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Abstract

We optimize a general model of bioprocesses, which is nonconvex due to the microbial
growth in the biochemical reactors. We formulate a convex relaxation and give conditions
guaranteeing its exactness in both the transient and steady state cases. When the growth
kinetics are modeled by the Monod function under constant biomass or the Contois
function, the relaxation is a second-order cone program, which can be solved efficiently
at large scales. We implement the model on a numerical example based on a wastewater
treatment system.

Keywords: Bioprocess; compartmental system; convex relaxation; second-order cone
programming; wastewater treatment.

1. Introduction

We optimize a model of dynamical bioprocesses consisting of a set of biochemical
reactors interconnected by diffusion and mass flow. The objectives include minimizing
substrate outflow, maximizing biogas production, and tracking setpoints. Within each
reactor, several microbial reactions convert any number of biotic or abiotic reactants
into biomass and/or products. This setup describes a variety of physical systems such as
wastewater treatment networks, the production of various chemicals, and compartmental
approximations of bioprocesses in continuous media. Here we focus on the case when the
kinetics can be represented by a second-order cone (SOC) constraint, as recently shown
in [1] for the Monod [2] and Contois [3] growth rates.

The most closely related topics to ours are chemical process optimization, control
and optimization of wastewater systems, and control of bioprocesses. Most existing
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approaches to process optimization [4] and wastewater [5] do not explicitly model the
microbial growth, and often use either linear programming or general nonlinear solvers.
There have been many applications of nonlinear control [6] and optimization [7] to bio-
processes, but not convex relaxations or second-order cone programming (SOCP).

Our main results are generalizations of those in [1], which focused on the gradostat
with a single reaction [8]. Here we allow for any number of substrates and biomasses,
general convex objectives, and multiple biochemical reactions. Our original theoretical
contributions are as follows.

• In Section 3, we formulate a convex relaxation for optimizing the trajectory and
steady state solution of a general bioprocess.

• In Section 4, we give conditions under which the relaxations are guaranteed to be
exact in both the transient and steady state cases.

To streamline exposition, the only external inputs to the model are the influent con-
centrations, e.g., biochemical oxygen demand and ammonia. Our main exactness results
straightforwardly apply when the flow rates are also variable, but the resulting bilineari-
ties make the problem nonconvex. This can be handled using techniques like disjunctive
programming, as in [1], or further convex relaxation, which we discuss at the end of
Section 2.5.

We apply our results in two examples. In Section 5.1, we show that our exactness
conditions simplify to those in [1] when specialized to the gradostat. In Section 5.2, we
optimize the allocation of sewage to three wastewater treatment plants over two weeks.
The relaxation is exact, and takes roughly twenty minutes to solve using SOCP [9].

2. Setup

2.1. Network modeling

The system consists of s well-mixed tanks interconnected by mass flow and diffusion.
We denote the set of tanks S. V ∈ R

s×s is a diagonal matrix in which Vii is the volume
of tank i. Tank i has water inlet flow rate Qin

i and outlet flow rate Qout
i . We let Qij

denote the flow from tank i to tank j. Let dij denote the diffusion between tanks i and
j, where dij = dji. Let C = diag

[

Qin
i

]

,

Mij =

{

Qji, i 6= j
−Qout

i −
∑

k∈S Qik, i = j
, Lij =

{

dij , i 6= j
−
∑

k∈S dik, i = j
,

and N =M + L. M and L are respectively compartmental and Laplacian matrices. M
is invertible if the network is outflow connected, which is to say that there is a directed
path from every tank to some tank with outflow [10]. Because L is negative semidefinite,
N is also invertible if M is outflow connected, and potentially even if M is not outflow
connected.

2.2. Microbial growth

We model the microbial growth in the tanks using the notation of Section 1.5 of [6].
There are m substrates and biomasses in each perfectly mixed tank. ξi ∈ R

m
+ is the

process state vector of tank i ∈ S, which contains the concentrations of the substrates
2



and biomasses, and ξini ∈ R
m
+ is the corresponding influent concentration vector. This

model is minimal in that ξ includes intermediary products, e.g., substrates produced by
one reaction and consumed by another, but not final products such as the CH4 ultimately
produced by anaerobic digestion.

There are r different types of reactions that convert substrates to other substrates
and biomasses. φi(ξi) ∈ R

r
+ is a vector of the reaction kinetics in tank i. We are

interested in the case where the elements of φi(ξi) are concave functions, and in particular
representable as SOC constraints. We show how to do this for Monod and Contois kinetics
later in Examples 2 and 3.

Let κi ∈ R
m×r be the stoichiometric matrix relating the reaction vector, φi(ξi), to

the evolution of the process state in tank i. The dynamics in tank i ∈ S are

Vii ξ̇i = Viiκiφi(ξi)−Qout
i ξi −

∑

j∈S

(Qij + dij)ξi +Qin
i ξ

in
i +

∑

j∈S

(Qji + dij)ξj .

The following example illustrates ξi and κi.

Example 1 (Two-step anaerobic digestion). There are two substrates, Sa
i and Sb

i , and

two biomasses, Xa
i and Xb

i . We let ξi =
[

Sa
i , S

b
i , X

a
i , X

b
i

]⊤
. Sa

i is converted to both Xa
i

and Sb
i at the rate µa (Sa

i )X
a
i . S

b
i is converted to Xb

i at the rate µb
(

Sb
i

)

Xb
i . Therefore,

φi(ξi) =

[

µa (Sa
i )X

a
i

µb
(

Sb
i

)

Xb
i

]

and κi =









−1 0
1 −1
1 0
0 1









.

We now write the dynamics in vector form. We suppress subscripts to represent
stacked vectors, i.e., ξ = [ξ1, ..., ξs]

⊤ and φ(ξ) = [φ1(ξ1), ..., φs(ξs)]
⊤. Let A ⊗ B denote

the Kronecker product of A and B, Iα ∈ R
α×α the identity matrix, and Â = A ⊗ Im.

Let K be a block diagonal matrix with κ1, ..., κs on its main diagonal. If κi = κ for all
i ∈ S, then K = Is ⊗ κ. The dynamics of the full system are given in vector form by

V̂ ξ̇ = V̂ Kφ(ξ) + N̂ξ + Ĉξin. (1)

We allow the dynamics to be non-autonomous, in which case N̂ , Ĉ, and ξin can be
time-varying.

2.3. Discretization in time

To make (1) compatible with finite-dimensional optimization, we replace the deriva-
tives with a numerical approximation, which we denote Dn. For example, in the case of
the implicit Euler method with time step ∆, Dn[ξ(·)] = (ξ(n) − ξ(n − 1))/∆. Dn could
also be a more sophisticated approximation such as a Runge-Kutta scheme [11]. The
time periods are indexed n ∈ N = {1, ..., τ}. We have

V̂Dn[ξ(·)] = V̂ Kφ(ξ(n)) + N̂(n)ξ(n) + Ĉ(n)ξin(n) (2)

for n ∈ N . The initial condition is ξ(0) = ξ0.

3



2.4. Objectives

We consider objectives of the form

F(ξ, T ) =
∑

n∈N

Fξ(ξ(n)) + Fφ(T (n)), (3)

where Fξ and Fφ are convex and T (n) = φ(ξ(n)). The following are examples.

• Minimizing the outflow of substrates,

Fξ(ξ(n)) =
∑

i∈S

Qout
i η⊤i ξi(n),

where ηi is a vector that selects the entries of ξi(n) corresponding to pollutants.

• The production of biogas in a tank is proportional to the kinetics that convert
substrates to biomass. Let σi ∈ R

m
+ be a vector that is only nonzero for entries

of Ti(n) corresponding to biogas production. Let M ⊆ S be the subset of tanks
that can capture biogas from anaerobic digestion. We maximize biogas through
the objective

Fφ(T (n)) = −
∑

i∈M

Viiσ
⊤
i Ti(n).

• Setpoint tracking,

Fξ(ξ(n)) =
(

ξ(n)− ξ̄
)⊤
A
(

ξ(n)− ξ̄
)

,

where A � 0 and ξ̄ is a desired operating point.

2.5. Problem statement

We aim to solve the following optimization problem.

P min F(ξ, T ) (4a)

such that T (n) = φ(ξ(n)), n ∈ N (4b)

V̂Dn[ξ(·)] = V̂ KT (n) + N̂(n)ξ(n) + Ĉ(n)ξin(n), n ∈ N (4c)
(

ξ, ξin, T
)

∈ Ω. (4d)

P models the optimization of a broad range of bioprocesses such as wastewater treatment.
We refer the reader to [6] for broad coverage of this topic.

A solution of P is a trajectory
(

ξ(n), ξin(n), T (n)
)

, n ∈ N . The flows and diffusions

between tanks, encoded by the matrices N̂(n) and Ĉ(n), are not decision variables. For
this reason constraint (4c) is linear. The set Ω in (4d) consists of linear constraints such as
the initial condition, total input matter, and maximum substrate concentrations; several
other examples are given in [1]. Note that Ω can constrain T (·) so as to allow constraints
on the growth without adding nonlinearities. The only nonconvexity is therefore (4b),
the growth constraint; this is the focus of the next two sections.

We note that in many applications, the flow rates are important decision variables.
They are parameters here because our focus is on incorporating the growth kinetics in
a convex fashion. In the case that the flow rates are variable, (4c) becomes bilinear and
hence nonconvex. There are several ways to handle the bilinearity, including
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• McCormick [12] and lift-and-project [13] relaxations;

• disjunctive programming reformulations if the flow variables are binary, as in [1];

• and finding a local minimum via nonlinear programming, e.g., exploiting the bi-
convex structure with the Alternating Direction Method of Multipliers [14].

All three of the above techniques are viable because, as described in the next section, we
have a tractable way to represent the growth constraint, (4b).

3. Convex relaxation

P is nonconvex because constraint (4b) is a nonlinear equality. One way around this
difficulty is to instead solve a convex relaxation of P , as in [1]. If all elements of the
vector φ(·) are concave functions, we obtain a convex relaxation by replacing (4b) with
the inequality

T (n) ≤ φ(ξ(n)), n ∈ N . (5)

We refer to the resulting optimization as PR. As mentioned earlier, we are interested in
the case where (5) is concave and, ideally, representable as an SOC constraint. Several
such examples are given below.

Example 2 (Contois growth). Suppose that there is a substrate of concentration S, a
biomass of concentration X, and the growth rate is Contois [3]. Then constraint (5)
takes the form

T (n) ≤
µS(n)X(n)

kCX(n) + S(n)
,

where µ and kC are constant parameters. As shown in [1], this is concave and can be
written as the SOC constraint

∥

∥

∥

∥

∥

∥





µS(n)
kCT (n)
µkX(n)





∥

∥

∥

∥

∥

∥

≤ µkCX(n) + µS(n)− kT (n). (6)

Example 3 (Monod growth with constant biomass). Consider Example 2, but now
suppose that the growth rate is Monod [2]. Then constraint (5) takes the form

T (n) ≤
µS(n)X(n)

kM + S(n)
.

This constraint is quasiconcave. It becomes concave if we assume that the biomass in each
time period is not an optimization variable, but an exogenous parameter, i.e., X(n) =
X̄(n) for n ∈ N . This approximation is often valid because the biomass concentration is
typically larger and varies more slowly than the substrate concentrations, and is therefore
relatively insensitive to the substrates. In this case, as shown in [1], it can be written as
the SOC constraint

∥

∥

∥

∥

∥

∥





µS(n)X̄(n)
kMT (n)
µkX̄(n)





∥

∥

∥

∥

∥

∥

≤ µkMX̄(n) + µS(n)X̄(n)− kT (n). (7)
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Example 4 (Interactive and non-interactive growth). Suppose the growth of the biomass
depends on two rates, µa(S(n), X(n)) and µb(S(n), X(n)), and the individual kinetics
constraints, T a(n) ≤ µa(S(n), X(n))X(n) and T a(n) ≤ µb(S(n), X(n))X(n), both have
SOC representations. The dependency often takes one of two forms: non-interactive,
min{µa(S(n), X(n)), µb(S(n), X(n))}, which in ecological modeling is known as Liebig’s
Law, and interactive, µa(S(n), X(n))µb(S(n), X(n)), which is common in models of bio-
processes.

The non-interactive case is enforced by the two individual kinetics constraints along
with T (n) ≤ T a(n) and T (n) ≤ T b(n). The interactive case is in general nonconvex, and
does not have an SOC representation. However, the geometric mean of the growth rates,
√

µa(S(n), X(n))µb(S(n), X(n)), does lead to an SOC representation. It is enforced by
the two individual kinetics constraints along with T (n)2 ≤ T a(n)T b(n). The latter is
hyperbolic, a type of SOC constraint [9].

4. Exactness

When (5) is satisfied with equality, PR is exact, i.e., has an optimal solution that also
solves P ; this is the ideal outcome. When (5) is not satisfied with equality, PR might still
provide a close approximation of P , but this is hard to guarantee. It is therefore useful
to have conditions, even if narrow, under which the exactness of PR is guaranteed.

For the rest of this section we let

Dn[ξ(·)] = (ξ(n) − ξ(n− 1))/∆,

which corresponds to the implicit Euler step. We assume that the only constraint speci-
fied by Ω in (4d) is an initial condition, ξ(0) = ξ0, and that ξin(·) is fixed; note that as
long as exactness holds for all feasible values of ξin(·), it holds when ξin(·) is a variable.
We also assume that strong duality holds for PR; this is a mild assumption that, e.g.,
holds as long as there is a feasible solution in which ξ(n) > 0 for all n ∈ N .

Let J (ξ(n)) ∈ R
rs×ms denote the Jacobian matrix of φ(·) at ξ(n). For convenience,

we define the following quantities:

Γ(n) =
1

∆

(

V̂ /∆− N̂(n)⊤ − J (ξ(n))⊤K⊤V̂
)−1

V̂

=
(

Ims −∆V̂ −1
(

N̂(n)⊤ + J (ξ(n))⊤K⊤V̂
))−1

Ω(n) = −∇Fφ(T (n))−∆K⊤V̂

τ
∑

k=n

(

k
∏

l=n

Γ(l)

)

V̂ −1
(

∇Fξ(ξ(k)) + J (ξ(k))⊤∇Fφ(T (k))
)

.

Observe that if ∆ is small enough, Γ(n) is positive definite and close to the identify
matrix.

Theorem 1. PR is exact if at an optimal solution, Ω(n) > 0 for all n ∈ N .

Proof. Let λ(n) ∈ R
ms and ρ(n) ∈ R

rs be the respective dual multipliers of constraints
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(4c) and (5) for n ∈ N . The Lagrangian of PR is

L = F(ξ, T ) +
∑

n∈N

ρ(n)⊤ (T (n)− φ(ξ(n)))

+ λ(n)⊤
(

V̂ (ξ(n− 1)− ξ(n))/∆+ V̂ KT (n) + N̂(n)ξ(n) + Ĉ(n)ξin(n)
)

.

Differentiating the Lagrangian by T (n) and ξ(n) and setting it to zero gives

−ρ(n) = ∇Fφ(T (n)) +K⊤V̂ λ(n), n ∈ N , (8a)

J (ξ(n))⊤ρ(n) = ∇Fξ(ξ(n)) −
(

V̂ /∆− N̂(n)⊤
)

λ(n) + V̂ λ(n+ 1)/∆, n ∈ N \ τ

(8b)

J (ξ(τ))⊤ρ(τ) = ∇Fξ(ξ(τ)) −
(

V̂ /∆− N̂(n)⊤
)

λ(τ). (8c)

We now solve for ρ(n). Premultiplying (8a) by J (ξ(n))⊤ and summing with (8b) and
(8c) gives

λ(τ) = ∆Γ(τ)V̂ −1
(

∇Fξ(ξ(τ)) + J (ξ(τ))⊤∇Fφ(T (τ))
)

,

and, for n ∈ N \ τ ,

λ(n) = ∆Γ(n)V̂ −1
(

∇Fξ(ξ(n)) + J (ξ(n))⊤∇Fφ(T (n))
)

+ Γ(n)λ(n+ 1).

Expanding the recursion yields

λ(n) = ∆

τ
∑

k=n

(

k
∏

l=n

Γ(l)

)

V̂ −1
(

∇Fξ(ξ(k)) + J (ξ(k))⊤∇Fφ(T (k))
)

.

We now substitute this into (8a) to obtain

ρ(n) = −∇Fφ(T (n))−∆K⊤V̂

τ
∑

k=n

(

k
∏

l=n

Γ(l)

)

V̂ −1
(

∇Fξ(ξ(k)) + J (ξ(k))⊤∇Fφ(T (k))
)

= Ω(n).

From here we can see that the conditions of the theorem guarantee that ρ(n) > 0 for all
n ∈ N .

Theorem 1 is of limited immediate use because we must know the optimal solution
of PR to test if Ω(n) > 0. It can however be used to derive sufficient conditions for
exactness that are easy to test. We now derive two such conditions that do not require
knowledge of the optimal solution.

For the rest of this section, assume that Fξ and Fφ are linear with gradients fξ ∈ R
ms

and fφ ∈ R
rs. In this case, we can write

Ω(n) =

−∆K⊤V̂

(

τ
∑

k=n

k
∏

l=n

Γ(l)

)

V̂ −1fξ −

(

Ims +∆K⊤V̂

τ
∑

k=n

(

k
∏

l=n

Γ(l)

)

V̂ −1J (ξ(k))⊤

)

fφ.
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We also assume that each element of the vector of reaction kinetics has bounded
slope, so that all entries of J (ξ(n)), n ∈ N , are bounded.

Let
Ψ(n) = V̂ −1N̂(n)⊤ + V̂ −1J (ξ(n))⊤K⊤V̂ .

The first term of Ψ(n) is negative semidefinite because N(n) is compartmental [10]. The
latter term is bounded by assumption, and as we will see in the examples, usually negative
semidefinite—we assume that this is the case. We therefore assume that the eigenvalues
of Ψ(n) are in the range [−ψ̄, 0], where ψ̄ > 0 is an upper bound on the magnitude. We
can use the push-through identity to write

Γ(n) = Ims +∆Ψ(n)(Ims −∆Ψ(n))−1.

The eigenvalues of the second term are in the range [−∆ψ̄, 0], and the eigenvalues of
Γ(n) are in the range of [1 −∆ψ̄, 1].

Corollary 1. If fφ = 0 and K⊤fξ < 0, then there exists a ∆ > 0 for which PR is exact.

Proof. (Sketch) Observe that
k
∏

l=n

Γ(l)

is equal to Ims plus terms that are norm-bounded by positive powers of ∆ψ̄. Similarly,

τ
∑

k=n

k
∏

l=n

Γ(l)

is equal to (τ − n+ 1)Ims plus terms that are norm-bounded by positive powers of ∆ψ̄.
We can make these terms arbitrarily small by choosing ∆ small. We therefore write

τ
∑

k=n

k
∏

l=n

Γ(l) ≈ (τ − n+ 1)Ims.

Because fφ = 0, we have that

Ω(n) ≈− (τ − n+ 1)∆K⊤fξ.

This is strictly positive for all n ∈ N if K⊤fξ < 0.

Corollary 2. If fξ = 0 and fφ > 0, then there exists a ∆ > 0 for which PR is exact.

Proof. (Sketch) Following the same logic as Corollary 1, we can choose ∆ > 0 such that

Ω(n) ≈

(

Ims −∆K⊤

τ
∑

k=n

J (ξ(k))⊤

)

fφ. (9)

The second term in the parentheses can be made arbitrarily small by choosing ∆ to be
small. In this case Ω(n) ≈ fφ, which is positive if fφ > 0.
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A shortcoming of Corollaries 1 and 2 is that they can be limited to short time intervals.
This is because if an interval is to remain constant, the number of time periods, τ ,
must increase as the step, ∆, decreases, and the approximations in the proofs of the
corollaries do not hold for increasing τ . On the other hand, these are conservative
sufficient conditions. For example, the second term in the parentheses of (9) will often be
positive semidefinite or nearly so. This is because it is typical forK to be lower triangular
with a negative diagonal and for J (ξ(n)) to be nonnegative and nearly diagonal. We
therefore expect that exactness will sometimes hold for larger ∆ over longer time intervals.

We view these theoretical results not as a complete characterization of when exactness
is guaranteed, but rather as evidence that PR is exact for a meaningful set of problems,
and as guidance as to how to identify them. While there are certainly problems of
interest for which their conditions do not hold, PR may nonetheless provide a useful and
sometimes perfect approximation.

4.1. Steady state

It may be of interest to optimize (1) in steady state, e.g., when the solution does not
change significantly on the timescale of interest, to find the best operating point, or to
reduce the number of variables. We obtain a steady state optimization by dropping the
time index and replacing the finite difference in (4c) with zero. The resulting (relaxed)
optimization is:

PRS min F(ξ, T ) (10a)

such that T ≤ φ(ξ) (10b)

0 = V̂ KT + N̂ξ + Ĉξin (10c)
(

ξ, ξin, T
)

∈ Ω. (10d)

We remark that, in general, a solution to PRS is not guaranteed to be an equilibrium
of (1). One special case in which guarantees do exist is the gradostat, which we discuss
in Example 5.1. We refer the reader to [1] for a brief summary.

Theorem 2. PRS is exact if the network is outflow connected and at the optimal solution,

0 <

(

Ims +K⊤V̂
(

N̂⊤
)−1

J (ξ)⊤
)−1(

K⊤V̂
(

N̂⊤
)−1

∇Fξ(ξ)−∇Fφ(T )

)

.

Proof. The Lagrangian of PRS is

L = F(ξ, T ) + ρ⊤ (T − φ(ξ)) + λ⊤
(

V̂ KT + N̂ξ + Ĉξin
)

.

Differentiating the Lagrangian and setting it to zero gives

0 = ∇Fφ(T ) + ρ+K⊤V̂ λ

J (ξ)⊤ρ = ∇Fξ(ξ) + N̂⊤λ.

We now solve for ρ. N̂ is invertible due to outflow-connectedness. Then

λ =
(

N̂⊤
)−1

(

J (ξ)⊤ρ−∇Fξ(ξ)
)

,

9



and

0 = ∇Fφ(T ) + ρ+K⊤V̂
(

N̂⊤
)−1

(

J (ξ)⊤ρ−∇Fξ(ξ)
)

.

Solving, we have

ρ =

(

Ims +K⊤V̂
(

N̂⊤
)−1

J (ξ)⊤
)−1(

K⊤V̂
(

N̂⊤
)−1

∇Fξ(ξ)−∇Fφ(T )

)

.

By complementary slackness, PRS is exact when ρ > 0.

As in the latter part of the previous section, we now assume that Fξ and Fφ are linear
with gradients fξ ∈ R

ms and fφ ∈ R
rs.

Corollary 3. Suppose that for all ξ ≥ 0,
(

Ims +K⊤V̂
(

N̂⊤
)−1

J (ξ)⊤
)−1

≥ 0,

and

K⊤V̂
(

N̂⊤
)−1

fξ − fφ ≥ 0.

If at least one of the inequalities is strict, then PRS is exact.

Like Theorem 2, Corollary 3 depends on the optimal solution, but to a lesser extent.
Whereas Theorem 2 depends on ξ and T through the objective and J (ξ), Corollary 3
only depends on ξ through J (ξ). This is more manageable because J (ξ) is often positive
and nearly diagonal. For example, if we assume assume that biomass is constant and all
growth rates are Monod, as in Example 3, then J (ξ) is positive on the diagonal and zero
elsewhere.

5. Examples

5.1. The gradostat

The gradostat is a special case of (1) where in each tank i ∈ S, a single substrate, Si, is
converted to a single type of biomass, Xi. The conversion occurs at the rate φi(Si, Xi)/y,
where y is the yield. Then ξi = [Si, Xi]

⊤ and κi = [−1/y, 1]⊤. In [1], several examples
are given in which the gradostat is optimized over time and in steady state.

Here we first apply Corollary 1 to the gradostat. Suppose Fξ(ξ(n)) = f⊤
S S(n) +

f⊤
XX(n). In this case, Corollary 1 holds if −fS/y + fX < 0. When dealing with the
decontamination of undesirable substrates, we do not seek to minimize biomass, in which
case fX = 0 and the condition is satisfied if fS > 0.

We now apply Theorem 2 to the gradostat in steady state. Let JS(ξ) ∈ R
r×s be the

Jacobian matrix of φ(ξ) with respect to S, and let JX(ξ) ∈ R
r×s be the Jacobian matrix

of φ(ξ) with respect to X . PRS is exact if

(

Is + V
(

N⊤
)−1 (

−JS(ξ)
⊤/y + JX(ξ)⊤

)

)−1 (

K⊤V
(

N⊤
)−1

∇Fξ(ξ)−∇Fφ(T )
)

> 0.

It is straightforward to verify that when Fξ(ξ) = 0, this condition directly implies The-
orem 1 in [1]. Similarly, we obtain Corollary 1 in [1] if we specialize Corollary 3 to the
gradostat.
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5.2. Wastewater treatment

In this example, we optimize an idealized wastewater treatment system consisting of
three wastewater treatment plants of the city of Paris and its suburbs. The model is
based on that in [15, 16], and the influent data from the Inf rain 2006 dataset of [17].
We implemented the model using the parser CVX [18] and the solver Gurobi [19] on a
personal computer from 2014 with a 1.4 GHz dual-core processor.

In the present study, the flow rates are considered constant and given by Qin
1 =

0.1 m3/s, Qin
2 = 0.4 m3/s, and Qin

3 = 0.2 m3/s. All tanks have volume 1000 m3.

In each plant i ∈ S, the state vector ξi =
[

ξBOD
i , ξ

NH
+

4

i , ξ
NO

−

2

i , ξ
NO

−

3

i

]⊤

∈ R
4 consists of

biochemical oxygen demand, ammonia nitrogen, nitrite, and nitrate. The biomass in each
time period is assumed to be an exogenous parameter, and therefore not a component
of the process state. This is an admissible assumption in the sense that the biomass
concentration is typically much slower than that of the other process components, and
has a larger amplitude.

In each tank i ∈ S, the elements of the process state have kinetics φBOD
i , φ

NH
+

4

i , φ
NO

−

2

i ,

and φ
NO

−

3

i . All assume Monod growth rates with parameters given in Table 1, which
comes from Table 1 in [20]. Because the biomass is constant, the growth kinetics can be
represented as SOC constraints in PR. The stochiometric matrix for each plant i ∈ S is

Parameter Plant 1 Plant 2 Plant 3
µBOD (1/day) 3.99 2.56 1.93

µNH
+

4 0.84 0.83 0.89

µNO
−

2 1.68 1.27 0.92

µNO
−

3 1.21 1.38 0.85
KBOD (mg/L) 13.67 11.65 14.26

KNH
+

4 6.59 14.98 8.53

KNO
−

2 2.46 1.15 2.55

KNO
−

3 1.40 2.69 4.20

yNH
+

4
,NO

−

2 0.28 0.25 0.27

yNO
−

2
,NO

−

3 0.68 0.64 0.70

Table 1: Growth function parameters

κi =











−1 0 0 0
0 −1 0 0

0 1/y
NH

+

4
,NO

−

2

i −1 0

0 0 1/y
NO

−

2
,NO

−

3

i −1











.

We used the implicit Euler method, Dn[ξ(·)] = (ξ(n) − ξ(n − 1))/∆, with the stepsize
∆ = 1, which corresponds to 15 minutes. There are τ = 1345 time periods, so that the
total time is two weeks. The boundary condition is ξ(0) = ξ(τ). This could represent
periodic operation, or exogenous conditions that are similar from week to week.

The process state must satisfy ξBOD
i (n) ≤ 150 mg/L and ξ

NH
+

4

i (n) ≤ 60 mg/L for each
i ∈ S and n ∈ N . Without these constraints, most of the substrate would be directed
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to Plant 1, which is more efficient than the others. This constraint could represent, for
example, regulatory limits on the pollution released by the plants.

In each time period, fixed quantities of BOD and NH+
4 , Ξ

BOD(n) and ΞNH
+

4 (n), must
be allocated over the treatment plants. These quantities are based on the Inf rain 2006

dataset of [17], which covers 1345 15-minute intervals. ΞBOD(·) is set to SS (readily

biodegradable substrate), and ΞNH
+

4 (·) to SNH (NH+
4 and NH3 nitrogen) in [17]. The

allocation is represented by the linear constraints

ΞBOD(n) =
3
∑

i=1

Qin
i (n)ξBOD,in

i (n)

ΞNH
+

4 (n) =
3
∑

i=1

Qin
i (n)ξ

NH
+

4
,in

i (n),

for each n ∈ N . The other influent concentrations are ξ
NO

−

2
,in

i (n) = 3 and ξ
NO

−

3
,in

i (n) =
10 for i ∈ S and n ∈ N .

The plant biomass concentrations are set to X̄i(n) = 100
(

1 + (−1)i sin(10πn/τ)
)

for
i ∈ S and n ∈ N . Observe that this has larger magnitude and varies slower than the
other influents.

For each i ∈ S and n ∈ N , the optimization variables are ξi(n), ξ
BOD,in
i (n), and

ξNH4,in
i (n). The objective is to minimize the untreated wastewater released by the plants,
given by

∑

n∈N

∑

i∈S

Qout
i η⊤i ξi(n),

where we note that Qout
i = Qin

i , and ηi = [2, 2, 0.3, 0.1, 0]⊤. This objective was chosen
to satisfy Corollary 1. Note, however, that the result does not fully apply due to the
boundary condition, ξ(0) = ξ(τ), and the upper limit on the process state.

The convex relaxation PR contains 145272 variables (in standard form) and took 17
minutes to solve. The 18 solver iterations accounted for only four seconds, and the rest of
the time was used for preprocessing. Despite not fully satisfying Corollary 1, the solution
was exact in all time periods.

Figures 1 and 2 respectively show the optimal influent allocation, ξin(·), and the
resulting plant effluent concentrations, ξ(·), between hours 175 and 275. The slower
variation of the biomass dominates that of the diurnal variation in the Inf rain 2006

dataset, leading to concentration increases whenever the biomass influent into each plant

is high. There is a spike in ΞBOD(·) and ΞNH
+

4 (·) around hour 250. This causes ξBOD
i (·),

and ξNH4
i (n) to hit their concentration limits in Plants 1 and 3. When this happens, the

remainder is allocated to Plant 2, which has little biomass at the time, and hence cannot
transform the substrates as efficiently.

6. Conclusion

We have formulated a convex relaxation for optimizing a broad class of bioprocesses.
We proved that the relaxation is exact under simple conditions, and implemented it on
a wastewater treatment example with over one hundred thousand variables. We believe
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Figure 1: ξin(·) from hour 175 to 275. The units are mg/L.

that a wide range of problems can be approached in this manner due to the generality
of the model and the tractability of SOCP.

One direction of future work is dealing with inexactness. Two options are deriving
general convex underestimators to limit the relaxation gap, as in [1], and finding local
minima of the non-relaxed problem. In particular, the concave-convex procedure [21] is
well-suited to the nonconvexity encountered here and would entail solving a sequence of
SOCPs. We also intend to incorporate new elements into the model such as biomass
death and recirculation, and to apply the relaxation in other contexts such as enzymes,
where Michaelis-Menten kinetics [22] have the same form as Monod kinetics.
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Figure 2: ξ(·) from hour 175 to 275. The units are mg/L.
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