Control of the ice cream crystallization: experimen-
tal results

6. CONCLUSIONS

In this paper we have reviewed three case studies of
modelling and control of particulate systems with one
industrial agglomeration process and two crystallization
processes (one industrial pharmaceutical process, one pilot
scale ice cream crystallization process). Note that our ap-
plication studies have also been applied to other industrial
particulate systems, like nanoparticles production.
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