
HAL Id: hal-03276149
https://hal.inrae.fr/hal-03276149

Submitted on 25 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RNA-Seq Data for Reliable SNP Detection and
Genotype Calling

Frédéric Jehl, Fabien Degalez, Frédéric Lecerf, Maria Bernard, Laetitia
Lagoutte, Colette Désert, Manon Coulée, Olivier Bouchez, Sophie Leroux,

Behnam Abasht, et al.

To cite this version:
Frédéric Jehl, Fabien Degalez, Frédéric Lecerf, Maria Bernard, Laetitia Lagoutte, et al.. RNA-Seq
Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization
and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species. Frontiers in Genetics,
2021, 12, pp.655707. �10.3389/fgene.2021.655707�. �hal-03276149�

https://hal.inrae.fr/hal-03276149
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


fgene-12-655707 June 21, 2021 Time: 18:27 # 1

ORIGINAL RESEARCH
published: 28 June 2021

doi: 10.3389/fgene.2021.655707

Edited by:
James Reecy,

Iowa State University, United States

Reviewed by:
Stephen J. Bush,

University of Oxford, United Kingdom
Melissa Susan Monson,

Iowa State University, United States

*Correspondence:
Christophe Klopp

christophe.klopp@inrae.fr
Sandrine Lagarrigue

sandrine.lagarrigue@agrocampus-
ouest.fr

†These authors share first authorship

‡These authors share last authorship

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal

Frontiers in Genetics

Received: 19 January 2021
Accepted: 01 June 2021
Published: 28 June 2021

Citation:
Jehl F, Degalez F, Bernard M,

Lecerf F, Lagoutte L, Désert C,
Coulée M, Bouchez O, Leroux S,

Abasht B, Tixier-Boichard M,
Bed’hom B, Burlot T, Gourichon D,

Bardou P, Acloque H, Foissac S,
Djebali S, Giuffra E, Zerjal T, Pitel F,

Klopp C and Lagarrigue S (2021)
RNA-Seq Data for Reliable SNP

Detection and Genotype Calling:
Interest for Coding Variant

Characterization and Cis-Regulation
Analysis by Allele-Specific Expression

in Livestock Species.
Front. Genet. 12:655707.

doi: 10.3389/fgene.2021.655707

RNA-Seq Data for Reliable SNP
Detection and Genotype Calling:
Interest for Coding Variant
Characterization and Cis-Regulation
Analysis by Allele-Specific
Expression in Livestock Species
Frédéric Jehl1†, Fabien Degalez1†, Maria Bernard2,3†, Frédéric Lecerf1, Laetitia Lagoutte1,
Colette Désert1, Manon Coulée1, Olivier Bouchez4, Sophie Leroux5, Behnam Abasht6,
Michèle Tixier-Boichard3, Bertrand Bed’hom3, Thierry Burlot7, David Gourichon8,
Philippe Bardou2, Hervé Acloque3, Sylvain Foissac5, Sarah Djebali5, Elisabetta Giuffra3,
Tatiana Zerjal3, Frédérique Pitel5, Christophe Klopp2*‡ and Sandrine Lagarrigue1*‡

1 INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France, 2 INRAE, SIGENAE, Genotoul Bioinfo MIAT,
Castanet-Tolosan, France, 3 INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France,
4 INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France, 5 INRAE, INPT, ENVT, Université de Toulouse,
GenPhySE UMR 1388, Castanet-Tolosan, France, 6 Department of Animal and Food Sciences, University of Delaware,
Newark, DE, United States, 7 NOVOGEN, Maugueérand, Le Foeil, France, 8 INRAE, PEAT UE, Nouzilly, France

In addition to their common usages to study gene expression, RNA-seq data
accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous
individuals from different populations. SNP detection by RNA-seq is particularly
interesting for livestock species since whole genome sequencing is expensive and
exome sequencing tools are unavailable. These SNPs detected in expressed regions
can be used to characterize variants affecting protein functions, and to study cis-
regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest.
However, gene expression can be highly variable, and filters for SNP detection using
the popular GATK toolkit are not yet standardized, making SNP detection and genotype
calling by RNA-seq a challenging endeavor. We compared SNP calling results using
GATK suggested filters, on two chicken populations for which both RNA-seq and
DNA-seq data were available for the same samples of the same tissue. We showed,
in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and
shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied
the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and
read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds
for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue
RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of
which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%)
and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data
from one tissue can be used to (i) detect SNPs with a strong predicted impact on
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proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses
and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression,
with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can
be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze
population genetic using such SNPs located in expressed regions. This work shows that
RNA-seq data can be used with good confidence to detect SNPs and associated GT
within various populations and used them for different analyses as GTEx studies.

Keywords: RNA-seq, SNP calling, genotype calling, SNP annotation, allele-specific expression, livestock, chicken

INTRODUCTION

RNA-seq is currently the method of choice to study
transcriptome expression in replacement of gene chips
(Mortazavi et al., 2008). This technology is commonly used
to study gene expression patterns in a variety of organisms
including plant, animal or human groups to better understand
the genetic mechanisms intervening in the determinism of
phenotypes (Gondret et al., 2017), diseases (Savary et al., 2020)
or response to environmental changes (Jehl et al., 2019) among
others. The RNA-seq has other more specific applications taking
advantage of its sequencing step. For example RNA-seq allows
transcript and gene modeling as shown by long non-coding
atlas reported in different species (Derrien et al., 2012; Jehl
et al., 2020). It also allows to combine SNP information, at the
RNA level with gene expression to study the variation which
affects gene-expression levels: it is a powerful technology to
identify such expression quantitative trait locus (eQTL) either
through GWAS mapping (if the individual number is sufficient)
or through allele-specific expression (ASE) analysis as shown
by growing number of studies on a variety of species since the
beginning of the RNA-seq technology in the 2010s (Montgomery
et al., 2010; Pickrell et al., 2010; Battle et al., 2013; Lagarrigue
et al., 2013b; Chamberlain et al., 2015; Deelen et al., 2015; The
GTEx Consortium, 2020), among them the famous studies from
the human GTEx consortium (The GTEx Consortium, 2020).
Finally RNA-seq allows RNA editing analysis, a phenomenon
resulting in nucleotide changes observed at RNA level, occurring
after its transcription from DNA level (Kleinman et al., 2012). In
these two last applications, RNA-seq is in general combined with
DNA-seq used for genotyping individuals. However, RNA-seq
can also detect genomic variations in expressed regions like
DNA-seq, as described by Piskol et al. (2013). It is particularly
interesting in non-model species (wild or domesticated, for
example livestock species) in which no exome capturing tools
have been developed as an alternative to DNA-seq data, which
remains costly to generate and store. In this context, RNA-seq
presents several advantages compared to the DNA-seq. First,
the number of RNA-seq data sets publicly available is much
higher than the number of DNA-seq data sets, for many species
(chicken, pig, cow, and other non-model species) since these
data have accumulated over the past several years and continue
to accumulate in different populations and within populations.
Moreover, within populations, different conditions are studied,
increasing the number of studied animals, allowing to better

detect, in a given population, variants with low frequencies.
Second, RNA-seq data allows studying coding region variations
that have potential functional impacts. Some of these SNPs can
induce a loss of the protein function. These loss-of-function
variants are extensively studied because of their possible
contribution to phenotypes (Genome Aggregation Database
Consortium et al., 2020). In addition, they represent a powerful
source of information to understand gene functions (Genome
Aggregation Database Consortium et al., 2020). However, these
loss of function SNPs are rather rare because purged by negative
selection in natural populations but can be detected with a
certain number of samples. In well-known model-species or
human, these coding region variants are accessible using whole
exome sequencing (WES), as shown by the recent work of the
Genome Aggregation Database (gnomAD) (Lek et al., 2016).
This consortium analyzed 125,748 human exomes (and much
fewer whole genomes: 15,708) from public sources and identified
443,769 high-confidence predicted loss-of-function variants,
defined in the work of gnomAD as being either gain of stop
(non-sense variants), frameshift or splice site variants. For
non-model species such as livestock species, for which the WES
method is usually not available, RNA-seq can thus fulfill the same
objective, with a similar advantage that is, producing a smaller
data volume, thus facilitating data storage and decreasing costs
(Battle et al., 2013). Third, RNA-seq data provides expression
levels of loci harboring SNPs, allowing to study allele-specific
expression as we previously mentioned, and hence, to study
cis-regulation on a large scale, in multiple tissues and multiple
populations. Fourth, the transcribed regions are well spread over
the genome and much more numerous than previously thought.
Thousands of novel long non-coding genes exist across the
genome, as highlighted by the ENCODE project (Derrien et al.,
2012). RNA-seq data can therefore provide sets of numerous
and well distributed SNPs throughout the genome. Finally, these
data could be used to study population genetic diversity from a
different point of view compared to the SNP chips, by offering
various sets of SNPs with more or less severe functional impacts
and not neutral SNPs.

Despite the aforementioned advantages RNA-seq is not yet
often used for SNP detection in coding regions. Indeed, SNP
detection and genotype calling by RNA-seq present three main
challenges. First, the transcriptome is composed of mature
transcripts (i.e., spliced), making mapping of RNA-seq reads
that overlap exon-exon junctions, more difficult, compared to
DNA-seq read alignment (Pan et al., 2008). However, RNA-seq
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mapping methods seem to be well mastered in recent years, even
though it is important to remain cautious for SNPs detected
close to exon-exon junctions (Peng et al., 2012; Lagarrigue et al.,
2013b). Second, RNA editing, by definition, could represent a
strong limitation for SNP detection by RNA-seq, mainly because
it introduces variations at the RNA level, which are absent at the
DNA level. Nevertheless, as we will discuss later, RNA editing
has such features that it only slightly impedes reliable RNA-
seq based variation detection in standard conditions. Third,
genes exhibit highly variable expression levels, leading to the
read depths ranging from a few reads to millions of reads,
contrarily to the DNA-seq which offers a rather homogeneous
read depth across the genome (see Figures 1A,B). Indeed, coding
and non-coding transcripts can be expressed at vastly different
levels, ranging from few copies to millions of copies per cell, in
different cell types and developmental or physiological stages.
Moreover, the transcriptome is also composed of a small portion
of immature under processing transcripts (composed of exons
and introns), less supported by reads but enriched in introns
that are more variable in sequence compared to exons (Sims
et al., 2014). In summary, these variations in read depth from one
gene to another, and within a gene (between introns and exons)
constitute a major challenge for SNP detection (see Figures 1A,B,
left), and more importantly, for individual genotype calling
(see Figures 1A,B, right). Indeed, reliable SNP detection at the
population level benefits from the information accumulation
born by the reads across individuals, in contrast to genotype
calling. This last point might explain why only few studies have
used RNA-seq data for variant detection and genotype calling
since the first publications. Consequently, neither the number of

SNPs that could be detected using RNA-seq, nor the percentage of
individuals with a given genotype (a prerequisite for computing
allelic frequencies), are known. To our best knowledge, since
Piskol et al. (2013), less than a dozen studies were focused
on large-scale SNP detection tools from RNA-seq data (Quinn
et al., 2013; Tang et al., 2014; Wang et al., 2014; Wolfien et al.,
2016; Oikkonen and Lise, 2017; Cornwell et al., 2018; Adetunji
et al., 2019). The reference tools for read mapping and variant
detection have been evolving very rapidly, and these studies have
tested different tools, and among them, only Adetunji et al.,
2019 (Adetunji et al., 2019) used the most recent tools proposed
by ENCODE for RNA-seq data, i.e., STAR (Dobin et al., 2013)
for read mapping and GATK (Van der Auwera et al., 2013) for
variant detection. Three of the above-mentioned studies were
interested in determining the concordance of SNP and genotype
detection between RNA-seq and DNA-seq, the latter being the
gold standard for SNP detection. However, these studies used
only few samples (from 1 to 4) and had not at their disposal
both RNA-seq and DNA-seq data on the same tissues of the
same individuals.

In this context, this work aims at detecting SNPs from RNA-
seq data in chicken. The first goal was to set up a procedure
allowing SNP detection and genotype (GT) calling from RNA-seq
data using reference tools (STAR for read mapping and GATK
for SNP detection). We tested the SNP reliability according
to three filters suggested by the GATK team and compared
the detected SNPs with those obtained using DNA-seq data.
This comparison was performed in two independent chicken
populations for which RNA-seq and DNA-seq data were available
on the same biological samples (i.e., the same tissue of the same

FIGURE 1 | Toy example with simulated data illustrating the need for read depth (DP) filters in RNA-seq and differences with DNA-seq. (A) DNA-seq data offers a
globally homogeneous genome coverage (20X in our case), all SNPs are therefore detected by GATK at the individual level with a DP of 20 reads on average (“DP
per individual”), and at the population level with a DP of 6 × 20 = 120 reads on average (“DP in the population resulting from the addition of ”DP per individual”). All
genotypes (GT) can therefore be computed at the individual level (“GT per individual”), resulting in a genotype call rate of 100% for every SNP (“GT in the
population”). (B) RNA-seq data offers a heterogeneous coverage of the genome depending on the expression of the genes harboring the SNPs. At the population
level, 4 SNPs having a sufficiently high DP are detected by GATK. At the individual level, SNP 1 shows good read coverage across all samples whereas SNP 3 is on
a gene that has a lower expression, in particular in the stress (ST) condition compared to the control (CT). SNP 4 is on an overall very lowly expressed gene. In terms
of genotype (GT) per individual, some cannot be provided by GATK (noted “./.”) because of a too low DP (i.e., 5 reads, see brown GT and DP) and are not
considered for the GT call rate. For SNP 3, most of the individuals from the ST condition have no GT and for SNP 4, only one GT is called whereas in both case the
SNP is detected at the population-level. “GT in the population” provides for each SNP their call-rate for the genotypes (CR): SNP 1 has 100% of the samples with a
GT whereas SNP 4 has 16% and cannot be used to compute meaningful genotype frequencies.
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individuals). In this paper, the workflow was used at the tissue
level to provide results for RNA-seq experimental settings with
only one analyzed tissue which represent a quite common case.
This, however, corresponds to the least favorable case compared
to multi-tissue experimental projects, since it does not allow
cumulating the sequences from tissues per individual. We then
analyzed the effects on the number of detected SNPs by this
workflow performed at the tissue level when using additional
tissues of a same population.

Because a large proportion of SNPs detected by RNA-seq was
reliable, we further applied this procedure to 11 different chicken
populations: a population derived from the wild Red Jungle Fowl
population, an Egyptian Fayoumi population, six commercial
and experimental laying hen populations and three commercial
and experimental broiler populations. Our three goals were to
(i) provide an estimation of the number of SNPs and GT that
can be detected using RNA-seq data per tissue and population,
(ii) present an overview of the predicted consequences of the
SNPs located in coding regions, in particular, the number of
high-confidence predicted loss-of-function variants, as defined in
the work of gnomAD, and finally (iii) give an overview of the
potential of RNA-seq for allele-specific expression (ASE) analysis
by estimating the number of genes that could be analyzed for ASE
with the number of SNPs detected per gene. We then identified
the cis-regulated genes in the liver of 2 of the 11 populations using
the phASER tool (Castel et al., 2016) and the proportion of cis-
regulated hepatic genes shared by the two populations. Finally,
we illustrated the possibility of using RNA-seq data to explore
genetic diversity between populations using different hepatic
RNA-seq SNP sets with variable percentage of severe predicted
protein consequence.

MATERIALS AND METHODS

RNA-Seq and DNA-Seq Data
Raw data of both DNA-seq and/or RNA-seq are available
on the ENA and SRA archives under accession numbers:
PRJEB28745 (RpRm DNA-seq and RNA-seq, Novo1 and Novo2,
RNA-seq); PRJEB43829 (FLLL, DNA-seq); PRJNA330615
and PRJNA248570 (FLLL, RNA-seq); PRJEB26695 (red
jungle fowl, RNA-seq); PRJEB34341 (Naked neck, RNA-
seq); PRJEB34310 (Fayoumi, RNA-seq); PRJEB27455 (FrAg,
RNA-seq); PRJEB43662 (Cobb, RNA-seq); PRJNA612882 (HerX,
RNA-seq) (Fu et al., 2015). RNA sequencing was conducted
on all samples using an Illumina HiSeq (Illumina, California,
United States) system, with 2 × 150 bp or 100 bp. Libraries
were prepared following Illumina’s instructions by purifying
poly-A RNAs (TruSeq RNA Sample Prep Kit). Illumina
adapters containing indexing tags were added for subsequent
identification of samples.

For the comparison of SNPs detected by RNA-seq versus
DNA-seq, we used two populations for which both data types
were obtained from same liver samples collected on the same
birds. The population A was composed of 15 birds from an
experimental layer population (RpRm, PRJEB28745) composed
of birds diverging for feed efficiency (Rp and Rm) after a 40-year

diverging selection (Bordas et al., 1992). The population B was
composed of 8 birds from an experimental broiler population
(FLLL, PRJNA330615) composed of birds diverging for body fat
content (FL and LL) (Roux et al., 2015).

For the rest of the work, we used RNA-seq data from 11
populations (see Additional File 1 for the detail of the number of
birds, the tissues and the number of samples): a red jungle fowl
population (called RJFh with 36 birds and 3 tissues); 3 broiler
populations, the FLLL presented previously but here extended
with 32 birds and 2 tissues) and two commercial ones, the Cobb
500 (Cobb Vantress, named Cobb with 48 birds and 2 tissues) and
a 3-way cross produced by Heritage Breeders, LLC (named HerX,
23 birds and 1 tissue), 6 layer populations with 2 commercial
brown-egg subpopulations from the Novogen company, Novo1
with 32 birds and 1 tissue and Novo2 with 40 birds and 2 tissues,
2 experimental brown-egg populations with the RpRm presented
previously but here extended (with 88 birds and 5 tissues)
and an experimental dwarf chicken layer line homozygous for
the Naked Neck mutation (named LSnu with 16 birds and 2
tissues) and 2 other layer populations with a leghorn breed
(FrAg) with 4 birds and 2 tissues) and the Fayoumi (FAyo), an
Egyptian breed with 16 birds and 2 tissues; finally an experimental
population (Rmx6) issued from crosses between 2 experimental
lines (Frésard et al., 2014) with 19 embryos harvested from the
same batch at embryonic day 4.5 (stage 26).

RNA-Seq Read Mapping and Variant
Detection
For all samples, RNA-seq variants were detected using the
snakemake (Koster and Rahmann, 2012) pipeline, available at
this reference: (GitLab, 2019). For each population, samples
were analyzed by tissue. FASTQ files were trimmed for Illumina
adapter using TrimGalore version 0.4.5 (Krueger, 2021).
STAR v.2.5.2b (Dobin et al., 2013) was used with default
parameters for the read mapping on the Gallus_gallus-5.0
reference genome, after the multi-sample 2-pass mapping
procedure, with a GTF file enriched in long non-coding genes
[available on http://www.fragencode.org (LNChickenAtlas);
Section: Galgal5—Ensembl v94; Genome annotation:
LNCextendedEns94.gtf.gz; (Jehl et al., 2020)]. Uniquely mapped
reads (selected on a mapping quality score equal to 255) were
then post-processed following the GATK best practices for
RNA-seq data [duplicates were marked, reads overlapping
intron were split and mapping quality score were reassigned,
indel were realigned and base were recalibrated thanks to
the known variants from Ensembl v94’s dbSNP (Ensembl,
2018)]. Variant detection was done for each sample using the
“HaplotypeCaller” function of GATK (McKenna et al., 2010;
DePristo et al., 2011; Van der Auwera et al., 2013) 3.7.0 with
option “—stand_call_conf 20.0,” “—min_base_quality_score
10” and “—min_mapping_quality_score 20” (which are
the defaults values), generating one gVCF file per sample.
The “GenotypeGVCFs” function was then used with option
“—stand_call_conf 20.0,” to jointly genotype all these samples
into one VCF per tissue. The VCF file obtained at the end of
the pipeline was then used as the input to two other steps,
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FIGURE 2 | Workflow used to detect SNPs from RNA-seq data. The input files are indicated in gray. GATK filters: QD quality depth, FS: Fisher strand and
SnpCluster: 3 or more SNPs in a sliding window of 35 bp. This last criterion was used only for tagging and not for filtering SNPs. For each SNP, are given the
genotype (e.g., 0/0) for 3 individuals and under each genotype the associated read number (e.g., 90).

as summarized in Figure 2. First, biallelic SNPs were then
extracted using the “SelectVariant” function with option
“—selectType SNP—restrictAllelesTo BIALLELIC.” Variants
were also filtered using “VariantFiltration” with two of the three
suggested filters, “QD < 2” and “FS > 30,” as we discussed in
the Results and Discussion section. Finally, we selected the SNPs
with genotypes associated with each individual and that met
the criteria established in results and Discussion section, i.e.
(5.reads.DP) genotype CR ≥ 20% and CR ≥ 50%. Genotype and
allele frequencies were then computed, making possible to work
on SNPs selected on the minor allele frequency (MAF). These
VCF files containing the SNP with their associated genotypes
can be used for allele specific expression (ASE) analysis in each
tissue of interest.

It is important to note that all previous treatments were
conducted in this paper at the tissue level to provide SNP
detection results for RNA-seq experimental settings with only
one analyzed tissue, which is quite common and corresponds
to the least favorable case. This implies that we had one bird’s
genotype per tissue. For the multi-tissue analysis step of this
paper, gVCF files generated per tissue were combined and
genotypes were computed from all the tissues information using
“CombineGVCFs” and “GenotypeGVCFs” generating per bird
as many genotypes as tissues analyzed. Genotype concordance
between tissues for a same bird was very high (∼99% of SNPs)
and increased with coverage (see result section). Therefore, for
the rare cases of discordance, we kept the genotype of the tissue
with the highest coverage when they were different. However,
outside from this study, for projects in which RNA-seq of
different tissues per animal are available when the SNP detection
analysis is started, we advise users of our pipeline to define in the
first step a sample as a specific individual. This strategy allows
to gain power in SNP detection by gathering all BAM tissue
files per animal.

DNA-Seq Read Mapping and Variant
Detection
DNA-seq read mapping and variant detection were performed
using standard tools. The BWA-MEM algorithm (Li, 2013)

from BWA-0.7.17 was used with default parameters for the
read mapping on the Gallus_gallus-5.0 reference genome
(GCA_000002315.3). Variant detection was done for each
sample using the “HaplotypeCaller” function of GATK
(McKenna et al., 2010; DePristo et al., 2011; Van der
Auwera et al., 2013) 3.7.0 with option “-variant_index_type
LINEAR,” “-variant_index_parameter 128000,” “-mmq 30”
and “-mbq 10 2,” generating one gVCF file per sample.
The “CombineGVCFs” and “GenotypeGVCFs” (with
“stand_call_conf 20.0” option) functions were then used to
combine these gVCF into one VCF per population (one VCF
for the 15 RpRm and one VCF for the 8 FLLL). Biallelic SNPs
were then extracted using the “SelectVariant” function with
option “—selectType SNP—restrictAllelesTo BIALLELIC.”
Variant were filtered using “VariantFiltration” with all the
recommended filters for DNA-seq: “FS > 60.0,” “QD < 2.0,”
“SOR > 3.0,” “MQ < 40.0,” “MQRankSum < −12.5” and
“ReadPosRankSum <−8.0.”

Gene and Exon Expression
Quantification
Gene expression was quantified with RSEM (Li and
Dewey, 2011) v.1.3.0, at the gene-level, using the
GTF file LNCextendedEns94.gtf.gz available on http:
//www.fragencode.org (LNChickenAtlas; section Galgal5)
and corresponding to the genes from the Ensembl annotation
used as reference, extended with lncRNAs loci available in
other public databases (NCBI, NON-CODE, etc.) (Muret
et al., 2017). To compute expression at the exon level, we
used FeatureCount v1.6.2 (Liao et al., 2014) with options -t
“exon” and -g “exon_id.” We defined for each exon a metric
called RpKb (Read per Kilobase) as the mean number of reads
mapped at the exon divided by its length in kilobases. To
define an expression threshold, we compared the expression
of exons to the expression of a set of randomly selected loci
in the genome as done previously in Jehl et al. (2020). The
background noise corresponds to the expression of a set of
artificial loci randomly distributed across chicken chromosomes
1–33 using the “shuffle” function from the BEDTools suite
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v2.29 (Quinlan and Hall, 2010). These artificial loci had the
same length distribution as the LNC genes known to be the less
expressed compared to PCG and were positioned at a distance
of at least 5kb of the closest known transcribed regions. The
expression of these randomly selected regions was well below
the expression of the exons. We set as an expression threshold
for the exons a log10(RpKb + 1) value of 0.5, corresponding
to the first quartile of expression in both RpRm and FLLL (see
Additional File 2).

Variant Functional Predictions
Variant Effect Predictor (VEP) v92 (McLaren et al., 2016) with
the GTF file enriched in long non-coding genes (“—gtf”) was
used for effect prediction of 9,496,283 SNPs. “—everything” and
“—total_length” options were applied to respectively, obtain SIFT
score predictions and length of cDNA, CDS and proten positions
(Ng, 2003; Sim et al., 2012).

Detection of Homopolymers and
Exon-Exon Junctions
Regions with 5 or more repeated nucleotides (homopolymers)
and regions spanning 5 bp of each extremity of a junction were
detected using home-made scripts.

Hierarchical Clustering Analysis
The hierarchical clustering was performed on a set of 67,341
SNPs obtained using liver RNA-seq data from the 10 populations
presented in Table 1 (liver unavailable for Rmx6). This set
corresponds to the SNPs common to the 10 populations and
passes the GT criteria (see “Results and discussion”) for each
population. The analysis was produced by using the function
“snpgdsHCluster” of the R (R Core Team, 2019) package
SNPRelate v1.8.0 (Zheng et al., 2012).

Allele-Specific Expression (ASE) Analysis
Prior to the quantification of allele specific expression, sequences
need to be aligned against masked version of the genome to avoid
favoring reference alleles. At the population level, polymorphic
(allele frequency < 100%) and bi-allelic filtered (GATK—FS and
QD criteria) SNP were extracted using the GATK “SelectVariants”
tool. These last variants were then used to mask the reference
genome using “maskfasta” tool from the BEDTools suite v2.29.
Tissue sample sequence were aligned to this masked version of
the genome using the multi-sample 2-pass mapping procedure
of STAR 2.6. Non-duplicated (“MarkDuplicates” function from
GATK 4.1.2, with “READ_NAME_REGEX” set to null) properly
paired (if paired sequences) uniquely mapped reads (samtools
1.9 with –f 2 and –q 255 options) were selected. “SplitNCigar”
tool from GATK were finally used to split alignment overlapping
exon/intron junction and rescaled mapping quality. The phASER
tool (Castel et al., 2016) and its downstream tool phASER
Gene AE were used to detect ASE among the liver samples
of the RpRm and FLLL populations. Briefly, phASER phases,
in each sample, SNPs from a user-provided VCF, using the
reads from the previously processed BAM file of the sample.
This produces a list of haplotypes upon which phASER counts
the number of reads associated to each “super-allele.” Then,
in each sample, phASER Gene AE selects one haplotype
per gene, using the genes’ boundaries from a user-provided
BED file, allowing the study of the gene’s ASE using the
selected haplotype.

Using base quality of 10, and mapping quality of 20, we
provided a VCF containing the SNP that met the criteria
established here. After selection of one haplotype per gene using
phASER Gene AE, we considered only the genes represented
by a haplotype with at least 10 reads associated to at least 1
super-allele. To assess ASE in each sample, we screened for read
number imbalance between the super-alleles using a binomial test

TABLE 1 | SNP counts per population retained at each step of the selection.

Population Total SNP Selected GT Selected GT and MAF ≥ 10%

Pop. #ind. #smpl. #tiss. Livera Multi-tiss.b b/a Liverc Multi-tiss.d d/c c/a d/b Livere Multi-tiss.f f/e e/a f/b

RJFh 36 72 3 1,050,035 2,604,288 2.48 265,750 578,726 2.18 0.25 0.22 152,029 319,268 2.10 0.14 0.12

Cobb 48 96 2 3,771,992 5,464,266 1.45 949,127 1,678,364 1.77 0.25 0.31 558,020 952,445 1.71 0.15 0.17

FLLL 32 64 2 1,729,800 2,033,207 1.18 535,228 1,109,324 2.07 0.31 0.55 368,280 714,523 1.94 0.21 0.35

HerX 23 23 1 1,332,709 1,332,709 1.00 481,314 481,314 1.00 0.36 0.36 307,859 307,859 1.00 0.23 0.23

Novo1 32 32 1 1,459,352 1,459,352 1.00 447,594 447,594 1.00 0.31 0.31 264,804 264,804 1.00 0.18 0.18

Novo2 44 104 2 1,289,199 2,146,975 1.67 390,195 738,109 1.89 0.30 0.34 243,892 449,446 1.84 0.19 0.21

RpRm 112 286 5 1,841,778 4,032,988 2.19 555,928 1,279,458 2.30 0.30 0.32 307,049 631,868 2.06 0.17 0.16

Rmx6 19 19 1 – 2,123,217 – – 715,822 – – 0.34 – 483,379 – – 0.23

FrAg 4 7 2 1,247,253 1,732,440 1.39 784,397 1,055,772 1.35 0.63 0.61 520,277 583,742 1.12 0.42 0.34

Lsnu 16 32 2 1,487,176 2,284,902 1.54 590,399 836,800 1.42 0.40 0.37 384,720 534,938 1.39 0.26 0.23

Fayo 16 32 2 1,320,244 2,033,207 1.54 496,412 698,932 1.41 0.38 0.34 288,464 396,446 1.37 0.22 0.19

Mean 1,652,954 2,477,050 1.54 549,634 874,565 1.64 0.35 0.37 339,539 512,611 1.55 0.22 0.22

Union 382 767 5,490,587 9,496,283 1,685,406 3,276,615 1,255,554 2,243,766

Intersection 221,374 241,960 67,341 73,223 2,442 1,442

In columns—Pop., population; #ind., bird number; #smpl., sample number; #tiss., tissue number; Multi-tiss., Multi-tissues. Superscripts are used to show which ratio are
presented. Total SNP: SNPs detected at the population level (i.e., with at least one ALT allele); Selected GT: SNPs with at least 50% of genotypes (CR ≥ 50%) and 20%
of GT with reads ≥ 5 reads [(5.reads.DP)genotypeCR ≥ 20%, see “Results and discussion”]; Selected GT with minor allele frequency (MAF) ≥ 10%.
In lines—Union: SNPs detected in at least one population; Intersection: SNPs detected in each of the 10 populations (i.e., each population has at least one ALT allele).
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(binom.test R function) with the null hypothesis that, for a given
gene, each super-allele had the same number of associated reads.
P-values were corrected using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995) with a false discovery rate of
0.05. We considered a gene to be ASE if it presented a significant
read number imbalance in at least 2 samples.

RESULTS AND DISCUSSION

SNP Detection by RNA-Seq: Genome
Location
We compared the repartition of the SNPs detected by DNA-
seq and RNA-seq among different genomic regions (Figure 3A).
The chicken genome is composed at equal parts of intergenic
(50%) and genic (50%) sequences, with 43% of introns and 7%
of exons. As expected, DNA-seq SNPs were mostly distributed
across the non-coding part of the genome (46% in intergenic
regions, 52% in introns) and at a lower proportion (2%)
in exonic regions. This distribution is expected since coding
regions are generally under stronger selection pressure than
non-coding regions (Zhao et al., 2003). With RNA-seq (all
the samples being systematically treated with DNAse), we
expected to find most of the SNPs in exonic regions, which
represent the majority of expressed regions. However, the

majority of the detected SNPs were located in intronic (61%)
and intergenic (29%) regions. Higher SNP counts in intronic
regions can be explained by the presence of unspliced transcripts
(premature transcripts), very lowly expressed compared to
spliced transcripts, but sufficiently to be supported by reads,
and by the lower selection pressure on these regions compared
to the exons. SNPs located in “intergenic regions” are likely to
be located in new genes or in not yet annotated part of genes
(particularly 3′UTR and 5′UTR). Within exons, the proportion
of SNPs in 3′UTR, 5′UTR and CDS were similar between
RNA-seq and DNA-seq (32, 7, 61%), but significantly different
from the proportion of these regions in the genome (20, 5,
75%) showing a lower selection pressure in 3′UTR regions
than in CDS regions.

SNP Detection by RNA-Seq:
Concordance With Those Detected by
DNA-Seq
We detected SNPs using either RNA-seq or DNA-seq data
obtained from the liver of the same 15 laying hens (see population
A in Figure 3B, left). We found 7,786,492 biallelic SNPs using
the DNA-seq data filtered with the standard criteria of GATK
(see section “Materials and Methods”) and considered them as
reliable. Using the RNA-seq data filtered with some of the filters

FIGURE 3 | Differences and common features of SNPs detected by RNA-seq and DNA-seq. (A) Percentage of the genome comprising each type of feature (top)
and the proportion of SNPs detected by DNA-seq (middle) and RNA-seq (bottom) across these genomic features. (B) Number of SNPs detected by DNA-seq only
(yellow set), RNA-seq only (blue set) and by both methods (gray set) at the whole genome level (left) and expressed exon level (right) in two independent populations
A (n = 15, layers) and B (n = 8, broilers). (C) Left: Percentages of SNPs in SNP clusters (i.e., 3 or more SNPs in a sliding window of 35 bp, as per GATK definition), in
junctions, homopolymers, in population A by DNA-seq only, RNA-seq only and both methods (common). Middle: Number of SNPs detected in 5′ and 3′UTR by
gene (Y-axis) and the gene number (vertical numbers) in population A. The ratio “RNA-seq specific SNPs/DNA-seq specific SNPs” is indicated at the top of each
plot. Right: read supporting SNP distribution at the population level in DNA-seq or RNA-seq data. (D) Evolution of the number of detected SNPs as a function of the
number of expressed genes using one tissue alone or groups of tissues. Tissues used were liver (figured as a liver), blood (figured as a blood drop) and
hypothalamus (figured as a brain).
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suggested by GATK (see section “Materials and Methods” and
comments below), we found 1,369,740 SNPs. As expected, the
number of SNPs detected with RNA-seq is much lower than that
in DNA-seq, because only variants present in transcribed regions
were detected. Note that the impact of all these filters on the SNP
number was provided in the Additional File 3 for DNA-seq and
RNA-seq and was quite low, more than 98% of SNP were kept
after filtering whatever the population.

To provide a meaningful comparison of both methods, we
used the SNPs detected in expressed exons, assessed using RNA-
seq with the metric described in section “Materials and Methods.”
We detected in population A 147,474 expressed exons among the
162,145 exons of the 16,814 expressed genes (on average 8.8 exons
per gene). As shown in Figure 3B right, in these exons, 85.2%
of the 234,500 SNPs detected by DNA-seq were also detected
by RNA-seq. In population B, which was composed of only 8
broiler chickens, we found that 65.7% of the SNPs detected with
DNA-seq in the expressed exons were also detected by RNA-seq.
Assuming SNPs detected by DNA-seq represent the “truth,” these
percentages represent the sensitivity, or recall, of RNA-seq for
SNP detection. This difference in RNA-seq sensitivity between
populations A and B is likely due to the number of samples
per population (15 versus 8), that affects the extent to which
reads at each position are accumulated across the samples (see
Figure 1).

Concerning the precision of RNA-seq, among the 220,503
SNPs detected by RNA-seq in population A, and the 262,599
SNPs from population B, 90.6 and 91.3%, respectively, were
detected by DNA-seq 20X showing a reasonable precision of
RNA-seq for the SNP detection. These results are consistent with
the findings of Guo et al. (2017), who compared the percentage
of SNPs detected using RNA-seq versus exome sequencing and
found around 85% concordance. Regarding the 9.4% (20,818
SNPs) RNA-seq specific SNPs, we analyzed different factors that
could underlie their detection to highlight those that should
be treated with caution (Figure 3C) and verify these factors
in DNA-seq variants set or in the set of variants called by
both methods. We consider the SNPs detected by DNA-seq as
true since DNA-seq are now routinely used for SNP detection
with the well-proven GATK filters. First, we observed that a
large proportion of RNA-seq specific SNPs (46.6%) and DNA-
seq specific SNP (40.0%) belonged to a “SNP cluster” (i.e., 3
or more SNPs in a sliding window of 35 bp, as per GATK
definition) (Figure 3C). This filter is one of the three filters
proposed by GATK for RNA-seq SNP detection, but not for
DNA-seq detection and the GATK team notes that these filters
are not definitive and should be validated by users. Therefore,
in the light of these observations, we decided not to remove
the “SNP clusters” from our RNA-seq dataset as for DNA-seq
dataset, but only to flag them as belonging to a so-called SNP
cluster. Indeed, this filter removed 39,783 true SNPs (i.e., True
positives detected by both DNA-seq and RNA-seq methods) and
consequently the benefit of the precision increase (from 90.6 to
93.5) by removing “SNP clusters” was too small relatively to the
recall decrease (from 0.85 to 0.68). The 20,818 RNA-seq specific
SNPs can be explained by other factors of lowest impact: (i) 5.09%
were located at 5 bp or less of an exon-exon junction, versus
3.55% for those detected only by DNA-seq; the corresponding

ratio, that is significantly greater than 1 (1.4, p ≤ 10−17, χ2

test), was expected since RNA-seq deals with spliced transcripts
(Figure 3C) and therefore RNA-seq read mapping by the aligner
is more complicated and more error-prone than DNA-seq read
mapping. Since most of them are also observed in DNA-seq, we
consider that the SNPs in the vicinity (i.e., 5 bp) of the junctions
can be kept, but should be validated by another technique.
Note that these SNPs represent only 0.48% of the total SNPs
detected by RNA-seq. (ii) 3.1% were located in low complexity
regions, defined as repetition of at least 5 identical nucleotides,
versus 3.4% for the ones detected only by DNA-seq (Figure 3C).
(iii) 2.7 and 5.5 SNPs per gene for RNA-specific SNPs were
observed in 5′UTR and 3′UTR regions, respectively, with a fewer
3′UTR SNPs compared to those detected by DNA-seq only (0.5,
p ≤ 10−16, χ2 test) (Figure 3C). This may be due to the fact
that mature transcripts undergo exonucleases action, degrading
their 3′ extremities and causing their absence in RNA-seq libraries
(Gallego Romero et al., 2014). (iv) Last, another factor that could
be responsible for these RNA-seq specific SNPs is RNA editing,
however, according to the literature, it is unlikely that most of
the remaining SNPs are due to this mechanism. In mammals,
in which RNA editing is well studied, Adenosine-to-Inosine (A-
to-I) editing due to ADAR1 and ADAR2 enzymes is the most
common editing form and mostly occur in inverted pairs of
Alu interspersed repeats (Porath et al., 2014). In chicken Alu-
like family of interspersed repeats also exist and they are called
CR1 (Olofsson and Bernardi, 1983). These editing events tend
to occur in clusters, a phenomenon called hyper-editing that
introduces ≥ 20 mismatches in the sequencing reads (Carmi
et al., 2011), that are therefore discarded by the aligner either
because of a multi-mapping or no mapping. The prevalence of
editing is still discussed: RNA editing is rarely detected when
standard mapping filters are used, as shown in mice (Lagarrigue
et al., 2013a) and chickens (Frésard et al., 2015; Roux et al., 2016;
Shafiei et al., 2019), with less than 200 events, and in humans
(Kleinman et al., 2012; Tan et al., 2017) with less than 1000
events per tissue. By contrast, RNA editing is frequently detected
when working in repeated regions and rescuing unaligned reads
(Picardi et al., 2017). Finally, we observed that SNPs detected
only by one method were supported by significantly less reads
(either of RNA- or DNA-seq) than the SNPs detected by both
methods (Figure 3C).

SNP Detection by RNA-Seq: Impact of
the Number of Tissues That Are Analyzed
Using blood and hypothalamus samples collected on the same
15 animals (population A), we studied the effect of detecting the
SNPs in more than one tissue. RNA-seq from each tissue was not
generated at the same time and have been analyzed separately
at different occasions. Results are displayed in Figure 3D. We
detected 1,369,740 SNPs in the liver (as previously stated),
1,481,627 in the blood and 1,511,909 in the hypothalamus, while
16,814 genes were expressed in liver, 16,346 in blood, and 19,733
in hypothalamus. As expected, using combinations of two or
three tissues, the number of detected SNPs increased in relation
with the number of expressed genes (spearman correlation = 0.96,
p = 3 × 10−3) by cumulating the information on all tissues

Frontiers in Genetics | www.frontiersin.org 8 June 2021 | Volume 12 | Article 655707

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-655707 June 21, 2021 Time: 18:27 # 9

Jehl et al. Reliable Genotyping From RNA-Seq Data

in which a same gene is more or less expressed. Note that
here, we have used our pipeline in a sub-optimal manner,
by analysing RNA-seq data per tissue instead of combining
the tissues together to increase detection power and reliability.
For projects in which RNA-seq from different tissues per
animal are all available before SNP detection analysis, we advise
users to pool for each animal the RNA-seq files. For SNPs
detected in more than one tissue, the concordance between
genotypes detected in different tissues was very high, 98.9%
without read filtering. Considering genotypes supported by at
least 5 reads (respectively 10 reads) the concordance raised
to 99.5% (respectively 99.9%).

Genotype (GT) Calling by RNA-Seq
Importance of Genotype Call Rate (CR)
and Read Depth at the Individual Scale
for Selecting SNPs With Enough Reliable
Genotypes for in fine Calculating
Genotype and Allele Frequencies
While reliable SNPs can be detected in the population thanks to
some individuals that bear them, it does not necessarily mean that
there are enough reads for each individual to produce a genotype
(GT). This was exemplified in Figure 1B by the brown cells (SNPs
3 and 4), for individuals 4 and 5 (“stress” group) for SNP 3 or most
of the individuals of the population for SNP 4. These cases are
quite frequent in practice because of gene expression variability
between individuals in a given tissue, especially when different
conditions are analyzed or also when a SNP is located in an intron
of an immature transcript (weakly abundant compared to the
mature transcript). Therefore, genotype call rate (CR), defined as
the percentage of individuals with a genotype in the population,
can be highly variable (e.g., from 16 to 100% in Figure 1B, right)
from one SNP to another, depending on the number of reads

observed in each individual (DP per individual). With 20X DNA-
seq data, most of the SNP have a genotype CR close to 100%, as
depicted in Figure 1A.

These observations indicate that a genotype can be observed
with a certain call-rate but its reliability will depend on the DP
supporting it. The GT reliability was estimated by the genotype
concordance between RNA-seq and DNA-seq, assuming that GT
detected by DNA-seq represents the truth. This concordance
corresponds to the precision of RNA-seq for GT calling. We
tested the RNA-seq precision according to different criteria. First,
we conjointly studied in Figure 4A the effects of the criteria
“genotype CR” and “DP supporting the genotype” on the RNA-
seq precision (genotype concordance between RNA-seq and
DNA-seq). We found a concordance (of roughly 90%) when no
threshold was applied on the DP (purple line); it increased to
around 95% for a CR ≥ 20% with a DP ≥ 5 reads and over 97%
for a CR ≥ 20% with a DP ≥ 10 reads. We then evaluated the
impact of the CR alone (without a DP threshold, x-axis) versus
the CR with a DP≥ 5 reads (y-axis), on the genotype concordance
between RNA-seq and DNA-seq (solid green isoclines) and on
the number of SNPs selected according to the different criteria
(dashed blue isoclines) (Figure 4B).

Interestingly, only the CR with DP≥ 5 reads have an effect on
the genotype concordance and the percentage of selected SNPs,
while no such effect is observed for the no DP filtering CR (x-
axis) comprised between 0 and 50%, as shown by the horizontal
isoclines. Hence, we propose for our subsequent analysis on
different RNA-seq datasets to select SNPs within the red surface
of Figure 4B with a (5.reads.DP) genotype CR ≥ 20% ensuring
a concordance (precision) of almost 95% and a CR ≥ 50%
ensuring a sufficient number of GT per SNP to calculate the allelic
frequencies. We can note that most of the SNPs on this surface
have a genotype concordance of more than 97%. We can also note
in most of the populations analyzed in the next section that more
than 98% of SNPs with (5.reads.DP) genotype CR ≥ 20% have a
CR ≥ 50% (Additional File 4).

FIGURE 4 | The passage from SNP to GT necessitates a read depth threshold. (A) Evolution of the percentage of genotype concordance between RNA-seq and
DNA-seq (y-axis) for the 15 RpRm birds as a function of genotype call rate in the population (CR: x-axis) supported by at least 5 (light green), 10 (light blue), or 20
(dark blue) reads or without read filter (purple curve). The red lines correspond to the criteria used in the further analysis (CR ≥ 20% with a DP ≥ 5 reads) and the
corresponding RNA-seq precision. (B) Isoclines of the percentage of genotype concordance between RNA-seq and DNA-seq (solid green lines) and of the
percentage of SNPs selected out to the original set (dashed blue lines) according to the CR with no read filter (x-axis) and the CR with at least 5 reads [(5.reads.DP)
genotype CR (%), y-axis]. Red surface: SNPs selected after filtering on (5.reads.DP) genotype CR ≥ 20% and a CR ≥ 50%.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 655707

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-655707 June 21, 2021 Time: 18:27 # 10

Jehl et al. Reliable Genotyping From RNA-Seq Data

Number of SNPs and Genotypes
Detected by RNA-Seq in 11 Populations
As shown in Table 1 which gives an overview of the SNP diversity
in 11 chicken populations, we detected between 1.1 and 3.8 M
SNPs per population using liver RNA-seq datasets. Using all
the tissues available (1–5 tissues depending on the population),
we detected more SNPs, consistently with our previous result
(see Figure 3D): between 1.7 and 5.5 M SNPs with a fold
increase of × 1.18 to × 2.48 depending on the number and
nature of analyzed tissues. Across populations and using all
tissues, we found a total of 9.5 M SNPs having at least one
alternative allele in at least one population (SNP union), and
241,960 SNPs that had at least one alternative allele in each of
the 11 populations (SNP intersection). The union of our SNPs
contains 23% (2,175,528) yet-unreported SNPs in the reference
Ensembl v94 dbSNP database [(Ensembl, 2018): 21 M SNPs]. The
intersection of our SNPs contains 5.1% (12,203 SNPs) of the SNPs
present in the 600K genotyping array (Kranis et al., 2013).

We then filtered SNPs on genotype call rate and read depth
(Table 1, “Selected GT”) and found between around 0.4 and 1.7
M SNPs using all tissues, 37% of the SNPs observed previously.
These results on 11 populations show that a large number of SNPs
(two thirds) were detected at the population level thanks to the
accumulation of reads across all individuals of the population,
but that within each individual, read counts are not sufficient
to reliably determine a genotype. Nevertheless, the number of
SNPs with a genotype per population remains in the order of
magnitude of several hundred thousand to a few millions with
a union of 3.3 M and an intersection of 73,223 SNPs. In the liver,
for which data was available in all but one population (Rmx6),
the union and intersection are of the same order of magnitude:
1.7 M and 67,341 SNPs, respectively. After selecting for a MAF
(minor allele frequency) ≥ 10% in order to discard rare SNPs
or those resulting from sequencing errors, the number of SNPs
was halved in all populations with a grand total of 2.2 and 1.3 M
for the multi-tissue and liver union, respectively. As expected, the
intersection drastically decreased to approximatively 2,000 SNPs,
since this set corresponds to the SNPs with a MAF≥ 10% in each
of the 11 populations. The list of the 9.5 M of SNPs including
3.3 M with a GT and 2.2 M with MAF ≥ 10% is available on
http://www.fragencode.org/lnchickenatlas.html.

Rare Deleterious Variants Detection in
the Populations
We predicted the impacts of the 9,496,283 SNPs detected in
at least one population using the VEP tool (McLaren et al.,
2016) which predicts the potential consequences of the SNPs
in each of the transcripts carrying them: we found 33,304,412
consequences. As expected, the vast majority of the SNPs affected
non-coding regions (Figure 5A) and among the 472,319 SNPs
affecting a coding-region, a majority were synonymous (63%) or
non-deleterious missense (28%) as shown in Figure 5B.

Among all these predictions, we focused on the predicted
consequences with the most severe putative impacts as defined by
the gnomAD consortium, which only considers the PCG (Protein
Coding Genes) (Genome Aggregation Database Consortium

et al., 2020): variants in the splice regions, start and stop codon
loss or stop codon gain even if the severity of the latter depends
on its position in the coding sequence. We also added missense
variants with a SIFT score ≤ 0.05. As reported by gnomAD (The
GTEx Consortium, 2020), these SIFT-deleterious SNPs generally
have a low frequency in the populations and can be mistaken
for sequencing errors. Hence, it is crucial to select SNPs with
genotypes (as defined previously) and a MAF ≥ 10% in at least
one population (i.e., the ALT allele observed for example at
least 4 times in a population of 16 individuals as for FAyo and
LSnu populations) to make sure that the deleterious allele is not
spurious. Thanks to our data from 382 individuals from the 11
populations, we listed a total of 25,344 strong predicted impacts
(Figure 5C), corresponding to 14,496 SNPs and 67,58 genes,
among them were 590 predictions of stop gained (404 genes),
8,126 of a coding or non-coding gene splice site change (donor
and acceptor), 16,307 SIFT-predicted deleterious missenses and
321 other predictions (start lost, stop lost). Out of these 25,344
deleterious-predicted impacts, we found 5,654 (22%) predictions
corresponding to 2,872 (20% of 14,496 SNPs) variants in 1,884
genes for which the homozygous ALT/ALT genotype was absent,
in all populations in which the ALT allele was detected and,
respectively, 7,740 (31%) predictions corresponding to 4,072
(28% of 14,496 SNPs) variants in 2,515 genes with ALT/ALT
frequency ≤ 5%. The analysis of tolerated missense SNP show
that the higher the SIFT score (i.e., tolerated variant), the lower
the percentage of SNP with a low frequency (≤ 5%) of ALT/ALT
genotype (Figure 5D). The same analysis performed with 217,119
synonymous variants showed lower percentages with 9% SNPs
with ALT/ALT genotype absent and 13% SNP with ALT/ALT
frequency ≤ 5%. Such results are compatible with a homozygous
state which is lethal or strongly negatively selected (28 versus
13%, p ≤ 10−20, χ2 test), suggesting an important role for the
genes associated to these variants with severe-predicted impact.
Such variants obtained using RNA-seq data constitute a new
complementary resource to Ensembl dbSNP allowing to explore
variants (deleterious or not) according to their genotypic and
allelic frequencies in different populations of a farm species.
For example, two deleterious missense SNPs (SIFT-score = 0)
are presented in Figure 6. One is already reported in dbSNP
(Ensembl genome browser 94, 2020) and affects XBP1 protein
by changing a positive charged amino acid (Arginine, R) into
an aromatic and hydrophobic amino acid (Tryptophan, W)
(Figure 6A). This SNP is observed in two of the ten analyzed
populations, FLLL and Novo2, with 5 and 10 heterozygous
birds among 48 and 40 animals analyzed, respectively, whereas
no ALT/ALT homozygous birds were observed (Figure 6B).
This gene is ubiquitously expressed in chicken as in human
(Figure 6C). It codes the “Tax-Responsive Element-Binding
Protein 5” transcription factor which has important cellular and
physiological roles related to the “unfolded protein response”
pathway in the endoplasm reticulum [(Lee et al., 2003) and
for review (Glimcher et al., 2020)] and also to hepatic insulin
resistance (Zhou et al., 2011).

The second SNP, not reported in dbSNP, affects the SERGEF
protein (alias DelGEF) by changing an aromatic, hydrophobic
and positive charged amino acid (Histidine, H) into an
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FIGURE 5 | Annotation of 9,496,283 SNPs using Variant effect Predictor (VEP) (McLaren et al., 2016). (A) Distribution of variant effect predictions among non-coding
(light gray), splice regions related to coding and non-coding genes (orange) and coding (green) regions. (B) SNP annotation in coding regions: synonymous (dark
gray), non-deleterious (light blue) and deleterious (blue) missenses, and consequences affecting stop (red) and start (orange) codons. Total number of consequences
are indicated between parentheses. (C) Annotation of SNPs predicted as deleterious and filtered according to the GT criteria (as defined previously) and a
MAF ≥ 10% in at least one population. (D) Percentage of SNP with a very low frequency (≤ 5%) of ALT/ALT genotype for three SNP sets: (1) = the 25,344
deleterious SNP described on the left; (2) = the tolerated SIFT-missense SNP according to the SIFT score and (3) = the synonymous SNP set. The splice sites
correspond to the donor or acceptor splice sites of coding and long non-coding genes.

unchanged amino acid (Tyrosine, Y) (Figure 6A). This SNPs
was observed in two populations, LSnu and Fayoumi, with
6 and 3 heterozygous birds among 16 animals, respectively,
whereas no ALT/ALT homozygous birds were observed. This
gene is also relatively ubiquitously expressed in chicken as in
human (Figure 6C). The functions of this gene, which codes
the “Secretion Regulating Guanine Nucleotide Exchange Factor”
seem to be poorly known: 9 publications found in PubMed
with the key words, SERGEF or DELGEF. As illustrated by
these two examples (XBP1 and SERGEF), the analysis of various
populations allowed to increase the number of rare deleterious
variants detected.

Potential for Allele-Specific Expression
Analysis in Various Populations
Allele-specific expression (ASE) analysis requires a heterozygous
SNP in the expressed feature, to test an eventual imbalance in the
expression between the two parental chromosomes. Usually, the
expression is evaluated using RNA-seq and the SNPs are detected
using DNA-seq, which is expensive when working on a dozen
or more individuals. Since we have shown that RNA-seq allows
detecting a large number of reliable SNPs in expressed regions,

we studied in this section, the potential of RNA-seq data for
performing ASE analysis. To this end, the Figure 7A provides
the average numbers of genes across various populations, having
at least one SNP with different filters (SNPs with an associated
GT, a MAF ≥ 10% and an heterozygous status in at least 25%
of the population). We also indicated the average SNP number
per gene (column “S/g”) to give an idea of the RNA-seq potential
to test ASE along the gene. We indicated the results for two
types of genes: the protein-coding genes (PCG) and the long
non-coding genes (lncRNA), which are increasingly considered
as important regulators of gene expression but are also known
to be less expressed than PCG (Derrien et al., 2012; Muret et al.,
2017; Le Béguec et al., 2018). This is the reason why we studied
two expression thresholds: 0.1 and 1 TPM commonly used when
working on lncRNA and PCG, respectively. Finally, results in
Figure 7A are presented either for SNPs detected in exons (i.e.,
mature transcripts) (top) or for SNPs detected in exons or introns
hence including immature transcripts (bottom).

The first key result is that the number of genes with at
least one SNP are similar in both cases (exons only versus
exons + introns), meaning that there are enough SNPs to
study ASE in exonic regions only, i.e., mature transcript, despite
a much lower number of SNPs per gene when SNPs are
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FIGURE 6 | Two examples of deleterious missense SNPs impacting two protein coding genes (XBP1 and SERGEF). (A) genomic position of the SNP with its
identifier (SNPid) in Ensembl dbSNP and its impact on the protein with SIFTsc.: SIFT score, codon/modified codon, amino acid/modified amino acid and its position
in the protein. (B) pop.: population with the individual size (# ind.) observed per population and the frequencies of the alleles and genotypes. (C) Tissue expressions
[log10(TPM + 1)] in chicken using two datasets composed of 21 tissues (ERP014416) (left) and 5 tissues RpRm population) (right) and in human through the 53
tissues from the GTEX consortium (The GTEx Consortium, 2020). Abbreviations for the 21-tissue dataset: burs, bursa of Fabricius; cctl, cecal tonsils; crbl,
cerebellum; duod, duodenum; fatG adipose tissue around the gizzard; hard, harderial gland; hert, heart; ileu, ileum; kdny, kidney; livr, liver; lung, lung; mscB breast
muscle; optc, optical lobe; ovry, ovary; pcrs, pancreas; pvtc, proventriculus; skin, skin; spln, spleen; thym, thymus; thyr, thyroid gland; trch, trachea; and for the
5-tissue dataset: adip, abdominal adipose tissue; blod, blood; embr, 4.5 day embryos; hypt, hypothalamus; livr, liver; for more details in these 3 datasets and
associated samples see Jehl et al. (2020). Black dashed line: gene expression with TPM ≥ 1 and red dashed line: TPM ≥ 0.1.

only selected in exons (Figures 7A,B). When working with
exonic SNPs, there are on average 17–28 SNPs without filter
(8–10 SNPs after all filters) per gene showing the possibility
to test ASE along genes. Despite a lower exonic length in
lncRNA compared to the PCG (Figure 7B), this number is
higher for lncRNA compared to PCG (22–28 versus 15–17)
probably due to lower selective pressure on lncRNA compared
to PCG. The second key result, after applying 2 filters (GT
and MAF ≥ 10%), is that 81% of PCG (9,232) and 68%
of lncRNA (2,028) expressed at TPM ≥ 1 are analyzable
for ASE. These numbers decreased a little after applying an
additional filter related to the heterozygosity percentage, with
72% of PCG and 56% of lncRNA (i.e., about 10,000 genes).
The variability of this “ASE analyzable genes” percentage is

moderate (Additional File 5): on average 72% from 65 to 89%
with an except for the “RpRm” (48%) probably due to its high
consanguinity and its large size, the filter of 25% of heterozygosity
impacting more the populations with a larger sample size. The
same tendencies regarding the percentage of genes that can be
analyzed were observed for the PCG (TPM ≥ 0.1) and for
lncRNA (both for TPM ≥ 0.1 and ≥ 1) (Additional File 5).
We can note that the selected lncRNA percentage satisfying
the filters is always lower than the selected PCG percentage
(−15% for genes with an expression ≥ 1TPM and −30%
for genes with an expression ≥ 0.1TPM). This is mainly due
to the lower expression of lncRNA compared to PCG (Jehl
et al., 2020; Figure 7B), despite higher sequence variability for
the former.
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FIGURE 7 | Overview of the analyzable genes for allele-specific expression in the liver of various populations for two gene biotypes, Protein Coding Gene (PCG) and
Long Non-Coding gene (lncRNA), at two gene expression thresholds (0.1 TPM and 1 TPM) and for 3 filters. (A) Average numbers for all populations analyzed here.
These average numbers are provided for both PCG (blue) and lncRNA (red) biotype, with minimum expression of 0.1 or 1 TPM (“expr. threshold”), and considering
only the SNPs in exons (top part) or in the whole gene, i.e., in both exons and introns (bottom part). (B) Feature of lncRNA and PCG. (C) Percentage of gene with a
significant allele specific expression in two populations RpRm (in left) and FLLL (in right) in comparison to the expressed gene number. Venn diagrams provide the
number of ASE genes (in at least 2 individuals) shared by RpRm and FLLL populations. (D) Overview of the ASE of ACOT1L (left) and INRAGALG00000008929
(right). For each ASE sample, absolute values of the log2 allelic fold-change are represented at the gene-level (left of the panels) and for each SNP located in the
haplotype used by phASER (right). Boxplot of the read number associated to each SNP are represented (bottom), in purple for the SNP located in exons and in gray
for those in introns. FC, fold-change; chr, chromosome.

Cis-Regulated Genes in the Liver of Two
Populations
To provide an estimation of the number of cis-regulated genes
in one tissue, we performed an ASE analysis of the liver
samples of the RpRm and the FLLL populations using phASER

and its downstream tool, phASER Gene AE, that phase SNPs
at the gene level (see also section “Materials and Methods”).
Using exonic and intronic SNPs and selecting genes having
one haplotype with at least 10 reads, we found for genes
with an hepatic expression ≥ 1 TPM, that in average 29%
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of the expressed PCG or lncRNA genes were cis-regulated
(∼34% for RpRm and ∼23% for FLLL) (Figure 7C). For
lncRNA with hepatic expression ≥ 0.1 TPM which represents
most of this biotype, we found a lower percentage of cis-
regulated genes (21%) because they are less expressed and
some of them did not have more than 10 reads for at least
one “super-allele” analyzed by phASER (see section “Materials
and Methods”). Interestingly, among these cis-regulated genes,
∼50% and 37% are shared by both populations for the
protein-coding genes and long non-coding genes, respectively
(Figure 7C). Two examples of cis-regulated genes are provided in
Figure 7D with a PCG, ACOT1L (ENSGALG00000008752), and
a lncRNA, INRAGALG000000089295. Overall, these numbers
are consistent with the literature: Zhuo et al. (2017) found that
15% of the genes were cis-regulated in chicken embryo liver, and
Lagarrigue et al. (2013b) found a similar number in mice liver. In
humans, the GTEx consortium (The GTEx Consortium, 2020)
found that 26% (4,415) of the expressed genes (17,243) were
cis-regulated in the liver.

Diversity Exploration Using RNA-Seq
Variants
Finally, we explored genetic links between populations using
the genotypic frequencies of SNPs detected by RNA-seq, which
represent a set of SNPs, which may be under a larger selective
pressure than those used in genotyping SNP chips. Indeed, the
latter are considered as having a neutral effect, while most the
SNPs present in our data are located in expressed regions and
affect proteins to some extent (from almost neutral synonymous
to deleterious stop gained).

The classification in Figure 8 was produced using the
intersection of SNPs with GT of the 10 populations with a
liver presented in Table 1 (67,341 SNP set). This classification
is consistent with the known chicken population history,

FIGURE 8 | Hierarchical clustering of 10 chicken populations using the
67,341 SNP intersection set with GT obtained using liver RNA-seq data. The
hierarchical clustering was performed using the “snpgdsHCluster” from the
package SNPRelate v1.8.0 (see also section “Materials and Methods”).

indicating that these SNPs detected by RNA-seq and their
associated genotypes allow distinguishing different populations.
The classification separated clearly the RJFh (red circle arc
with a Red Jungle Fowl population, used here to represent
the “ancestral” population), then the broilers (blue circle arc),
the brown-egg layers (dark green circle arc), and the cream-
or white-egg layers (brown circle arc with Fayoumi breed and
Fr-Ag population which is an experimental leghorn line). We
also observed the expected sub-groups within these 3 types of
populations: the commercial lines (Novo1 and Novo2 for the
layers, Cobb and HerX for the broilers) separated from the
experimental lines (RpRm for the brown-egg layers, FLLL for
the broilers). Interestingly for these 2 last populations, this SNP
set shows a clear distinction between two subpopulations that
have been divergently selected for a specific trait: Rp and Rm
divergent for the residual feed intake and FL and LL divergent
for body fat whereas the two Novogen populations (Novo1 and
Novo2) are not distinct. We can note that the SNPs predicted
as “missense” by VEP and “deleterious” by SIFT provide the
same classification between the populations as the one shown in
Figure 8 (data not shown).

CONCLUSION

We show here that RNA-seq data, which are cheaper to
generate and store compared to DNA-seq data, can be a
reliable resource for performing different analyses based on
polymorphism detection. By comparing DNA-seq and RNA–seq
results generated from the same animals in two independent
chicken populations, this study provides a workflow to produce
reliable SNPs and genotypes from RNA–seq data. We ran
through this pipeline 767 RNA–seq of 382 birds from 11
populations and provided a per-population estimation of the
average genotyped SNPs count per tissue (more than 550,000)
and an overview of the predicted consequences of SNPs located
in coding regions. In particular, thanks to this large RNA-seq
dataset, we identified 440 genes containing a stop-gained impact,
known to be rare because of their potentially severe impact,
especially when located in the first third of the coding sequences
(133 genes). In a companion study (Degalez et al., submitted),
we checked the possible existence of more than one SNP in a
given codon, that could “rescue” a stop-gained situation. We
then gave an overview across 11 populations of genes that could
be analyzed for ASE, i.e., having at least one SNP allowing
to distinguish expression from both chromosomes. We applied
phASER on liver RNA-seq data of two populations and identified
around 21 to 30% of cis-regulated genes depending on the
analyzed population and the gene biotype (PCG versus lncRNA),
these results were consistent with other studies conducted
in other species.

This study represents a first step to more ambitious projects
that could analyze tens of thousands of available RNA-
seq datasets to build a GTEx-like atlas reporting cis- and
trans- genetic associations with gene expression, as previously
performed in human (The GTEx Consortium, 2020) and more
recently in cattle (Liu et al., 2020).
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“filtered biallelic SNP”: SNP detected after the filters’ application.

Additional File 4 | SNP counts per population with each genotype
filters independently.

Additional File 5 | Overview of the analyzable genes for allele-specific expression
in the liver of various populations for Protein Coding Gene (PCG) and Long
Non-Coding gene (lncRNA), at two gene expression thresholds (0.1 TPM and 1
TPM) with the mean across the populations (“mean”) and the coefficient variation
(“CV”), i.e., standard deviation divided by mean. “expr. gene”: expressed genes,
“gene“: genes bearing the SNP, “S/g”: number of SNPs divided by the number of
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