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Abstract

Aim: Tree mortality is increasing worldwide,  leading to  changes in forest composition and altering

global biodiversity. Yet, due to the multi-faceted stochastic nature of tree mortality, large-scale spatial

patterns of mortality across species ranges and their underlying drivers remain difficult to understand.

Our main goal is to describe the geographical patterns and drivers of the occurrence and intensity of

tree mortality  in Europe.  We hypothesize that  the occurrence of mortality  represents background

mortality and is higher in the margin than the core populations, whereas the intensity of mortality

could have a more even distribution according to the spatial and temporal stochasticity of die-off

events. 

                                 

Location: Europe (Spain, France, Germany, Belgium, Sweden and Finland)

Time period: 1981 to 2014. 

Major taxa studied: More than 1.5 million trees belonging to 20 major forest tree species 

Methods:  We develop hurdle models to tease apart the occurrence and intensity of tree mortality in

National Forest Inventory plots at range-wide scale. The occurrence of mortality indicates that at least

one tree has died in the plot and the intensity of mortality refers to the number of trees dead per plot. 

                                                                                                             

Results:  The highest mortality occurrence was found in peripheral regions and the climatic trailing

edge linked with drought, whereas the intensity of mortality was driven by competition, drought and

high temperatures and was uniformly scattered across species ranges. 

Main conclusions:  Our findings provide a new perspective in our understanding of tree mortality

across species ranges. We show that tree background mortality but not die-off is generally higher in

the trailing edge populations, but whether other demographic traits such as growth, reproduction and

regeneration  would  also  decrease  at  the  trailing  edge  of  European  tree  populations  needs  to  be

explored.  

Keywords:  Tree  mortality,  National  Forest  Inventory,  drought,  climatic  edges,  European forests,

hurdle models, background mortality, die-off mortality                  
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1 INTRODUCTION

Tree mortality is occurring worldwide (Allen, Breshears, & McDowell, 2015; IPCC, 2014; McDowell

et al., 2018).  Tree mortality can change forest community, ecosystem dynamics and function, and

hence alter biodiversity (McDowell et al., 2008).  Yet, tree mortality remains difficult to predict at

large spatial scales (Hartmann et al., 2018) because it is a multi-faceted, stochastic process (Franklin,

Shugart,  & Harmon,  1987).  Background tree mortality  is  a phenomenon that  generally  occurs  in

individual trees  (Hartmann et al., 2018) and is defined as the local mortality rate in the absence of

catastrophic events (Csilléry, Seignobosc, Lafond, Kunstler, & Courbaud, 2013; Franklin et al., 1987;

McDowell  et  al.,  2018).  It  is  a  complex  process  driven  by  the  combination  of  climate,  forest

composition, trees interactions and age (Cailleret et al., 2017; Hülsmann, Bugmann, & Brang, 2017;

Ruiz-Benito, Lines, Gómez-Aparicio, Zavala, & Coomes, 2013).  In contrast, die-off mortality is a

local phenomenon where many trees die together in the same environment (Bugmann et al., 2019;

Mueller-Dombois,  1987).  Die-off  mortality  has  been  related  to  heatwaves  and  climate  warming

including extreme localized events, disturbances or environmental conditions such as intense drought,

storms or fire (Allen et al., 2010; Breshears et al., 2005; McDowell, 2008), and is exacerbated by pest

and disease outbreaks (Anderegg et al., 2015; Kurz et al., 2008). 

Climate change, especially increases in the number and duration of drought events, has been linked to

increases in both background mortality rates and the extent of die-off events (Allen et al., 2015; Allen

et al., 2010; Benito Garzón, Ruiz-Benito, & Zavala, 2013). However, identifying the drivers of die-

off and background mortality along large environmental gradients remains challenging because tree

sensitivity to biotic and abiotic factors depends on the species identity (Ruiz-Benito et al., 2013), their

age (Hülsmann et al., 2017) and their ecological strategies (Benito Garzón et al., 2018; Ruiz-Benito et

al., 2017; Archambeau et al., 2020). 
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In the context of climate change, we could expect an increase of mortality in trailing edge populations

due to increased drought and rising temperatures (Benito Garzón et al., 2013; Carnicer et al., 2011;

Purves, 2009; Young et al., 2017).  However, very little is known about the differential drivers of

background tree mortality and die-off events at large geographical scales, and both  processes can

occur throughout the species ranges, in the leading edge, the trailing edge and the core of the species

ranges (e.g. Jump, Mátyás, & Peñuelas, 2009; Allen et al. 2010; Greenwood et al. 2017).  Although,

we could expect  higher  background mortality  at  the  margins  than at  the core of the distribution

(Neumann, Mues, Moreno, Hasenauer, & Seidl, 2017), and most intense events of mortality evenly

distributed across species ranges (Allen et al., 2015; Allen et al., 2010; Jump et al., 2009; Jump et al.,

2017).

Here, we analyze tree mortality  of 20 major forest tree species from more than 1.5 million trees

recorded  in  the  National  Forest  Inventories  from  Spain,  France,  Germany,  Belgium  (Wallonia),

Sweden and Finland to understand their patterns along species distribution ranges. We assume that

the occurrence of mortality found in a plot reflects background mortality whereas the intensity of tree

mortality found in a plot reflects die-off events. We develop hurdle models of mortality occurrence

and intensity to understand the effect of climatic marginality defined as areas exhibiting the highest or

the lowest values of several climatic variables and its interaction with drought. The aims of our study

are  to  i)  identify  the  underlying  drivers  of  mortality  occurrence  and intensity  and how they are

influenced by the marginality of the population, and ii) to evaluate tree mortality occurrence and

intensity patterns across species distribution ranges. We hypothesize that marginal populations will

have higher occurrence of mortality than core populations, and that the intensity of mortality will

show a patchy distribution over spatial range reflecting the stochastic nature of die-off events.

2 MATERIAL & METHODS
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 2.1 National Forest Inventory harmonization

We used  mortality  records  and  stand  variables  from National  Forest  Inventories  (NFIs)  of  five

countries (Spain, Germany, Finland, Sweden, Wallonia (Belgium)) (harmonized in FunDivEUROPE;

(Baeten et al., 2013)) and the French National Forest Inventory (harmonized in Archambeau et al.,

2020).  The French NFI has temporary  plots recorded between 2005 and 2014 whereas the other

countries have permanent plots sampled several years apart, ranging from 1981 to 2011 (Supporting

Information  Table  S1).  Data from the six NFIs  together  cover  a  latitudinal  gradient  from 36° N

(Spain) to 70.05° N (Finland). 

2.2 Plot-level tree mortality recorded from NFI

We used individual tree mortality data for 20 major forest tree species, gathering a total of 1,649,850

trees and 235,394 plots (Supporting Information Table S2) varying from 10 to 263 cm (mean = 28)

diameter at breast height (DBH; cm) and with a mean census intervals of 10.7 years ranging from 2

(29 plots) to 20 years (46 plots).  Mortality occurrence was calculated as a binary variable, with zero

when all trees were alive in the plot and one when at least one tree died in the plot during the census

interval. Mortality intensity was calculated in each plot as the percentage of trees that died between

the first and second inventory in the NFIs with permanent plots, divided by the number of years

between census and calculated at the hectare level. In the French NFI tree mortality per plot was

calculated as the percentage of trees that died within the five years before sampling in the temporary

plot. We removed plots with trees recently recorded as harvested or managed between consecutive

inventories and individual trees under 100 mm DBH to make the tree measurements consistent across

country with different DBH thresholds (Table S1). 

To avoid the potential bias caused by the different years of NFIs campaigns and the different size of

the plots between the NFIs (Table S1), we upscaled tree mortality from plot to hectare per year using

a weighted index provided by each NFI and dividing this value by the number of years between
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campaigns for NFI with repetitive measurements or by five for the French NFI, where mortality was

estimated for five years (Supporting Information Table S3). The weighted index reflected the size of

the  plot  or  the  density  of  the  grid  or  both  depending  on  the  country  (Table  S1  and

http://project.fundiveurope.eu/). 

2.3 Model predictors

2.3.1 Indexes of climatic marginality and climatic areas 

We determined the distribution range of each species using information available from Caudullo,

Welk, & San-Miguel-Ayanz (2017) or EUFORGEN (http://www.euforgen.org/). Within each range

we  characterised  the  climate  using  a  Weighted  Principal  Component  Analysis  (WPCA,  Benito-

Garzón, Leadley, & Fernández-Manjarrés, 2014) based on 21 climatic variables averaged over the

2000-2014 time period at each point in a 1 x 1 km pixel size grid (Supporting Information Table S4).

The WPCA was calculated using 10,000 randomly selected points within each species ranges. The

variance explained by the two first axis of the WPCA ranged from 71.53% to 87.42% for  Fagus

sylvatica and Larix decidua, respectively, Supporting Information Table S8). Based on the weighted

scores of the two first WPCA axis we defined three climatic groups: core, transition and marginal

regions (Supporting Information Figure S1 and Table S5). Species-specific thresholds for attributing

the core (C), climatic marginal (M) and transition (T) areas were calculated based on the WPCA

scores (Table S2): values from 0 to 60% were attributed to core areas, values between 60 and 80 %

are transition areas and values higher than 80% are marginal areas. 

To further separate climatic marginal areas (M) into climatic trailing edge (TE) for the southernmost

one  and  climatic  leading  edge  (LE)  for  the  northernmost,  we  used  a  Discriminant  Principal

Component  Analysis  (DPCA)  and  an  attribution  test  to  check  whether  individual  points  were

successfully reassigned in their attributed group based on the discriminant functions (Jombart, 2008;

Figure S1). 
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Finally, NFI plots were linked with the WPCA scores and classified as core (C), leading or trailing

edge (LE and TE) accordingly. Plots lying in the transition region (T) were not used in the analysis

(Supporting Information Table S2 and Figures S1,S2).

                                                   

2.3.2 Climatic data                                                                                                           

We characterised  the  long-term climate  of  each  plot  with  eight  climate  variables.  To  make  the

variables comparable between different survey dates and countries, we averaged them over the last 30

years prior to the first survey (hereafter climatic variables; Table S4) (Fréjaville & Benito Garzón,

2018). The eight variables included four temperature-related variables and four precipitation-related

variables  that  were  uncorrelated  and  that  have  been  shown  to  have  an  effect  on  tree  mortality

(Archambeau  et  al.,  2020;  Benito  Garzón  et  al.,  2018;  Ruiz-Benito  et  al.,  2017):  annual  mean

temperature  (bio1),  maximal  temperature  of  the  warmest  month  (bio5),  winter  mean temperature

(tmean.djf),  autumn mean temperature (tmean.son)  (temperature  variables)  & annual  precipitation

(bio12), precipitation of the wettest month (bio13), precipitation of the driest month (bio14), annual

water balance (precipitation minus potential evapotranspiration (ppet.mean) (Table S4).

 In addition,  we used the Standardized Precipitation Evapotranspiration Index (SPEI v.2.5 (2017)

(http://  hdl.handle.net/10261/104742).  SPEI is a multi-scalar drought index where negative values

indicate drier conditions over the timescale considered (from 3 to 48 months), relative to median

values for a long-term reference period (from 1901 to 2015) (Vicente-Serrano, Beguería, & López-

Moreno, 2010). For each month during the time interval between inventory campaigns, we used 1901

to 2015 as a reference period and calculated SPEI monthly index considering a period of 12 months

relative to our reference period. For each plot and based on these monthly data, we calculated the

annual  means  and extracted  the  minimum and mean values  for  this  time period  (hereafter  SPEI

variables; Table S4).
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2.3.3 Stand and competition variables 

All stand variables were calculated using NFI data, transformed where necessary to meet the model

assumptions of normality (Supporting Information Table S6): total basal area increment (BAIj, m2 ha

yr-1), calculated as the difference in basal area between two inventory periods for all NFIs except

France where five years cores were used; mean basal area increment (meanBAI j, m2 ha yr-1  ); mean

diameter  at  breast  height  (DBH, mm),  tree density  calculated as the number of trees  per hectare

(treenumber, No. trees ha-1); total (BA, m2 ha-1) conspecific stand basal area (estimated as the basal

area of all individuals of the species in the plot, BAcon, m2 ha-1) and heterospecific stand basal area

(estimated as basal area of all individuals excluding the studied species) (BAhetero, m2 ha-1).

The DBH, BAIj,  meanBAIj and treenumber were included in the model as proxies of the average age

(DBH),  growth  and  tree  density  in  the  plot  because  they  are  known to  influence  tree  mortality

(Hülsmann et al., 2017; Vanoni, Cailleret,  Hülsmann, Bugmann, & Bigler, 2019). The number of

years between surveys (yearsbetweensurvey) was also included in the model to account for mortality

probability  increases  with  elapsed  time.  We used BA,  BAcon and BAhetero  as  proxies  of  total

competition, intraspecific and interspecific competition (Kunstler et al., 2016).

                                                                                            

2.4 Statistical analyses

2.4.1 Selection of climatic and competition covariates in the mortality models

For each species, we ran 48 competing occurrence of mortality models. In each model we included

the climatic marginality as a qualitative variable (i.e. the core, leading or trailing edge of each plot),

the  five  stand covariates,  and the  minimum and mean  SPEI indexes.  We added all  the  possible

combinations of one precipitation-related, one temperature-related and two competition variables. We

included all  interactions  between marginality,  the two SPEI indexes,  the  two competition-related

variable and the two climate variables (Table S7).

We  included  both  precipitation-  and  temperature-related  variables  to  the  models,  in  addition  to

marginality,  because  they  could  vary  within  the  species  margins  and thus  capture  variations  not
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accounted by marginality variable. The collinearity between precipitation- and temperature-related

variables  and marginality  were assessed using variation  inflation  factors (Supporting  Information

Table S8a,b).                                          

2.4.2 Statistical models of mortality

We used species-specific  hurdle  models  to  handle  the  zero-inflated  distribution  of  tree  mortality

(Ruiz-Benito et al.  2017; Benito Garzón et al.  2018; Archambeau et al.  2020). Consequently, we

analyzed separately the mortality occurrence between two census (0/1 = at least one tree is dead in the

plot/ all trees are alive in the plot) and the intensity of mortality in plots where mortality occurs (the

proportion of trees dead in the plot, Young et al., 2017).  Firstly, mortality occurrence was analyzed

with  the  binomial  part  of  the  hurdle  model  (Y 1i=1,  table  S3)  where  pi is  the  probability  of

occurrence of a mortality event in an individual plot i during the census interval. We used a binomial

GLMM  with  a  logit link  (BIN  model)  to  estimate  the  parameters  of  the  species-specific  linear

function  η1 i, sp (Hülsmann et al., 2017):

Y 1i=1∼Bin (n , pi )

logit ( pi )=η1i , sp

Secondly, we analyzed the intensity of mortality as the annual rate of mortality in plots where at least

one tree was recorded as dead (Y 2i, Table S3) with zero truncated negative binomial mixed-effect

models in the second part  of the hurdle model (NB model),  Y 2iwhere  μi is the mean number of

mortality events per year per hectare and k is the inverse of the dispersion (Y 2i∼NB (μi ,k )). We used

NB models with a log link to estimate the parameters of the species-specific linear function η2 i ,sp:

Y 2i∼NB (μi ,k )

log (μi )=η2 i

 Functions η1 i, sp and η2 i ,sptake the same general form:
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ηi ,sp=α 0+∑
h=1

16

βh xhi , sp+∑
n=1

21

γn x, sp z, sp+αcountry , sp+ε i , sp+bsp

Where  α 0is  an  intercept  term,  α country ,sp is  the  random country  intercept  to  account  for  sampling

differences between each NFI and follows a Gaussian distribution α country ,s p∼N (0 , σαcountry ,sp

2
); ε i , spis the

residual error following a Gaussian distribution (ε i , sp∼ N (0, σ ε
2 )

); b sp is an autocorrelation spatial effect that follows a Matérn distribution (b sp∼Mat é rn (ν sp , ρsp )

, where ν sp is the smoothness and ρspthe shape, Supporting Information Figure S3). βhis the regression

coefficient  for  the  hth  of  16  fixed  effect  predictorsx sp(including  5  stand  covariates,  2  climatic

variables and their respective quadratic effect, 2 drought-related (SPEI) variables and their respective

quadratic  effect,  2  competition  variables  and  marginality,  see  details  below  and  in  Supporting

Information Tables S4, S6 and S7) and  γnthe regression coefficient of the  nth interaction between

fixed effect  predictors  x sp and  zsp (including all  interactions  between climatic  variables,  drought-

related variables, competition variables and marginality).

 

α country ,sp ∼N (0 ,σ αcountry , sp

2
)

ε i , sp∼ N (0, σ ε
2 )

b sp∼Mat é rn (ν sp , ρsp )                                                              

2.4.5 Model selection

To select the most parsimonious model, we applied the following procedure for each species: 

(1) We calculated the Variance Inflation Factor (VIF) for all 48 possible combinations of variables

and removed combinations with VIF > 10 (Dormann et al.,  2013; Table S8a,b);  (2) We ran BIN

models including each remaining combinations of variables and selected the combination with the
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best predictive ability using the AIC (AIC < 2) and the log H-likelihood (largest values;Lee & Nelder,

2018); (3) We fitted an NB model including the same variables as those in the BIN model with the

best predictive ability. (4) We used a stepwise approach for both the BIN and NB models (i.e. we

removed the least significant variable to fit a new model) to obtain the most parsimonious models.

All models were fitted with the SpaMM package (Rousset, Ferdy & Courtiol, 2016; Table S6) under

the R version 3.6.1.                                                                     

2.4.6 Model validation

The goodness-of-fit  was evaluated  with the area under the curve (AUC) for BIN models (Hurst,

Allen, Coomes, & Duncan, 2011) and with cross-validation for the NB models (models were fitted on

66% of the data while the remaining 33% were used to validate the predictions, Table 1). 

The percentage of the variance explained by BIN and NB models was estimated by the marginal and

conditional R-squared including fixed-effect and fixed plus random effects, respectively (Nakagawa

& Schielzeth, 2013). The proportion of change in explained variance between full and null model

(PCV) indicates the variance retained by the selected model. All these metrics were calculated from

the SPAMM objects using a personal script adapted from the piecewise Package (Lefcheck, 2016)

according  to  Nakagawa  methodology  (Nakagawa  &  Schielzeth,  2013,  Nakagawa,  Johnson  &

Schielzeth, 2017).

2.4.7 Comparison of spatial predictions and climatic marginality

We used the selected models to predict mortality occurrence and intensity across the range of NFI

plots.  To  visually  inspect  the  differences  in  the  climatically  marginal  populations,  we  split  the

predicted values into three groups based on the quartiles, to indicate high, medium and low levels of

mortality (Figure 3 and Supporting Information Tables S9, S10). 

To statistically test for heterogeneity in the distribution of the predicted probability among the three

areas (core, leading edge and trailing edge), we compared the predicted distribution (Figure 3) against
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the expected distribution under the assumption of no spatial structure in mortality occurrence (null

hypothesis)  with  a  χ-square  test.  Under  the  null  hypothesis,  we  expected  the  distribution  to  be

uniformly  distributed  within  the  three  areas  (25%  of  the  values  in  each  quartile)  (Supporting

Information Figure S4a). P-values < 0.05 indicate that predicted mortality was different than expected

under the null hypothesis. The same approach was used to test for patterns across the three areas in

predicted mortality intensity (Supporting Information Figure S4b).  

3 RESULTS

3.1 Climatic marginality across species ranges

The variables that contributed the most in defining the core, trailing and leading areas were the annual

evapotranspiration for 10 out of the 20 species, the maximum temperature of the warmest month for

four species and annual precipitation for four species (Table S5). Marginal areas (leading and trailing

edges) were therefore areas exhibiting the highest or the lowest values for these climatic variables.

We observed that our climatic marginality did not systematically match with the commonly used

geographic  marginality (northern  part  of  species  distribution  corresponding  to  the  geographical

leading edge, and southern part to the geographical trailing edge), particularly in the mountainous

areas which were included in the climatic leading edge for most species although they were mostly

located in the central part of the range (geographical core) (Figure S2). 

3.2 Underlying drivers of occurrence and intensity of tree mortality

Overall, the occurrence of mortality was mostly located at the trailing edge and related to drought

whereas  the intensity  of mortality  was related  to multiple  drivers  at  the trailing  edge and to the

warmest  temperature  at  the  leading  edge.  Bigger  trees  (likely  to  be  older  trees)  showed  higher

occurrence of mortality than smaller ones whereas intensity of mortality was similar across sizes (and

therefore ages). 
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The variance explained by BIN models ranged from 6% for  Acer pseudoacacia to 46% for  Pinus

pinaster and the AUC ranged from 0.769 for Quercus ilex to 0.850 for Acer pseudoplatanus (Table

1). The variance explained by NB models ranged from 13% for Castanea sativa to 48% for Fraxinus

excelsior  and the  cross-validation  scores  ranged from 0.256 for  Quercus  pyrenaica  to 0.735 for

Betula pendula. Accounting for spatial autocorrelation (SAC) in the models improved the capacity of

generalization of the three models (i.e. from 25.61% to 57.54% for Quercus pyrenaica, Table 1). 

Competition-related  variables  (stand basal  area  of  the species  and stand basal  areas  of  the  other

species at the plot) were the most frequently significant variables in BIN and NB models (significant

in 13 out of 20 species for interspecific competition and 10 species for intraspecific competition, see

estimated coefficients and their standard error in Supporting Information Table S11a,b and frequency

in Table S12a,b). Precipitation, temperature and SPEI variables were retained in BIN models for 16,

11 and 12 species respectively and in NB models for 11, 8 and 9 species (estimated coefficients and

their standard error of the associated coefficient in Table S11a,b and frequency in Table S12a,b).

Climatic  marginality  was significant  in the BIN model in 5 species in the trailing edge and in 7

species in the leading edge; and it was also significant in NB models in 3 species in the trailing edge

and in 7 species in the leading edge (magnitude and standard error of the associated coefficient are

shown in Table S11a,b and frequency in Table S12a,b).

The average age of the plot (meanDBH) was significant in explaining both occurrence and intensity

of mortality (positive association in 14 species and 11 species respectively) meaning that larger (and

therefore older) trees were more affected by mortality. Average growth rate of the species of the plot

(meanBAIj) was also significant in both models (negative associations in 18 species for BIN models

and 7 in NB models) meaning that older plots (with the lowest average growth) are more likely to
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experience mortality. Tree density (treenumber) was positively associated in both models (14 and 12

species  respectively  for  BIN  and  NB  models).  The  number  of  years  between  surveys

(yearsbetweensurvey) was also significant  in explaining both the mortality  occurrence probability

between two census (6 species, BIN model) and the intensity of mortality (15 species, NB model)

(Magnitude and standard error of the associated coefficient in Table S11a,b and frequency in Table

S12a,b)

Interactions  between marginality  and SPEI variables  were the  most  frequent  in  BIN models  (17

significant  interactions,  9  at  the trailing  edge and 7 at  the leading edge)  whereas the  interaction

between climatic marginality and temperature-related variables was the most frequent in NB models

(12 significant interactions, 3 at the trailing edge and 9 at the leading edge) (Supporting Information

Table S11c,d).  When drought  conditions  in  the studied period were higher  than in  the  reference

period (lower values of mean SPEI), predicted tree mortality occurrence probability (BIN models)

was higher  in  marginal  than core areas,  particularly  at  the  trailing  edge (for both temperate  and

Mediterranean species  Abies alba,  Picea abies,  Pinus sylvestris, Castanea sativa Pinus pinea  and

Pinus nigra, Figure 1a-f). Under drier conditions than those experienced in the reference period (i.e.

negative  SPEI values),  the highest  probability  of  mortality  was found in the  core area  for  some

temperate (Populus tremula, Quercus robur, Betula pendula (Supporting Information Figure S5a-c)

and Mediterranean species (Pinus halepensis and Quercus pyrenaica (Supporting Information Figure

S5d and Table S12c).

In addition to drought, a few species also showed the highest tree mortality probability during the

time between surveys at the climatic margins when precipitation were low or when temperatures were

high. This was the case for the temperate species Fagus sylvatica and Fraxinus excelsior (Supporting

Information Figure S6a and Table S12c) and the Mediterranean species Pinus pinaster and Quercus

suber (Supporting Information Figure S6b-c).
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The intensity of mortality (NB models) for the temperate species A.alba, B.pendula, F.sylvatica and

P.abies was generally higher in the trailing edge than in the core but not always associated with low

SPEI. It was associated with various variables as competition, lower SPEI, warmer temperatures or

lower  precipitation  than  in  the  core,  depending  on  the  species  (Figure  2a-c  and  Supporting

Information Figure S7a). In addition, a strong effect of high temperatures was observed in leading

edge areas.  Under high temperatures,  both temperate  (F.excelsior,  Quercus petraea  and Q.robur,

Figure 2d-f) and Mediterranean species (Quercus ilex, P.halepensis, P.nigra and P.pinea; Supporting

Information Figure S7b-c and Table S12d) showed more intense predicted mortality at the leading

edge than in the core areas. Also,  P.tremula populations are more likely to show high intensity of

mortality at the core of its distribution when drought in the studied period was higher than in the

reference period (lower values of mean SPEI) (Table S12d).

                                                 

3.3   Spatial patterns of occurrence and intensity of mortality across tree species ranges

The predicted probability of mortality occurrence (BIN models) was the highest in the trailing edge

part of the range for eight temperate (Alnus glutinosa, Betula pendula, Picea abies, Pinus .sylvestris,

Populus  tremula, Fagus  sylvatica, Quercus  robur,  Q.  petraea)  and  three  Mediterranean  species

(Quercus  ilex,  Q.pyrenaica,  Castanea  sativa)  (Figure  3  and  S4a).  None  of  the  species had  a

significantly higher probability of mortality occurrence in the core than in the margins, while two

temperate species (P.abies and P.sylvestris) had lower probability of occurrence of mortality in the

core than expected under the assumption of uniformity across the species range (Figure 3 and S4a).

Four temperate species (Alnus glutinosa,  Pinus sylvetris,  Populus nigra,  Quercus robur) and four

Mediterranean  species  (Castanea  sativa,  Pinus  nigra,  P.  pinea and  Quercus  ilex)  had  a  lower

probability of occurrence of mortality in the leading edge part of their range than the core (Figure 3

and S4a). We did not find any spatial patterns in the intensity of mortality (NB models) in temperate

species.  However, the highest predicted intensity of mortality was at the leading edge part of the
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species range for 6 Mediterranean species (P.halepensis,  P.nigra,  P.pinaster,  P.pinea,  Q.pyreneica,

Q.suber) (Figure 3 and S4b)

                                                                        

Only six species  showed similarities  between the occurrence and intensity  of predicted mortality

(Figure 3): Castanea sativa, Quercus robur and Quercus ilex showed the lowest values of both types

of predicted mortality at their leading edge whereas Acer pseudoplatanus displayed the lowest values

at the trailing edge; the predicted intensity and occurrence of mortality predictions for Quercus ilex

showed  the  highest  values  at  the  trailing  edge.  Picea  abies showed  the  lowest  predictions  of

occurrence and intensity  of mortality  in the core of the distribution and  Pinus pinaster predicted

mortality of both types was highest at the leading edge. 

4 DISCUSSION                            

4.1 Drivers of occurrence and intensity of tree mortality across European tree ranges 

Our results  are in agreement  with previous studies showing that  the combination of drought and

competition  exacerbate  the  probability  of  mortality  occurrence  (Ruiz-Benito  et  al.  2013,  Young,

2017) (Tables S11a, S12a), while intense events are driven by multiple factors (including drought and

competition) (Anderegg et al., 2015; Jump et al. 2017; Seidl et al., 2017; Wood, Knapp, Muzika,

Stambaugh, & Gu, 2018). As expected, the most intense mortality events were associated with low

precipitation and high temperatures, the latter only for half of the species (Tables S11b, S12b). This

may be explained by the synergic effects of low precipitation and warm temperatures with insect

outbreaks (not included in our models) that may end into die-off events (Anderegg et al., 2015; Kurz

et al., 2008; McDowell et al., 2011; Wood et al., 2018).
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The importance of drought for the occurrence of mortality was higher in marginal populations that

experienced drier than average conditions during the study period, suggesting that these populations

are the most vulnerable to climate warming (Figure 1a-f and S6a-c). Although in exceptional cases,

the highest level of relative drought was more detrimental for core than marginal populations (Figure

S5a-d).  Interestingly, high temperatures at the leading edge were correlated with the most intense

events of mortality for many species, whereas the combination of drought and climatic marginality

was less important in mortality intensity than occurrence (Figure 2d-f and S7b-c). Other studies have

already observed an increase in background mortality in mild climates and at the northern margin of

species ranges associated with warm temperature (Ruiz Benito et al. 2013; Neuman et al. 2017). The

less important role of drought in explaining intensity of mortality could be explained by the time lag

between stressful conditions and mortality responses, making it complicated to detect such small-time

scale effects (Jump et al., 2017). We found a larger effect of competition on intensity of mortality at

the  trailing  edge  than  at  the  core  in  temperate  species  (Figure  2a-c  and  S7a),  which  could  be

explained by the presence of more competitive and less prone to hydraulic risk Mediterranean species

reaching their leading edge (Benito Garzón 2013, 2018).

4.2 Placing tree mortality at large geographical gradients 

Mortality is an important component of demography and as such, its geographical patterns can be

used to describe demographic and ecological differences of the core versus the peripheral populations

(Purves,  2009;  Pironon  et  al.,  2017). We showed  that  the  occurrence  of  mortality  is  greater  in

climatically  marginal  regions  than  at  the  climatic  core  of  the  species  ranges. Furthermore,  plots

containing largest trees (higher DBH classes) and trees with the lowest growth rate (lower meanBAIj)

were often associated  with high mortality  occurrence probability,  suggesting that  oldest  trees  are

more likely to die (Vanoni et al., 2019; Hülsmann et al., 2017; Cailleret et al., 2017) (Table S11a).  

The  predicted  probability  of  mortality  occurrence  was  the  highest  in  the  trailing  edge  for  most

temperate species and the lowest in the leading edge for half of the Mediterranean species (Figure 3
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and S4a). This suggest that the Mediterranean-temperate ecotone is a hotspot of forest composition

changes, as previously suggested on the European gradients of water availability (Ruiz-Benito et al.

2017). Furthermore, in Mediterranean species, mortality occurrence was more likely to be higher in

the trailing edge than in the core under intense drought (Figure 1d-f), suggesting that the southern part

of the species ranges can be delimited by drought-induced mortality  (Benito-Garzón et  al.,  2013;

Benito Garzón et al., 2018; Gárate-Escamilla, Hampe, Vizcaíno-Palomar, Robson, & Benito Garzón,

2019; Kunstler et al., 2016). This result also highlights that drought increases in southern Europe are

boosting background mortality in the last years (Benito Garzón et al., 2018; Carnicer et al., 2011;

Druckenbrod et al., 2019; Neumann et al., 2017; Ruiz-Benito et al., 2013).

Conversely, the most intense events of mortality are evenly distributed in the European extent studied

(Allen et al., 2015; Allen et al., 2010; Jump et al., 2009; Jump et al., 2017) and they are not related

with old trees (DBH classes) or slow growth (meanBAIj) (Table S11b), suggesting they can affect all

class of trees age and size as expected for die-off events. As such, die-off mortality can be affected by

other important factors such as large competition (Young et al. 2017), pest emergence, fires etc. and

result in unexpected demographic patterns. (Jump et al., 2017).

4.3 Limitations and perspectives

Although recently managed forests have been removed from our analysis according to management

information  in  forest  inventories  (Ruiz-Benito  et  al.  2020),  further  legacy  effects  for  which  no

information is available could affect mortality (Clark, Bell, Hersh, & Nichols, 2011; Csilléry et al.,

2013,  Young 2017).  In  addition,  disturbance  magnitude  and duration  could  have  contrasting  lag

effects and the differences in the time lag between surveys in our data can result in large uncertainties

(Druckenbrod et al., 2019). 
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Our findings  provide a  new perspective  to study tree mortality  in forests  from NFI data  as both

demographic and stochastic processes are exacerbated to some extent by drought stress but also by an

interaction of climatic drivers that change across species ranges.  
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Figure  1:  Effect  of  the  interaction  between  drought  (mean  SPEI  index)  and  marginality  on  predicted  mortality
occurrence per plot (expressed as a probability) across the core (black lines), trailing (red lines) and leading edge (blue

lines) of three temperate species: a)  Abies alba,  b)  Picea abies,  c)  Pinus sylvestris; and three Mediterranean – warm
temperate  species:  d)  Castanea  sativa,  e) Pinus  pinea,  f) Pinus  nigra.  Predictions  within  the  ranges  of  the

environmental gradients covered by the species are shown by solid colors and extrapolations outside the environmental
gradients covered by the species are shown in transparent colors. For the case of Castanea sativa our data did not cover

the leading edge of the species. T-values of the main effects interacting with marginality are reported. 

                                                          



Figure 2: Effect of the interaction between climatic variables on the predicted intensity of mortality across the core
(black lines),  trailing (red lines)  and leading edge (blue lines)  of  six  temperate  species:  a)  Abies  alba,   b) Betula

pendula, c) Fagus sylvatica, d) Fraxinus excelsior, e) Quercus petraea, f) Quercus robur), expressed as the proportion
(°/°°), by year and by plot. Predictions within the ranges of the environmental gradients covered by the species are shown

by solid colors and extrapolations outside the environmental gradients covered by the species are shown in light colors.
T-values of the main effects interacting with marginality are reported.

                                                                            



Table  1:  Statistical  evaluation  of  occurrence  and  intensity  of  mortality  models,  by  species.  Species:  Name of  the
species. Code: Code used for each species Model: model type: Occurrence, intensity or intensity of mortality model

including  spatial  autocorrelation  (intensity  +  SAC  -  Spatial  Autocorrelation  -).  R2M:  Marginal  r-squared.  R2C:
conditional r-squared. PCVObs: proportion change in variance between null model and fixed effect model (in %). COG:

capacity of generalization. AUC (Area Under the Curve) for mortality occurrence models and CV (Cross Validation
score) for intensity of mortality models.                                                                                     

Species
               

Code Model R2M R2C PCVObs COG
(AUC/CV)

Abies alba Mill. ABIALB Occurrence 0.13 0.42 -1.98 0.82

Acer pseudoplatanus L. ACEPSE Occurrence 0.06 0.2 -9.25 0.85

Alnus glutinosa (L). Gaertn. ALNGLU Occurrence 0.2 0.26 -1.45 0.81

Betula pendula Roth. BETPEN Occurrence 0.09 0.34 -5.55 0.83

Castanea sativa Mill. CASSAT Occurrence 0.21 0.56 -1.18 0.82

Fagus sylvatica L. FAGSYL Occurrence 0.11 0.12 -3.55 0.82

Fraxinus excelsior L. FRAEXC Occurrence 0.07 0.38 -5.59 0.84

Picea abies (L.) H.Karst. PICABI Occurrence 0.15 0.19 -1.68 0.78

Pinus halepensis Mill. PINHAL Occurrence 0.22 0.22 -1.46 0.80

Pinus nigra J.F.Arnold. PINNIG Occurrence 0.19 0.24 -1.74 0.81

Pinus pinaster Aiton. PINPINA Occurrence 0.46 0.46 -0.52 0.85

Pinus pinea L. PINPIN Occurrence 0.24 0.24 -1.2 0.81

Pinus sylvestris L. PINSYL Occurrence 0.22 0.26 -1.17 0.80

Populus nigra L. POPNIG Occurrence 0.19 0.46 -1.39 0.84

Populus tremula L. POPTRE Occurrence 0.12 0.24 -2.83 0.82

Quercus ilex L. QUEILE Occurrence 0.12 0.37 -2.98 0.77

Quercus petraea Liebl. QUEPET Occurrence 0.13 0.36 -2.63 0.83

Quercus pyrenaica Willd. QUEPYR Occurrence 0.17 0.17 -2.04 0.79

Quercus robur L. QUEROB Occurrence 0.28 0.52 -1.37 0.83

Quercus suber L. QUESUB Occurrence 0.15 0.15 -1.2 0.77

Abies alba Mill. ABIALB Intensity 0.2 0.5 0.31 0.58

Acer pseudoplatanus L. ACEPSE Intensity 0.21 0.92 0.7 0.51

Alnus glutinosa (L). Gaertn. ALNGLU Intensity 0.39 0.44 0.4 0.53

Betula pendula Roth. BETPEN Intensity 0.42 0.66 0.53 0.73

Betula pendula Roth. BETPEN Intensity + SAC 0.42 0.71 0.6 NA

Castanea sativa Mill. CASSAT Intensity 0.13 0.78 0.38 0.57

Fagus sylvatica L. FAGSYL Intensity 0.23 0.46 0.25 0.37

Fraxinus excelsior L. FRAEXC Intensity 0.46 0.46 0.52 0.64

Fraxinus excelsior L. FRAEXC Intensity + SAC 0.48 0.52 0.51 NA

Picea abies (L.) H.Karst. PICABI Intensity 0.22 0.41 0.33 0.57



Pinus halepensis Mill. PINHAL Intensity 0.26 0.26 0.33 0.60

Pinus nigra J.F.Arnold. PINNIG Intensity 0.2 0.41 0.32 0.32

Pinus pinaster Aiton. PINPINA Intensity 0.29 0.29 0.38 0.62

Pinus pinea L. PINPIN Intensity 0.24 0.34 0.3 0.56

Pinus sylvestris L. PINSYL Intensity 0.27 0.51 0.35 0.57

Populus tremula L. POPTRE Intensity 0.29 0.29 0.34 0.59

Quercus ilex L. QUEILE Intensity 0.26 0.48 0.35 0.40

Quercus petraea Liebl. QUEPET Intensity 0.29 0.77 0.4 0.57

Quercus pyrenaica Willd. QUEPYR Intensity 0.26 0.26 0.32 0.26

Quercus pyrenaica Willd. QUEPYR Intensity + SAC 0.26 0.26 0.29 0.57

Quercus robur L. QUEROB Intensity 0.26 0.38 0.33 0.61

Quercus suber L. QUESUB Intensity 0.33 0.33 0.34 0.73



Figure 3: First and third columns show the predicted mortality occurrence (GLMM) and second and fourth columns are
the  predicted  intensity  of  mortality  (ZTNBGLMM)  for  the  twenty  species.  Blues  dots  correspond  to  mortality

predictions values lower than the first quartile (lowest values), green dots represent values ranging from the first to the
third quartile (medium values) and red dots represent values higher than the third quartile (highest values) (Table S10).

Light grey areas display species distribution ranges.     



                                              


