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Abstract 

Background: Here we present an open-source solution, comprising several 3D-printable 

mechanical pieces and software tools, for frameless stereotaxic targeting in young and 

adult pigs of varying weights. 

New method: Localization was achieved using an IR camera and CT imaging. The 

positions of the tools were followed, after registration of the pig stereotaxic space, with a 

CT scan and open-source brain atlas. The system was used to target the lateral ventricle 

and the subthalamic nucleus (STN) in one piglet and two adult Yucatan miniature pigs, 

which were either normal weight or obese. 

Results and conclusions: Positive targeting was confirmed in the first trial for all 

subjects, either by radiopaque CT enhancement of the ventricle or actual recording of the 

STN electrophysiological signature. We conclude that open-source freely available 

models, easily built with low-end 3D printers, and their associated software can be 

effectively used for brain surgery in pigs, at a minimal cost, irrespective of the weight of 

the animal. 

Keywords: Frameless stereotaxis, Yucatan minipig, ventriculography, subthalamic 

nucleus, 3D print 
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Introduction 

Pigs are increasingly used in translational research due to their close resemblance to 

humans (1), (2). Furthermore, miniature porcine breeds provide adult animals easy to 

handle (3). In addition, the large gyrencephalic brain of the pig enables the use of a 

clinical scanner without impaired spatial resolution (4). Several digital atlases suitable for 

brain surgery are available (5), (6), (7), (8), (9), some of which, such as those developed 

in our laboratory (5), have been published in an open-source format, allowing their 

incorporation into surgical guidance software (10). Generic and dedicated algorithms are 

also available to register brains differing in breed, size, and physiological status to these 

atlases with millimetric accuracy (11), (7). Nevertheless, brain surgery in pigs is complex 

compared to that in murine models. For example, lateral ventricle cannulation requires 

head placement in a stereotaxic frame, which is a time-consuming procedure, even for a 

well-trained surgical team (12). The complexity of the procedure, in part related to the 

obliquity of the auditory canal (13), has promoted the development of alternate 

stereotaxic frames, some of which are magnetic resonance imaging (MRI)-compatible 

(14), (15), (16). These devices allow precise targeting at the expense of the time required 

for co-registration of the frame relative to the scanner and to the atlas three-dimensional 

(3D) spaces. However, they are not suitable for obese adult miniature pigs weighing ≥ 

100 kg as the development of the adipose tissue enlarges the head; this is an important 

limitation considering the use of the pig as a model for human obesity (17). Furthermore, 

these devices were adequately suited for young animal skulls with parietal and frontal 

bones parallel to the palate. This was not the case in adult animals for which the brain 

forms a 50° angle with the palate (4), rendering it difficult to target with a Horsley–Clarke 

or Leksell frame. 

The past decade has seen a shift toward frameless guidance technologies for human 

neurosurgical procedures as these platforms are lighter, smaller, and easier to use than the 

more classical stereotaxic frames (18). Unfortunately, these tools are dedicated to 

humans, and the mandatory software required for targeting is devoted to the human atlas 

(19). Furthermore, the human brain is three times larger than the porcine brain, rendering 

these platforms too big to be applied to the pig skull. In addition, the cost of these 

platforms and the difficulties in interoperating tools from different suppliers led to 

difficulty with the translation. With the development of affordable 3D printers, we believe 
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that all of these limitations can be overcome using open-source hardware and software 

dedicated to porcine brain surgery. The availability of these tools is likely to promote 

porcine brain surgery in a similar way as our freely accessible porcine atlas, which is used 

far beyond in-house research (20), (21), (9), (22). 

This study aimed to develop and validate an open-source set of tools combining 

software and hardware components suitable for stereotaxic placement of catheters or 

electrodes within the brains of adult and growing pigs, irrespective of their weight. The 

system used a commercially available 3D localizer infrared (IR) camera for precise 

positioning. The localizer was the only piece of hardware that was not open-source or 3D 

printable. Each of the tools supporting four reflective markers is capable of sub-

millimeter accuracy. The system takes advantage of CustusX software (23), an open-

source software designed by the Norwegian National Competence Center for ultrasound 

and image-guided therapy. The software processes online data from the infrared localizer 

and overlaps them with the models describing the porcine brain and stereotaxic supports. 

Our system was primarily oriented for the placement of ventricular catheters and push-

pull cannulas that do not require accurate positioning. It was further challenged by 

targeting a smaller zone, which requires precise navigation capabilities. The subthalamic 

nucleus (STN) was chosen because it is difficult to access and exhibits a specific 

electrophysiological signature even in anesthetized animals (4). All software and 

hardware tools constituting the stereotaxic system are described in Supplemental Material 

1. The hardware tools were designed to be easily printable using an entry-level 3D 

printer. 
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Materials and methods 

1. Animals & ethical considerations 

Three animals were used for the experiment: one growing large white piglet (young) 

weighing 32 kg and aged 3 months, one adult miniature Yucatan pig weighing 45 kg 

(adult), and one adult miniature obese Yucatan pig weighing 85 kg (obese), both aged 2 

years. All of the included animals were female and cover the weight span used in porcine 

experimental brain surgery. The young animal could be fitted in a classical stereotaxic 

frame (13), (4), but the adult animal required a stereotaxic box on which the metal frame 

itself was attached (24). The obese animal was unsuitable for any published stereotaxic 

apparatus due to fattening of the neck. Obesity was induced in the obese animal using the 

protocol described by Malbert et al. (17). All animals were euthanized at the end of the 

surgical procedure. The experiment was conducted in accordance with the current ethical 

standards of European legislation after validation by the ethic committee of Rennes 

(2015102913338236). 

2. Anesthesia 

The experiment was performed under general anesthesia using local and systemic 

pain suppression protocols. During the entire procedure, including CT imaging, the 

animals were placed in ventral recumbency with their head stabilized by an air-tight 

cushion containing polyethylene marbles (Vacuform Silplus; Schmidt, Garbsen, 

Germany). General anesthesia was achieved using sevoflurane (Baxter, Maurepas, 

France) about 2.5 % v/v, delivered by a positive pressure ventilator (AS/3; General 

Electric, Milwaukee, USA) connected to an endotracheal tube inserted after sedation with 

ketamine (Imalgene, Merial, Lyon, France, 5 mg/kg, IM). Fentanyl was delivered 

intravenously using a syringe driver over the course of the procedure (0.4 µg/kg/min 

minimum, Fentadon; Dechra, Montigny le Bretonneux, France). Increases in the heart 

rate or blood pressure during potentially painful stimulation were monitored together with 

spO2/spCO2 (ADU 3; General Electric, Milwaukee, USA) and used to modulate the rate 

of delivery of fentanyl. The ventilator settings were selected to lower the spCO2 to 3% 

v/v, while maintaining spO2 at ≥ 98% to reduce cerebral blood flow and intracranial 

pressure (25). In addition, subcutaneous and periosteal injections of lignocaine 10% (2–3 

ml; Aguettant, Lyon, France) were administered before the onset of the craniotomy and 
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repeated every 90 min. A hot-air heating blanket (3M Bair Hugger; Cergy-Pontoise, 

France) was placed over the animal to maintain homeothermy. 

3. Frameless tools 

Several tools were designed to facilitate the insertion and positioning of the cannula 

guide (Figure 1, Supplemental Material 1). All of the tools were based on a ball within a 

cup concept that included a minima, a female frame screwed on the skull while centered 

on the burr hole, and a rotating mobile piece for cannula guidance. This design extended a 

more complex design by Sudhakar et al. for non-human primates (18). The mobile piece 

was squeezed by a large screw attached to the swivel base, which could be replaced by a 

screw serving as a cap for longer experiments. Several mobile pieces were designed with 

different holding sub-units to fit different cannula sizes, including an adjustable chuck to 

maintain the cannula in place without metal screws, which could otherwise create 

artifacts on CT images. This mobile piece was tested for cannula placement in the lateral 

ventricle. The most complex mobile piece was used to target the subthalamic nucleus; this 

piece included a stepper motor and was used for the robotic placement of the recording 

electrodes. We selected a robotic solution because (i) the mobile descender was too 

flexible for direct manual descent, and (ii) this solution allowed continuous artifact-free 

recording during targeting. The motor was controlled by an external rotary encoder 

placed on a remote controller box to avoid any contact between the surgeon and the 

mobile piece. The connection schematic and the software used by the Arduino controller 

(Arduino cc, Italy) are described in Supplemental Material 1. The software was written in 

such a way that one turn of the encoder resulted in a 50 µm travel along the electrode 

axis. The robotic system was designed to accommodate a StarFix stereotaxic 

microelectrode with an insertion tube (FHC, USA). The quality of the power supply is 

important for artifact-free recording of a single neuronal unit. Several types of power 

supplies were tested, and an adequate supply was provided by the A/D converter box used 

for electrophysiological recordings (Analog Discovery 2; Digilent, Pullman, USA) that 

delivered a noise-free DC. Furthermore, this configuration allowed electrical insulation 

from the mains once the laptop was running on the battery. The preamplifier was built 

around an AD 8232 integrated analog front end (Analog Devices, Wilmington, USA) 

enclosed in a shielded miniature box placed close to the skull. This device has already 

been successfully used for DBS recordings (26). Details about the construction of the 
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actual preamplifier and its performance are given in Supplemental Material 2. The 

connections between the electronic boards, electrode, and robotic descender are presented 

in Supplemental Material 3. 

Figure 1 

The tools were designed using RhinoCeros software (V7; Robert McNeel and Associates, 

USA), converted to STL format, and sliced with Ultimaker Cura software (V4.8.0; 

Ultimaker B.V.) for final printing. These tools were ultimately printed on an Ender pro 3 

printer (Creality3D, Shenzhen, China) with a PLA+ (polylactic acid) wire. The sensitivity 

of the IR camera to light scattering required that the printing material was made of black 

filament. Details about the printing parameters, number of individual pieces required, and 

printing sequence are given in Supplemental Material 1. 

4. Localizer tools 

The localizer tools were tracked by a Polaris Spectra (NDI, Waterloo, Canada) that 

was located approximately 1.5 m above the surgical plane and attached to a Macintosh 

computer running CustusX software. Three localizer tools were designed with two 

reference frames. The schematic for the distance and angle between the reflective markers 

was obtained from the Apple library created under an open-source license by Brown et al. 

(27). This library allowed several localizers to simultaneously track whether their ROM 

definitions (the file format used by the NDI localizer) were inserted into the navigation 

software. One tool (the cannula tool) consisted of a stainless steel rod (2 mm OD; 

Phymep, Paris, France) attached to a localizer frame. The diameter of the rod was 

selected such that it could be inserted into a 2.85 mm OD stainless steel tube that served 

for ventricular access or to attach an additional smaller tube to create a push-pull cannula. 

The rod outer end was tightly inserted in Luer to 1/4 28 female peek adapters (Idex 

Health and Science, Oak Harbor, USA) to allow connection with a Luer-tipped syringe. 

The inner end, designed to be inserted into the brain, was carefully polished with a 

rotating felt brush under binocular conditions. Another tool (the coagulator tool) 

accommodated a coagulation electrode (Dixi Medical, Chaudefontaine, France), and the 

last localizer was designed to be attached to the robotic targeting device. For each tool, a 

ROM definition was constructed from scratch using NDI Architect software (V6; NDI, 

Waterloo, Canada) together with the required .xml files to be inserted into the CustusX 
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navigation software. The two reference frames had identical distances and angles between 

the reflective markers and were attached to dissimilar supports. One frame was used 

during the initial navigation steps and was placed under the chin of the animal. The 

second frame could be adjusted in any direction and was designed such that its end was 

fixed directly on the skull. As the references were virtually identical for the navigation 

software, it was possible to exchange them during surgery to optimize their IR camera 

visibility. NDI tracker software (NDI V5.001, Waterloo, Canada) was used as the first 

step of the surgical procedure to confirm the visibility of the tools and optimize the 

position of the NDI camera. 

5. Software customization 

CustusX software (https://www.custusx.org) was customized to allow 3D localization 

of the coagulator, cannula, and motorized targeting tools. Several files including ROM 

definitions have been designed and are available in the “Tools definition for Custus X” 

folder of Supplemental Material 1. Once detected by the IR camera, the tool was 

displayed on a real-time screen using a simplified 3D representation (included with each 

tool). While the ROM files were immediately usable, it is advisable to “pivot” the tool 

using the pivoting procedure described in the NDI Architect software to update the ROM 

file; this compensates for small variations in the length of the bar/coagulator. 

VTK and STL models of the pig brain ventricles and each of the tools plus the swivel 

base are provided in the Supplemental Material. The biological models were obtained 

from the conversion in VTK format, using 3D Slicer software (V4.10.2, 

https://www.slicer.org) (28) of the pig brain atlas developed in our laboratory (5). The 

software models were required to be uploaded to CustusX before the registration 

procedure for a comprehensive representation of the surgical scene (Figure 2). 

Figure 2 

6. CT imaging 

CT imaging was performed with the animals in ventral recumbency using either a 

HiSpeed NX:i or a Discovery ST PET/CT (General Electric, Milwaukee WI, USA). Data 

collection was achieved in helicoidal mode (120 kV, 100–200 mA, depending on the 

scout scan, with a section thickness of 1 mm). A minimum of two scans was achieved per 
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animal - the first one after the placement of the external references on the skin, and the 

second one once the targeting was completed. The first scan also served to calculate the 

skull bone thickness and was part of a failsafe procedure to position a drill guard (details 

of construction are described in Supplemental Material 1) on the burr-hole drill. The 

second scan confirmed the placement of the cannula in the lateral ventricle after the 

injection of 2 ml radio-opaque medium (Hexabrix 320, Guerbet, Villepinte, France). 

After completion, the images were transferred from the CT scanner to the Osirix reader 

(29), and ultimately imported into Dicom format to CustusX. 
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Results 

The sequential steps required for adequate targeting are shown in Figure 3. The steps 

were completed in < 30 min for the ventriculography and 45 min for the STN recording, 

irrespective of the age and weight of the animal. 

Figure 3 

Positioning 

While the external reference chips (for construction, see Supplementary Materials) 

were initially planned to be stitched to the skin, fixing was difficult in adult miniature 

pigs due to the hardness of their skin. Therefore, these references were maintained using 

surgical glue (Vetbond, 3M; Cergy-Pontoise, France) as a rapid and effective alternative. 

Registration between the anatomical and real-world spaces was performed by pinpointing 

each of the skin's external references with the coagulator tool (steps 7 and 11, Figure 3). 

Virtual targeting was achieved with the coagulator tool before skin opening using the 

virtual tooltip offset option in CustusX. This step was mandatory given that access to the 

cerebral target could be limited depending on the skull thickness and the target location 

(Figure 4). 

Figure 4 

The precise location of the burr hole was achieved after skin opening using a 

coagulation current applied on the coagulator tool, which resulted in a dark spot on the 

skull. Creation of the burr hole down to the dura matter was impossible in the adult 

miniature pig using “smart” cranial perforators because the distance between the two 

cortical layers of the skull was too large, i.e., above the 1.5 mm requirement. Indeed, the 

thickness of the adult skull range from 29–35 mm depending on the planned location of 

the burr hole. Blocking the unlocking system with one drop of cyanoacrylate superglue 

was sufficient to gain additional perforating thickness capability and complete dura 

matter access. Dura matter opening was achieved by applying a coagulation waveform 

current on the coagulator tool. Once the brain's surface was made accessible, a dummy 

swivel base, including three screws, was positioned over the outside hole. The planned 

location of the holes used on the skull for screw fixation was marked with coagulator 

current directly applied on the screws. The final swivel base was then fixed firmly on the 
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skull and the mobile part was inserted and secured. 

Ventriculography 

Ventricular access was performed using the cannula tool, that is, the cannula was 

fitted with a slightly longer stainless rod supporting the localizer. A second registration 

was performed using the external references and two of the three screws that maintained 

the swivel base. Using a Polaris Spectra 1.5 m from the skull, the accuracy was less than 

the millimeter range using the third screw of the swivel base as a test point. Afterwards, 

the entire cannula system was inserted approximately 20 mm such that its tip did not 

protrude the mobile piece and an adequate angle was found. The tightening screen was 

firmly set, and the cannula was slowly inserted using CustusX clues. Once at the correct 

location, the guide rod was removed, the cannula was fixed, and the Luer-lock matting 

connector was placed on the cannula. Correct placement of the cannula was confirmed by 

positive ventricular radio marking (Figure 5); placement was successful in all animals 

after the first descent. 

Figure 5 

STN targeting 

STN targeting was achieved after ventriculography and replacement of the mobile 

cannula guide by the robotic mobile piece without the need to drill an additional burr 

hole. The electrode guide with rigidifying rod was inserted rapidly, such that the electrode 

tip was in the thalamus once in the guide. The rigid internal rod was then removed and 

replaced with an actual electrode. After adequate grounding was achieved by running the 

laptop on the battery, the thalamic activity was immediately recorded as irregular large-

amplitude spikes. The descend was resumed in 100 µm steps until a sustained activity 

was collected, indicative of the STN entrance. This activity was recorded continuously 

over 3.5–4 mm, depending on the animal. Spiking became sparse when the electrode was 

excited from the STN, indicative of substantia nigra neuronal activity (Figure 6). 

Figure 6 
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Discussion 

To the best of our knowledge, this study represents the first demonstration of easy 

access to the lateral ventricle and deep brain structures in an adult obese miniature pig 

using a complete frameless stereotaxic system suitable for 3D printing. While commercial 

frameless systems are available, they are costly and designed primarily for human 

surgery, making them poorly suited for porcine studies. Furthermore, their software are 

purposely trademarked tools that are locked with human atlases. These limitations were 

overcome by our open-source design, which was easily assembled using an entry-level 

3D printer. 

Our initial goal was to create a system for easy access to large brain structures, 

irrespective of the age and weight of the animal. While precise, the classic stereotaxic 

apparatus requires complex and time-consuming adjustments of the head relative to the 

frame. One of the most demanding processes was to achieve symmetrical positioning of 

the head relative to the frame. Although the localizer box designed by the Bjarkam group 

(24), (15) represented a step forward, with increased simplicity without an impaired 

resolution, the duration of the placement remained an issue. Because the ventricle is a 

large structure, a reduced spatial resolution was acceptable at the expense of the duration 

of the procedure. A more complex placement, for example, STN targeting, was also 

possible using a robotic mobile tool. The increased accuracy needed for STN targeting 

was partly due to sequential registration using skin references and their subsequent partial 

substitution by the screws used to fix the swivel base. The uneven placement of the 

fixation holes on the base side was another reason for this increased accuracy. 

Some tools were relatively straightforward to build, while others required maximal 

resolution of the printer and the activation of special printing options. Moreover, all of the 

tools were built with PLA+ plastic, which are known to become fragile with time when 

placed in a wet environment. One swivel base was built for each pig because during the in 

vitro tests, one of the three flanges constituting the receiving cup was partially broken 

upon successive insertion/removal of the mobile piece. Aside from this sensitive piece, 

the remaining tools were identical between animals, and all were immersed in 

sterilization liquid (glutaraldehyde 2%; Steranios, Anios, Lille, France) without further 

problems. The robotic mobile piece was not sterilized because the stepper motor was not 
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waterproof. One swivel base and its matting occluding screw were printed in ABS 

(Acrylonitrile butadiene styrene), a waterproof and improved ductility plastic. The 

printing process was not a significant issue despite the increased temperature required for 

ABS filament fusion, demonstrating that the STL models were suitable for both 

thermoplastics irrespective of their heat-shrinking coefficients. 

One limitation of the frameless system was the absolute requirement to maintain both 

the reference frame and active tool insight for the infrared camera. As the surgery was 

supposed to be performed directly on the CT table, the bulk of the CT enclosure 

prevented the location of the camera by approximately 180° (either frontal or dorsal to the 

animal, depending on the surgeon's lateral preferences). Even with the maximal height 

between the surgical area and the camera, this limitation reduced the visibility of the 

reference frame, especially if positioned close to the chin. Two supports dedicated to the 

reference frame were designed in an attempt to minimize this issue. Nevertheless, the 

surgeon must take care when performing the actual acquisition of both the active and 

reference frames, especially during the descent of the cannula. Fortunately, flags present 

on the main screen of the CustusX software consistently indicated the effectiveness of the 

tracking. The physical balance of the tools in the surgeon’s hand is another important 

issue for the simplicity of the procedure. While several attachment possibilities were 

incorporated in the design by Sudhakar et al. (18), the most suitable for adequate balance 

was selected. Care must be taken when assembling the tools to match the correct holes 

because the ROM files are designed for a specific attachment only. 

The difficulties in accessing the cortical surface of adult pigs cannot be 

underestimated. First, the distance between the two cortical layers of the skull is larger 

than the limit claimed by “smart” drill supplier; this prevents the use of the clutch 

mechanism, which is supposed to act as a failsafe device for preventing dura mater 

damage. Conversely, removing the clutch mechanism required adding a movable ring on 

the outside of the drill as a substitute. However, even when the hole was made, the 

accessibility of the dura mater was poor, impeding the use of a dedicated hook to lift the 

membrane. The use of a navigable coagulator tool was an alternative for opening the dura 

mater, but it was the most challenging surgical gesture of the entire procedure. The use of 

a navigable coagulator tool could be made less challenging by using surgical grade 

magnifier goggles and an additional focused light source. 
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It was possible to estimate the system's targeting possibilities with specific reference 

to the target depth and thickness of the skull. Unsurprisingly, the target possibilities 

increased linearly with the target depth. Nevertheless, deeply located targets are more 

complex to reach because the system's offsetting capability halves when the skull 

thickness triples, that is, when a piglet becomes adult. Knowing that the encephalon fit 

within a box approximately 60 × 40 × 35 mm (5), the entire brain is not accessible with a 

single burr hole. This explains the importance of surgical planning and the need for the 

swivel base to have a precise location. 

The system described here resembles the StealthStation surgical navigation system 

(Medtronic, Minneapolis, USA); the StealthStation is restricted to use in humans because 

the navigation software does not allow the insertion of alternative atlases (30). 

Furthermore, the commercial skull-mounted trajectory guide is twice as large as our 

design given the space available on the human skull, and is therefore unsuitable for the 

porcine brain. Although pigs have a sizeable skull, they exhibit limited projection 

surfaces that are suitable for positioning a guide, which prevents the placement of the 

StealthNavigus guide or alternative commercial guides such as the Monteris Axiis. The 

size of the swivel base (45 mm), dictated by the diameter of the burr hole, was probably 

the maximal acceptable size, knowing that the skull's maximal usable width was 65 mm. 

The size was also an obstacle to the deployment of an MRI-compatible platform, such as 

the NextFrame device (31) or the SmartFrame (32). Finally, the brainsight neuronavigator 

allowed custom implant design but required dedicated surgical tools, resulting in a 

practical but costly solution that is yet to be published in pigs (33). The advantages and 

disadvantages of these systems are listed in Table 1. 

Table 1 

The addition of an electromagnetic localizer at the tip of the cannula represent an 

exciting addition to the IR localization. However, it is important to balance the system's 

increased complexity, cost, and easiness for targeting large structures such as the 

ventricle. While a waterproof stepper may be useful, the price tag for a miniature 

waterproof stepper is significant. The most relevant improvement is probably a 

simplification of the CustusX user interface and its dedication to brain navigation only. 

The open-source code is highly versatile, including hybrid representation with 

synchronization of CT based images, ultrasound video, and ultrasound 3D reconstruction. 
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Several registration methods, which are mandatory for the initial purpose of the software, 

e.g., bronchoscopy, also contributed to the complexity of the interface (23). The 

alternative open-source navigation software, 3D Slicer, with the adequate registration 

plugin, was powerful but equally complex (28). 

In conclusion, we describe an open-source 3D printable frameless stereotaxic system 

that is suitable for both adult and young pigs, irrespective of their weight. This system 

was not designed to replace the already developed frame-based stereotaxic apparatus, but 

as an effective substitute for rapid and easy probe placement within sub-millimetric 

targets. While it was tested for ventricular access and recording of STN activity, the 

system is suitably flexible for radiofrequency lesioning or excitotoxin injections using an 

optimal path to the desired target (34). The technique and instrumentation may benefit 

future research within this species, and was designed to be easily duplicated with a low-

cost 3D printer using the models supplied. 
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Figure 1. Frameless swivel and base in 3D representation (A) and location (B) fixed on 

an adult obese minipig. Note the thickness of the skin. The sizes indicated in (C) are in mm. 

(D) Actual presentation of the tools used in the frameless system (the robotic mobile piece is 

not shown). 1. Reference frame to be placed under the chin. 1bis. Reference frame to be fixed 

on the skull at a distance from the burr hole. 2 Cannula tool with stop ring. 3 Coagulator tool. 

4. Mobile guide. 5. Swivel base. 6. Swivel locking screw. 

Figure 2. Actual procedure for ventriculography in an adult obese Yucatan miniature pig 

weighing 85 kg. (A) Position of the external reference markers on the skin and their 

registration with the CT counterpart. (B) Descent of the cannula tool. The cannula tool is 

depicted as a conical grey marker, the swivel base and mobile cannula holder are in green, the 

target is in red, and the cannula path is presented as a thin green line. The animal was placed 

in a non-symmetrical manner with the head slightly tilted to investigate the capability of the 

system to work with suboptimal positioning relative to the CT plane. 

Figure 3. Flowchart of the surgical procedure used to access the lateral ventricle or to 

record the neuronal activity from the STN. The red structure corresponds to the ventricular 

model. Note the green numbers/dots used for registration between the anatomical model and 

real-world space. The first insert was obtained with the NDI tracking software. 

Figure 4. Reconstruction of the theoretical volume (light blue) that can be explored after 

insertion of the frameless tool either in a piglet (left panel) or an adult miniature pig (right 

panel). The outlines of the skull were obtained after thresholding, projection of the actual CT 

images using Osirix, and further importation in Rhino Software. The contours of the brain 

were obtained from our pig brain atlas (5), and were coregistered using 3D slicer with the 

actual CT volume of the brain. A small gap between the brain and the skull reconstructions 

was introduced in the rendering to ease visualization. The diameter of the burr hole 

corresponded to the largest available drill from the surgical suppliers. The arrows indicate the 

sinuses. Note, in the adult pig, the posterior extension of the frontal sinuses engulfing the 

dorsal projection of the parietal and temporal cortices. 

Figure 5. Cannula positioned for ventriculography and radio-opaque underlining the left 

lateral ventricle. 

Figure 6. (A) Robotic tool for electrode insertion in a deep target such as the subthalamic 

nucleus (STN). The device includes a stepper motor the electronic control of which is 
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described in the Supplemental Material. The mobile element is designed to accommodate the 

guide tube of an FHC bipolar concentric electrode. (B) Extracellular recordings of the 

neuronal activity recorded during the descent of the electrode. The electrode path was 

selected to encounter, in sequence, the thalamus (a), the STN (b), and the substancia nigra (c). 

The middle traces are representative of STN neurons, the first trace is representative of 

thalamic neurons, and the last trace corresponds to the substancia nigra. The quiescent 

recording periods of transitioning between structures are not shown. 
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