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ABSTRACT 
 

1. Insect herbivory is an important component of forest ecosystems functioning and 
can affect tree growth and survival. Tree diversity is known to influence insect 
herbivory in natural forest, with most studies reporting a decrease in herbivory with 
increasing tree diversity. Urban ecosystems, on the other hand, differ in many ways 
from the forest ecosystem and the drivers of insect herbivory in cities are still 
debated.  
2. We monitored 48 urban trees from five species – three native and two exotic – in 
three parks of Montreal (Canada) for leaf insect herbivory and predator activity on 
artificial larvae, and linked herbivory with both predation and tree diversity in the 
vicinity of focal trees. 
3. Leaf insect herbivory decreased with increasing tree diversity and with increasing 
predator attack rate. 
4. Our findings indicate that tree diversity is a key determinant of multitrophic 
interactions between trees, herbivores and predators in urban environments and 
that managing tree diversity could contribute to pest control in cities. 
 
Keywords: Artificial prey, Insect herbivory, Tree diversity, Top-down control, Urban 
biodiversity 
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Introduction 

Insect herbivores have a major impact on tree growth and survival, hence on the functioning of forest 

ecosystems (Metcalfe et al., 2014; Visakorpi et al., 2018; Zvereva, Zverev, & Kozlov, 2012). Tree diversity 

significantly influences insect herbivory in forest ecosystems (Castagneyrol, Jactel, Vacher, Brockerhoff, & 

Koricheva, 2014; Jactel et al., 2017). Most studies report that herbivory declines as tree diversity increases (i.e., 

associational resistance, Barbosa et al., 2009), although the opposite pattern has also been found (Haase et 

al., 2015; Schuldt et al., 2011). Recently, the interest in how tree diversity affects insect herbivory has expanded 

to include urban forests (Clem & Held, 2018; Dale & Frank, 2018; Frank, 2014), where pest damage can 

compromise the ecological and aesthetic values of urban trees (Nuckols & Connor, 1995; Tooker & Hanks, 

2000; Tubby & Webber, 2010). Urban forests differ from natural forests in many ways. For example, most of 

the trees in cities are planted, found in lower density and/or mixed with native and exotic ornamental species 

that are rarely encountered in natural forests. Thus, given these specific characteristics of urban forests, it is 

still unclear how and why tree diversity might influence insect herbivory on urban trees. 

      The density and diversity of trees determine the amount and the quality of food and habitat resources 

available to herbivores and their enemies, and thus can have strong impact on the bottom-up and top-down 

forces acting upon insect herbivores (Haase et al., 2015; Muiruri, Rainio, & Koricheva, 2016; Setiawan, 

Vanhellemont, Baeten, Dillen, & Verheyen, 2014). For example, some insect herbivores, in particular generalist 

species, could take advantage of tree diversity to acquire more abundant, complementary food resources or 

benefit from a more balanced food mix, thus causing more damage in mixed forests (Lefcheck, Whalen, 

Davenport, Stone, & Duffy, 2013). In contrast, insect herbivores generally find it easier to identify and orientate 

towards the signals emitted by their host trees when the latter are more concentrated (the resource 

concentration hypothesis, Hambäck & Englund, 2005; Root, 1973) while non-host trees can emit volatile 

compounds that interfere with the ability of herbivores to detect their preferred host (Jactel, Birgersson, 

Andersson, & Schlyter, 2011). Finally, the abundance and diversity of predatory birds and arthropods generally 

increases with plant density and diversity, which would result in a better top-down regulation of insect 

herbivores (the enemies hypothesis, Risch, Andow, & Altieri, 1983; Root, 1973). However, the evidence 

available to support the enemies hypothesis in forest is controversial (Muiruri et al., 2016; Riihimäki, 

Kaitaniemi, Koricheva, & Vehviläinen, 2005; Staab & Schuldt, 2020) and the contribution of natural enemies to 

the control of herbivores in urban area remains poorly explored.  

      Tree diversity and density vary widely between and within cities (Ortega-Álvarez, Rodríguez-Correa, & 

MacGregor-Fors, 2011; Sjöman, Östberg, & Bühler, 2012). A consequence of this variability is that even within 

a common urban environment, herbivory may be reduced in some tree species and increased in others (Clem 

& Held, 2018; Frank, 2014), and the relative importance of bottom-up and top-down forces responsible for 

these effects may also differ. In addition, non-native trees have been widely planted in urban habitats (Cowett 

& Bassuk, 2014; Moro, Westerkamp, & de Araújo, 2014). While they often escape from herbivory by native 

insects (‘the enemy escape hypothesis’, Adams et al., 2009; Keane & Crawley, 2002), cases of native herbivores 

spilling-over onto exotic trees have been recorded (e.g. Branco, Brockerhoff, Castagneyrol, Orazio, & Jactel, 

2015). Non-native tree species can also provide habitats to insectivorous birds or predatory arthropods (Gray 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted October 5, 2020. . https://doi.org/10.1101/2020.04.15.042317doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.042317
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN ECOLOGY 3 

& van Heezik, 2016). It is thus difficult to predict the effect of mixing native and exotic trees on insect herbivory 

in urban habitats (Clem & Held, 2018; Frank, 2014).  

      In this study, we investigated the effect of tree density, tree diversity, presence of conspecific trees, tree 

origin and predator activity on insect herbivory in urban trees of the city of Montreal (Quebec, Canada). We 

measured leaf area removed or otherwise damaged by insect herbivores on 48 trees of five species – three 

native and two exotic – in three urban parks. We concomitantly assessed predator activity by using artificial 

caterpillars exposed on tree branches. We tested the following hypotheses: (1) insect herbivory decreases with 

tree density, number of non-conspecific trees (host dilution) and diversity (associational resistance) around 

focal trees, (2) predator activity increases with increasing tree density and diversity and (3) predation and 

herbivory have different responses to tree diversity on native and exotic trees. By doing so, our study builds 

toward a better understanding of the drivers of pest insect damage on urban trees. 

Methods 

Study site  
     The study was conducted in the city of Montreal (Canada, 45°50’N, -73°55’W), where the climate is 

temperate cold, with 6.8°C average temperature and 1000.3 mm annual rainfall during the 1981-2010 period 

(Pierre Elliott Trudeau airport weather station, www.canada.ca). The study took place in three parks of the 

southwest part of the city: Angrignon, Marguerite Bourgeoys and Ignace-Bourget (Table 1). 

 

Tree selection  
     Every tree in Angrignon, Ignace-Bourget and Marguerite-Bourgeoys parks had been previously geolocalized 

and identified to the species level. This information was accessible through the city database for urban trees 

(http://donnees.ville.montreal.qc.ca/dataset/arbres). We selected a total of 48 trees of five deciduous species 

(Table 1). Three species are native to the study area (Acer saccharinum L., Tilia americana L., Quercus rubra L.) 

while two are exotics, from Europe (Acer platanoides L., Tilia cordata Mill.). These species are amongst the 

most abundant tree species in the city of Montreal where together they represent 37% of all the tree species 

of the public domain. In agreement with the city of Montreal administration, we only selected trees with a 

diameter at breast height (DBH) greater than 8 cm (mean ± SD: 18.38 ±  9.36) (to withstand the sampling of 

leaves required for the experiment) and with low branches that could be easily accessed using a stepladder 

(for safety). 

 

Predation rate assessment 
     We used artificial caterpillars made with modelling clay to estimate predation rate on sampled trees 

(Ferrante, Lo Cacciato, & Lovei, 2014; Howe, Lövei, & Nachman, 2009). We installed 15 artificial caterpillars 

per tree. We haphazardly selected three low (2.5-3.5 m from ground) branches facing different directions and 

installed five artificial caterpillars per branch (total: 720 caterpillars). Caterpillars were 3 cm long, and modelled 

to match the approximate form and size of real caterpillars. They were modelled using a 1-cm ball of non-toxic 
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and odourless green modelling clay (Sculpey III String Bean colour) and secured on thin branches using a 12-

cm long, 0.5 mm diameter, non-shiny metallic wire.  

  Table 1. Mean (± SD) diameter at breast height (in cm) and number of trees initially selected for each park and species. 

Species 
Angrignon (AN) 

(45°26’N, -73°36’) 
Marguerite-Bourgeoys (MB) 

(45°47’N, -73°36’W) 
Ignace-Bourguet (IB) 
(45°45’N, -73°60’W) 

Acer saccharinum 37.55 (n = 5) 37.55 (n = 2) 15.1 (n = 2) 

Acer platanoides 21.60 (n = 1) 23.68 ± 1.97 (n = 6) 26.25 (n = 2) 

Tilia cordata 22.40 (n = 1) 30.60 ± 3.37 (n = 5) 9.67 ± 0.51 (n = 4) 

Tilia americana 10.52 ± 0.55 (n = 4) 22.06 ± 1.87 (n = 3) 27.60 ± 1.20 (n = 3) 

Quercus rubra 8.96 ± 0.37 (n = 5) NA 12.30  1.45 (n = 5) 

 
We exposed artificial caterpillars for 11 days in late spring (from May 29th to June 9th, 2018) and for 6 days in 

early summer (from July 18th to July 24th, 2018). These seasons were chosen to cover the main activity period 

of both predators and herbivores. Artificial caterpillars were left untouched for the full duration of each survey. 

We estimated total predator attack rate as the number of artificial larvae with any predation mark, divided by 

the total length of the observation period in days. There were uncertainties regarding predator identity 

responsible for predation marks. Most of the marks were attributable to birds or arthropods, while very few 

were attributable to small mammals, therefore, we chose to combine predation marks primarily attributed to 

birds or arthropods into a single category, which we refer to as total predation.  

     Branches of three trees were accidentally pruned by city workers in late spring so that the predation rate 

could not be estimated on these trees for the first survey. Three new trees of the same species were selected 

for the second survey, in early summer. 

 

Leaf insect herbivory 
We estimated insect herbivory on leaves (Kozlov et al., 2017) as the percentage of leaf area removed or 

impacted by insect herbivores (including chewing, skeletonizing and mining damage, collectively referred to as 

‘herbivory’). At the end of the second predation survey, we collected 10 leaves per branch on the same 

branches on which we had exposed artificial caterpillars, starting with the most apical, fully-developed, leaf to 

the 10th leaf down to branch basis (Total: 30 leaves per tree). We estimated total herbivory (i.e., total leaf area 

consumed or impacted by herbivores, regardless of their identity) as well as damage made by chewing, mining 

and sap-feeding herbivores at the level of individual leaves by using an ordinal scale of eight percentage classes 

of defoliation: 0%; 0-1%, 1-5%; 6-10%; 11-25%; 26-50%; 51-75% and 76-100%. We counted the number of galls 

per leaf. Most damage was made by leaf chewers, while other damage had a skewed distribution, preventing 

detailed analyses for each type of damage separately. We therefore analysed total herbivory by averaging 

herbivory at the level of individual trees and using the median of each class of defoliation. Herbivory was scored 

by a single observer (BC), who was blind to tree identity. 
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Tree neighbourhood 
     We used three variables to describe tree neighbourhood in a 20-m radius around each focal tree: tree 

density (defined as the number of neighbouring trees in that radius), tree species diversity (Shannon diversity 

index) and the number of conspecific trees around each focal tree. Those variables were obtained using QGIS 

Geographic Information System software (QGIS Development Team, 2018). Excluding focal tree species, the 

most common tree species in the vicinity of focal trees were the smooth serviceberry (Amelanchier leavis 

Wiegand), the white spruce (Picea glauca Voss), the green ash (Fraxinus pennsylvanica Marshall) and the 

eastern cottonwood (Populus deltoides Marshall), all of them native to the region. We should note that, as 

focal trees were not necessarily 20m or more apart, we could not avoid that some “neighbour” trees were 

used in more than one neighbourhood, and some focal trees were also within the neighbourhood of another 

focal tree. 

 

Statistical analyses 
We used the information theory framework to identify the best model fitting our data and applied model 

averaging whenever necessary to estimate model coefficient parameters (Grueber, Nakagawa, Laws, & 

Jamieson, 2011). We first built a full model including tree density (Density), tree diversity (Diversity), number 

of conspecifics (Conspecific), origin of the focal tree (Origin, native of exotic), park (Park), and predation rate 

(Predation) as fixed factors and tree species identity (Species) as a random factor: 

 

Yij ~ β0 + β1 × Densityij + β2 × Diversityij +  

 β3 × Conspecificij + β4 × Originexotic, ij + β5 × ParkIB, ij +  

 β6 × ParkMB, ij + β6 × Predationij +  

   γj + εij                                                                   (1)  

 

Where Yij is the herbivory on tree individual i in tree species j, β are model coefficient parameters for fixed 

effects, γj is the random effect of tree species identity and ε the residuals. 

     To ease the interpretation of parameter estimates after model averaging, we standardized the input 

variables using Gelman’s approach (Gelman, 2008). We then applied a procedure of model selection based on 

the Akaike’s criterion corrected for small sample size (AICc) by running every model nested within the full 

model. As tree density and tree diversity were correlated (Pearson’s correlation: r = 0.71), we excluded all sub-

models that included these predictors together. We ranked all models based on difference in AICc between 

each model and the top ranked model with the lowest AICc (ΔAICc). Models with a ΔAICc < 2 are generally 

considered equally supported by the data or not differentiable from the top ranked model. Finally, we 

estimated model fit by calculating marginal (R²m) and conditional (R²c) R² values, corresponding to variance 

explained by fixed effects only (R²m) and by fixed and random effects (R²c) (Nakagawa & Schielzeth, 2013). 

When multiple models had a ΔAICc < 2, we used a model averaging approach to build a consensus model 

including all variables found in the set of best models. We considered that a given predictor had a significant 

effect if its 95% confidence interval did not overlap zero. When only one model had a ΔAICc < 2, we used it as 

the best model. We used a square-root transformation of insect herbivory to satisfy model assumptions of 

normality and homogeneity of residuals.  
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     We used the same approach to test the effect of tree neighbourhood on predation rate, log-transforming 

predation rate to satisfy model assumptions. Model equation (2) included the fixed effect of sampling season 

(Season) and the random effect of tree identity (τk), nested within tree species identity as an additional random 

factor accounting for repeated measurements of the same individuals:  

 
Yijk ~ β0 + β1 × Densityijk + β2 × Diversityijk +  

 β3 × Conspecificijk + β4 × Originexotic, ijk + β5 × ParkIB, ijk +  

 β6 × ParkMB, ijk + β6 × Seasonsummer, ijk +  

 γj + τk|j + εijk          (2) 
     γ ~ N(0; σspecies²) τ ~ N(0; σindividual²) ε~ N(0; σe²) 

 

Statistical analyses were performed using the R software version 3.4.4 (R Core Team 2019) with packages lme4 

(Bates, Mächler, Bolker, & Walker, 2015) and MuMIn (Barton 2019). 

Results 

Insect herbivory – Herbivory was on average (± SE) 7.19 ± 0.70 % (n = 48). Leaf damage was lower in Acer 

platanoides (3.53 ± 0.54) and A. saccharinum (3.86 ± 0.47) than in Quercus rubra (8.77 ± 1.65), Tilia americana 

(10.3 ± 1.37) and T. cordata (8.75 ± 1.75) (Fig. 1A).  

     There were six models competing with the top ranked model in a range of 2 units of ΔAICc (Table 2). These 

models included tree Shannon diversity, predation rate and tree origin as predictors. Insect herbivory 

decreased significantly with increasing tree diversity (average model coefficient parameter estimate ± CI: –

0.482 ± [-0.91;-0.05], Fig. 2A, Table 3) and with increasing predation rate (–0.473 ± [-0.91; -0.003]) (Fig. 2B, 

Table 3). Among the set of best models, fixed effects explained between 7 and 12% of variability in insect 

herbivory. Fixed and random effects together explained between 47 and 65% of variability in insect herbivory. 

 
Predation – Of the 1,315 artificial caterpillars that we installed, 198 displayed marks unambiguously 

attributable to predators (i.e., 15%). Predation rate varied between 0 and 0.87 per caterpillar-day (Fig. 1B).  

Only one model had a ΔAICc < 2 and was thus selected as the best model. This best model included only Season, 

with predation rate two times higher in late spring (mean ± CI: 0.44 ± [0.31, 0.58] caterpillars·day-1) than in 

early summer (0.20 ± [0.16, 0.24] caterpillars·day-1). Season explained 56 % of variability in predation rate and, 

collectively, fixed and random effects explained 59 % of variability in predation rate.  
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Figure 1. Effect of tree species identity on insect herbivory (A) and predation rate (B). Black dots and solid lines represents mean ± SE 
calculated on raw data. Herbivory is the percentage of leaf area removed or impacted by herbivores in early summer. Predation 

events per caterpillar-day is the number of caterpillars attacked per day in late spring 

 
Figure 2. Effects of tree diversity (A) and predation rate (B) on insect herbivory. Solid and dashed lines represent prediction and 

adjusted standard error of the average model respectively (Table 3). Herbivory is the percentage of leaf area removed or impacted by 
herbivores in early summer. Tree diversity is represented by Shannon’s diversity index. Predation events per caterpillar-day is the 

number of caterpillars attacked per day in late spring. 
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Table 2. Summary results of model selection of tree neighbourhood effect on herbivory rate: set of models with ∆AICc < 2. Only 
predictors that were present at least once in the set of best models are represented. R²m and R²c represent fixed and fixed plus 

random factor, respectively. 

 

 Model covariates Model selection 

Model Intercept Predation Origin Diversity K Log L ∆AICc R²m (R²c) 

1 2.53   -0.52 1 -46.44 0.00 0.09 (0.46) 

2 2.52 -0.52  -0.44 2 -45.18 0.04 0.12 (0.58) 

3 2.51 -0.51   1 -46.79 0.70 0.07 (0.56) 

4 2.53 -0.44 0.171 -0.43 3 -44.64 1.67 0.12 (0.65) 

5 2.53  0.078 -0.52 2 -46.07 1.82 0.08 (0.53) 

6 2.53 -0.53 0.357  2 -46.12 1.92 0.08 (0.62) 

 

 
Table 3. Summary results after model averaging: effects of each parameter presents on the set of best models on herbivory rate. 

Bold parameter are significant. Relative importance is a measure of the prevalence of each parameter in each model used in model 
averaging. 

 
Parameter Estimate Adjusted SE Confidence interval Relative importance 

(Intercept) 2.53 0.31 (1.91, 3.14)  

Diversity -0.48 0.21 (-0.91, -0.05) 0.72 

Predation -0.47 0.22 (-0.91, -0.003) 0.64 

Origin 0.19 0.71 (-1.20, 1.60) 0.31 
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Discussion 

     We confirmed that tree diversity can influence insect herbivory on urban trees. Specifically, we found that 

insect herbivory decreased with increasing tree diversity providing support for the associational resistance 

hypothesis (Castagneyrol et al., 2017). We also found a negative correlation between predator attack rate and 

insect herbivory. Although further analyses are needed to confirm this relationship, our findings provide 

support for the view that increasing tree diversity can enhance regulation of insect herbivores by natural 

enemies in urban forests.   

     Our results are in line with several studies having reported reduced herbivory in trees surrounded by 

heterospecific neighbours (reviewed by Castagneyrol et al., 2014; Jactel et al., 2017). It also adds to the growing 

number of studies documenting diversity-resistance relationships in urban environments (Clem & Held 2018; 

Doherty, Meagher, & Dale 2019; Frank 2014). However, it conflicts with other results suggesting an increase 

in herbivore abundance with increasing plant diversity in urban environments (Mata et al., 2017), although the 

relationship between herbivore abundance and actual herbivory is not always positively correlated (Barbosa 

et al., 2009; Schueller, Paul, Payer, Schultze, & Vikas, 2019). Tree diversity may have influenced the probability 

of focal trees being found and colonized by herbivores. Theory predicts that specialist herbivores have greater 

difficulties finding their host trees when they are surrounded by heterospecific neighbours (Castagneyrol et 

al., 2014; H. Jactel, Brockerhoff, & Duelli, 2009). It is possible that non-host neighbours disrupted the physical 

and chemical cues used by insect herbivores to locate their hosts (Damien et al., 2016; H. Jactel et al., 2011; 

Zhang & Schlyter, 2004). However, and contrary to our expectations, we did not find any significant effect of 

conspecific tree density on insect herbivory, thus ruling out the resource concentration hypothesis in this 

particular case. However, because our study was observational, we could not separate the effect of conspecific 

neighbour density from heterospecific neighbour density. In the absence of data on the identity of herbivores 

responsible for herbivory, further speculation would be hazardous.  

     Insect herbivory varied across tree species but did not differ between native and non-native species, thus 

not providing support for predictions of the enemy release hypothesis (Cincotta, Adams, & Holzapfel, 2009; 

Meijer, Schilthuizen, Beukeboom, & Smit, 2016). One possible explanation for this result could be that native 

herbivores spilled over exotic tree species from neighbouring native tree species, as it was recorded in previous 

studies (Branco et al., 2015). This would have been facilitated by the fact that exotic tree species (from Europe) 

had congeneric species in Canada. Although we only surveyed a handful of native and exotic species, making 

any generalization hazardous, we can speculate on the lack of difference between native and non-native 

species. It is also important to note that a large part of the variability in leaf insect damage was attributable to 

the species on which leaf samples were collected. In particular, both Acer platanoides and A. saccharinum were 

far less damaged than Tilia cordata, T. americana and Quercus rubra. In a recent study in Michigan, Schueller 

et al., (2019) also reported greater insect herbivory (and herbivore diversity) on Quercus species as compared 

to Acer species, which is consistent with the view that plant species identity can drive arthropods community 

and abundance on forest host trees (Burghardt, Tallamy, & Gregory Shriver, 2009; Pearse & Hipp, 2009). 

     We found a significant negative correlation between predator attack rate and insect herbivory measured 

later in the season. This finding suggests a potential relationship between herbivory and predation in urban 

environments (Faeth, Warren, Shochat, & Marussich, 2005; Kozlov et al., 2017 but see Long & Frank, 2020). 
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However, we refrain from concluding that predation was the main driver of insect herbivory for several 

reasons. First, the effect size of the herbivory-predation relationship was small, as was model R² (Table 3). 

Second, concerns remain about how well predation on artificial prey represents of actual predation (Lövei & 

Ferrante, 2017; Rößler, Pröhl, & Lötters, 2018). In particular, artificial caterpillars used to assess predation rate 

modelled lepidopteran-like leaf chewing caterpillars and thus, caution is needed when it comes to extrapolate 

predator attack rates to other herbivore feeding guilds. Third, we had no information on actual natural prey 

density in focal and neighbouring trees. Yet, prey availability may have influenced the functional response of 

bird insectivores (e.g. optimal foraging) such that we cannot exclude that herbivory actually drove predation 

rate instead of the other way around. Finally, the putative effect of predation on herbivory may be weak in 

respect to other factors acting directly upon herbivores in urban environments such as drought (Huberty & 

Denno, 2004; Mattson, 1980; Meineke & Frank, 2018), extreme heat (Dale & Frank, 2014; Meineke, Dunn, 

Sexton, & Frank, 2013) and pollution leading to altered foliage quality (Kozlov et al., 2017; Mattson, 1980; 

Moreira et al., 2019).  

     Contrary to the important effect of tree species identity on insect herbivory, tree species had no clear 

influence on predation rate on dummy caterpillars, which contradicts the view that tree species identity can 

modulate attack rates of caterpillars by birds (Mooney & Singer, 2012; Nell et al., 2018). Variation in predator 

density between plants is often related to an indirect effect of the plant on the density (Bailey et al. 2006) or 

quality (Brower et al. 1967, Clancy and Price, 1987) of their preys (herbivores). However, such effect of plant 

identity is not relevant when using dummy caterpillars, as neither their abundance nor their quality can be 

affected by plant species identity, which could explain the contradiction between past results and our study. 

     Predation was greater during the first survey, in late spring, than during the second survey, in early summer. 

This result could be explained either by a lower foliage density in trees in spring, making it easier for predators 

to detect artificial caterpillars, or by greater predator activity matching the phenology of wild caterpillars and 

feeding period of chicks (Coley, 1980; Raupp & Denno, 1983). We cannot either exclude that birds learned to 

avoid artificial caterpillars, thus resulting in much lower predation pressure during the second survey. 

However, unless bird ability to avoid artificial caterpillar varied between tree species and neighbourhood, we 

do not see this possibility as a major threat to our inferences. 

 

Conclusion 
Our study suggests several ecological factors drive leaf insect herbivory in the urban trees of the Montreal 

city. In particular, we found that insect herbivory decreased with both increasing tree diversity and predator 

activity. While biological invasions and global warming are increasing risks to urban trees, more and more cities 

choose to ban or reduce the use of pesticides in urban parks and green areas (Sustainable Use of Pesticides 

Directive 2009), such as in Montreal. In this context, diversifying urban tree cover in urban parks might help to 

reduce insect damage, which could result in a better provision of services provided by trees in cities (Beyer et 

al., 2014; Bowler, Buyung-Ali, Knight, & Pullin, 2010; Nowak, Hirabayashi, Bodine, & Greenfield, 2014). 
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