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Abstract

Clothianidin is a second-generation neonicotinoid insecticide, widely used against sap-suck-

ing insect pest including melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). This

pest causes severe economic damage to Cucurbitaceae plants worldwide. In this study, we

investigated clothianidin resistance development under continuous selection pressure.

Moreover, the age-stage, two-sex life table approach was used to evaluate the impact of

clothianidin resistance on the fitness of A. gossypii. A clothianidin resistant strain (CT-R)

with a 23.17-fold resistance level was developed from a susceptible strain (CT-S) after con-

tinuous selection for 24 generations. Life table results showed a significant reduction in the

relative fitness (0.847) of CT-R strain compared to the CT-S strain of A. gossypii. The devel-

opmental duration, oviposition days, total pre-oviposition period (TPOP), longevity, and

fecundity of CT-R strain were found to be significantly lower when compared to CT-S strain.

The demographic parameters, including the intrinsic rate of increase (r), finite rate of

increase (λ), net reproductive rate (R0), and mean generation time (T) were also significantly

decreased in CT-R strain compared to the CT-S strain. Both the reproductive and survival

rates were affected by clothianidin resistance in CT-R strain compared with the CT-S strain

of A. gossypii. Overall, our results demonstrate that in-depth knowledge about the trade-off

at play between resistance degree and fitness cost might be useful to design resistance

management strategies against A. gossypii.

Introduction

The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is an economically important

insect pest, affecting Cucurbitaceae plants worldwide [1]. Aphis gossypii causes severe eco-

nomic losses by direct feeding i.e., deforming the young leaves and twigs and indirectly by

transmitting several plant viruses [1, 2]. Various control methods were used [3–5], but still,

synthetic chemical insecticides are considered crucial to combat aphids [6–8], despite negative
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effects on beneficial insects [9–14]. However, the indiscriminate applications of chemical

insecticides cause resistance development in insect pests, including A. gossypii [15–20].

Neonicotinoid insecticides, including clothianidin, have been widely used against several

insect pests [8, 19, 21–24]. Neonicotinoids act as an agonist of nicotinic acetylcholine receptors

(nAChRs), causing nerve stimulation, paralysis, and death [25–27]. Owing to stomach and

contact insecticidal activity, neonicotinoids are considered one of the most widely used insecti-

cide group against several insect pests including aphids, whiteflies, jassids, leafminers, thrips,

monarch butterfly and many species of beetles (Coleoptera: Curculionidae) [8, 15, 28–36].

Clothianidin is a second-generation neonicotinoid insecticide broadly used for controlling

aphids [8, 26, 31]. The resistant populations of A. gossypii suffer adverse effects on life history

traits in the absence of the insecticide [8]. The LC15 of clothianidin affects the longevity, fecun-

dity, and demographic parameters (R0 and GRR) of A. gossypii [8]. Acetamiprid is also a neoni-

cotinoid insecticide widely used against several sap-sucking insect pests, including A. gossypii.
[21, 37–40]. Both the longevity and fertility of A. gossypii were decreased when exposed to the

LC5 and LC15 concentrations of acetamiprid [21].

Fitness cost affects insecticide resistance evolution and the rate of resistance increase in

insects [41, 42]. Resistance costs energy and that may influence fitness in the absence of the

insecticide stressor [42]. Prior studies showed evidence about the fitness costs associated with

insecticide resistance in several insects including Bradysia odoriphaga Yang and Zhang (Dip-

tera: Sciaridae), Thrips hawaiiensis Morgan (Thysanoptera: Thripidae), Plutella xylostella, Lin-

naeus (Lepidoptera: Plutellidae), Nilaparvata lugens Stål (Hemiptera: Delphacidae) N. lugens
and Musca domestica Linnaeus (Diptera: Muscidae). Ma et al. reported fitness costs of 0.917 in

the sulfoxaflor resistant population of A. gossypii compared to the susceptible strain [43]. The

relative fitness had also been decreased up to 0.83 in the sulfoxaflor resistant strain of Myzus
persicae Sulzer (Homoptera: Aphididae) [44]. The life-history traits of B. odoriphaga have sig-

nificantly been affected in clothianidin and chlorfenapyr resistant populations compared to

the susceptible strain [15, 45]. Several studies have reported the development of insecticide

resistance accompanied by fitness costs in different insect pests [15, 46–49].

To our knowledge, no study to date has examined selection-induced clothianidin resistance

development accompanied with fitness costs in A. gossypii. The overall goal of this work was to

analyze the risk of clothianidin resistance in A. gossypii under continuous selection pressure.

To examine the impact of clothianidin resistance on fitness, we used the age-stage two-sex life

table approach to accurately quantify the life history traits of resistant (CT-R) and susceptible

(CT-S) strains of A. gossypii. This gives an in-depth knowledge about the optimal application

of clothianidin insecticides against A. gossypii.

Materials and methods

Insects and insecticide

Aphis gossypii were initially collected from melon plants at Weifang City, Shandong Province,

China. The population was maintained under standard laboratory conditions (25 ± 1˚C; 75%

RH; 16:8 L: D) at China Agricultural University using insecticide-free cucumber plants. Tech-

nical grade clothianidin (95% of the active ingredient) was purchased from Bayer CropScience

Co. Ltd (Monheim, Germany). Triton X-100 was obtained from Sigma-Aldrich Co. Saint

Louis, USA.

Ethics approval

No ethics approval was required for this research.
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Toxicity of clothianidin against A. gossypii
The bioassays of clothianidin were conducted under laboratory conditions using the leaf-dip-

ping procedure. The stock solution of clothianidin was prepared in acetone, and further dilu-

tion was set up in distilled water containing 0.05% (v/v) Triton X-100. Cucumber leaf discs

were dipped in the required diluted concentrations of clothianidin or in 0.05% (v/v) Triton X-

100 water as a control for 15 s. The treated discs were allowed to dry on the disposable trans-

parent plastic gloves and then placed the adaxial side of leaf discs on 2% (w/v) agar bed (2 ml)

in a 12-well cell culture plate. Twenty adult melon aphids were placed on each leaf disc, and

Chinese art paper (Xuan rice paper) was used to cover the plate to prevent the aphid’s escape.

There were three leaf disks for each concentration, and the entire experiment was repeated

three times for a total of 180 aphids tested at each concentration. The mortality was recorded

at 72 h after treatment. The LC50 values of clothianidin were calculated by probit analysis

using POLO Plus 2.0 statistical software.

Establishing the resistant colony

The resistant strain of clothianidin (CT-R) was established from an originally collected suscep-

tible population of A. gossypii through continuous selection pressure for 24 generations. The

acute toxicity of clothianidin was recorded for each generation. Based on the results of the bio-

assays of the parent aphids, the clothianidin concentrations were gradually increased through-

out the selection experiment. The mortality rate was maintained at 60–80%. The resistance

ratio (RR) was determined at each generation by dividing the LC50 of resistant strain to the

LC50 of the susceptible strain of A. gossypii. The susceptible strain (CT-S) was maintained on

cucumber plants without any pre- or post-exposure of clothianidin. Both strains were kept

under standard laboratory conditions (25 ± 1 ˚C; 75% RH; 16:8 L: D) in the Department of

Entomology, China Agricultural University, Beijing, China.

Fitness comparisons

Fitness of the susceptible and resistant strains of A. gossypii was compared using age-stage,

two-sex life table approach. About 500 apterous adults were inoculated to insecticide-free

cucumber seedlings. After 24 h, ninety newly born nymphs of A. gossypii were collected from

both susceptible and resistant populations. Both strains were transferred to insecticide-free

cucumber seedlings and were maintained separately under laboratory conditions. Each indi-

vidual aphid growing on one insecticide-free cucumber seedling was considered as a single

replicate [8, 19]. Nymphs from both populations were observed individually and we recorded

development duration, mortality, longevity, and fecundity. The life table data of susceptible

(CT-S) and resistant (CT-R) strains of A. gossypii were subjected to the TWOSEX-MSChart

computer program [50] to analyze the population parameters including age-stage specific sur-

vival rates (sxj), age-specific survival rate (lx), age-specific fecundity (mx), age-specific mater-

nity (lxmx), age-stage specific life expectancy (exj) and age-stage reproductive value (vxj)

following age-stage two-sex life table procedure [51]. The sxj shows the probability that a newly

born nymph will survive to age x and stage j. The lx represents a simplified form of the survival

history and the probability that a newly-born nymph will survive to age x. The mx indicates the

age-specific fecundity, while the lxmx shows age-specific maturity. The vxj depicts the devotion

to future offspring for A. gossypii individuals of at age x and stage j. The exj describes the

expected duration of time an individual of age x at stage j that will survive after the age x. The

newly born nymphs produced by females during the reproductive period were counted and

removed daily. Fresh cucumber seedlings were replaced after 5 days without any insecticide
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exposure throughout the experiment. The aphids were individually transferred to new seed-

lings using a soft brush.

Statistical analysis

The age-stage two-sex life table procedure was applied to analyze the developmental duration,

adult longevity, and fecundity for all individual aphids using the TWOSEX-MSChart com-

puter program [50–53]. The population parameters including the intrinsic rate of increase (r),
finite rate of increase (λ), net reproductive rate (R0), mean generation time (T), gross repro-

duction rate (GRR), adult pre-oviposition period (APOP), total pre-oviposition period

(TPOP), oviposition days (Od), age-stage specific survival rates (sxj), age-specific survival rate

(lx), age-specific fecundity (mx), age-specific maternity (lxmx), age-stage specific life expectancy

(exj) and age-stage reproductive value (vxj) were investigated following Chi and Liu [52] and

Chi [53] using TWOSEX-MSChart computer program [50]. The means and standard errors of

the population parameters between CT-S and CT-R strains were analyzed using paired boot-

strap tests via 100,000 bootstrap replicates [51, 54, 55]. All figures were constructed using Sig-

maPlot 12.0 (Systat Software Inc., San Jose, CA, USA).

Results

Clothianidin resistance development

The clothianidin resistant strain (CT-R) was established from the susceptible strain (CT-S)

through continuous exposure with clothianidin for 24 generations under controlled conditions

(Table 1).

The LC50 value of the CT-S was 0.38 mg L−1. In the first 10 generations (F2-F10) of the

CT-R population, the LC50 values were slowly increased from 0.52 mg L−1 to 2.23 mg L−1.

However, these values were steeply increased in the following generations (F12-F24) with

LC50 values 2.79, 3.52, 4.47, 5.56, 6.78, 7.72, and 8.76 mg L−1, respectively. After the selection

Table 1. The resistance level of Aphis gossypii to clothianidin.

Generations LC50 (95%CI)a mg L-1 Slope ± SEb χ2 P-value RRc

F0 0.38 (0.28–0.49) 1.95±0.24 16.50 0.223 -

F2 0.52 (0.41–0.66) 1.62 ± 0.21 3.02 0.998 1.38

F4 0.86 (0.67–1.16) 1.55 ± 0.22 2.40 0.999 2.27

F6 1.29 (1.00–1.86) 1.61 ± 0.23 2.49 0.999 3.43

F8 1.55 (1.27–1.92) 2.02 ± 0.24 3.51 0.995 4.09

F10 2.23 (1.73–3.15) 1.55 ± 0.22 2.92 0.998 5.91

F12 2.79 (2.33–3.38) 2.25 ± 0.28 4.12 0.990 7.39

F14 3.52 (2.88–4.50) 1.94 ± 0.25 2.62 0.999 9.31

F16 4.47 (3.83–5.17) 2.94 ± 0.45 7.62 0.868 11.83

F18 5.56 (4.72–6.79) 2.38 ± 0.34 3.22 0.997 14.70

F20 6.78 (5.76–8.54) 2.63 ± 0.42 2.46 0.999 17.93

F22 7.72 (6.42–9.26) 2.15 ± 0.23 2.56 0.999 20.43

F24 8.76 (6.95–11.06) 1.65 ± 0.21 3.25 0.997 23.17

Number of larvae exposed in bioassay, including control = 360; df = 13.
a 95% confidence intervals.
b Standard error.
c RR, resistance ratio, determined as (LC50 of resistant strain/LC50 of susceptible strain).

https://doi.org/10.1371/journal.pone.0238707.t001
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for 24 generations, the resistance ratio was increased (23.17-fold) compared to the CT-S strain

(Table 1).

Impact of clothianidin resistance on the life history traits of A. gossypii
The life-history traits, including developmental time, longevity, fecundity, and oviposition

days between clothianidin resistant (CT-R) and susceptible strains (CT-S) of A. gossypii are

presented in Table 2. The mean developmental durations of 1st instar, 3rd instar, and 4th instar

nymph of CT-R strain was significantly shorter than that of the CT-S aphids (P<0.001). The

pre-adult period, adult duration, and total pre-oviposition period (TPOP) were significantly

shorter in CT-R strain compared to the CT-S strain (Table 2). No significant differences were

observed for the adult pre-oviposition period (APOP) between both strains of A. gossypii. The

oviposition days, total longevity and fecundity were significantly lower in CT-R strain of A.

gossypii (P<0.05).

The demographic traits (r, λ, R0, T, and GRR) of CT-R and CT-S strains of A. gossypii were

evaluated by a paired bootstrap technique based on the life table (Table 3). When compared to

CT-S strain, the r and λ of CT-R strain were significantly increased (P<0.001). While the R0,

T, and GRR in CT-R strain were markedly decreased as compared to the CT-S strain of A. gos-
sypii (Table 3). In the absence of insecticide exposure, the overall fitness of clothianidin-resis-

tant strain (CT-R) of A. gossypii was 0.847 as compared to the susceptible strain (CT-S).

The sxj shows the probability of neonate nymph that will survive to age x and stage j. The

overlaps among different stages occurred due to the stage differentiations between CT-R and

CT-S individuals (Fig 1). The sxj curves show apparent differences, with a lower survival rate of

nymphal and adult female stages in CT-R strain compared to the CT-S strain. The adult female

survival rate of CT-R strain started to decline on 10th day, while decline occurred on 12th day

in CT-S strain (Fig 1).

The lx, mx and lxmx differences among CT-R and CT-S strains are presented in Fig 2. The lx
curves show a lower survival rate of CT-R strain at the age of 12–32 days compared to the

CT-S strain of A. gossypii (Fig 2). The maximal survival duration of CT-R strain was 32 days,

Table 2. Mean (± SE) life history parameters of the susceptible (CT-S) and resistant (CT-R) strains of Aphis gossypii.

Stages Susceptible strain (CT-S) Resistant strain (CT-R) 95% CI c P-value

n a Mean ± SEb n a Mean ± SEb

First instar nymph (days) 90 1.99 ± 0.07 90 1.61 ± 0.08 (0.170, 0.585)� <0.001

Second instar nymph (days) 89 1.63 ± 0.08 89 1.51 ± 0.07 -0.091, 0.339) 0.258

Third instar nymph (days) 87 1.72 ± 0.09 85 1.33 ± 0.07 (0.173, 0.616)� 0.001

Fourth instar nymph (days) 86 1.92 ± 0.06 83 1.54 ± 0.09 (0.170, 0.583)� <0.001

Pre-adult (days) 86 7.28 ± 0.10 83 6.01 ± 0.08 (1.014, 1.521)� <0.001

Adult (days) 86 19.16 ± 0.48 83 16.17 ± 0.57 (1.528, 4.461)� <0.001

APOP (days) 86 0.23 ± 0.05 83 0.25 ± 0.06 (-0.178, 0.137) 0.798

TPOP (days) 86 7.51 ± 0.11 83 6.27 ± 0.10 (0.950, 1.544)� <0.001

Oviposition days 86 19.41 ± 1.16 83 14.41 ± 0.51 (2.459, 7.536) � <0.001

Total longevity (days) 90 25.46 ± 0.68 90 20.77 ± 0.75 (2.692, 6.686)� <0.001

Fecundity (offspring/individual) 86 41.38 ± 0.96 83 36.35 ± 1.15 (2.081, 7.988)� 0.001

a Number of subjects.
b Standard errors (SE) were estimated using the bootstrap technique with 100,000 re-samplings.
c Difference between strains were compared with paired bootstrap test. If the CI includes 0, there is no difference at 5% level.

� Significant differences between resistant strain (CT-R) and susceptible strain (CT-S) at P = 0.05 level, paired bootstrap test using TWOSEX MS chart program.

https://doi.org/10.1371/journal.pone.0238707.t002
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which was lower than that of the CT-S strain (34 days). The mx and lxmx values in CT-R strain

was decreased after 18th day, which shows lower fecundity as compared to the CT-S strain

(Fig 2). In the first 12 days, values of mx and lxmx for CT-R strain were higher as compared to

CT-S strain; however, after that, this trend has been reversed, and CT-R strain displayed lower

fecundity as compared to the CT-S strain (Fig 2). The exj curves in CT-R strain show the

shorter survival expectancy of the developmental as well as adult stage compared to the CT-S

strain of A. gossypii (Fig 3). The vxj shows the devotion of individuals of age x and stage j

towards future offspring (Fig 4). The pattern of vxj was recorded lower for the CT-R strain as

compared to the CT-S of A. gossypii (Fig 4).

Discussion

Chemical applications are still crucial for the control of A. gossypii in China [6, 56–58].

Clothianidin belongs to second-generation neonicotinoid insecticide that acts as an agonist

of the nicotinic acetylcholine receptors (nAChRs) [27]. Due to excellent insecticidal activity,

clothianidin has been broadly used against many insect pests including hemipterans and many

species of beetles [8, 28–33]. However, the insecticidal actions have been dramatically affected

by the development of insecticide resistance [15, 43, 45]. There have been numerous studies to

investigate the development of insecticide resistance against various pests such as Chive mag-

got, Colorado potato beetle, small brown plant hopper, western flower thrips, peach aphid and

tobacco aphid [15, 45, 59–62]. The resistance development accompanied by fitness costs signif-

icantly affect the evolution of insecticide resistance [43, 45]. To our knowledge, no previous

research has investigated the development of clothianidin resistance and associated fitness

costs in the melon aphid, A. gossypii. Therefore, an in-depth study about the resistance devel-

opment and fitness costs of a resistant population of A. gossypii could be crucial for an effective

control measure against this insect pest.

We showed that A. gossypii developed 23.17-fold clothianidin resistance following 24 gener-

ations of exposure to increasing concentrations of clothianidin. Recent studies by Ullah et al.

and Gul et al. concluded 43.32- and 76-fold resistance in B. odoriphaga following 10 consecu-

tive generations selection to chlorfenapyr and clothianidin, respectively [15, 45]. Beet army-

worm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) showed 69.76- and 113.29-fold

resistance against deltamethrin and gossypol, respectively following 10 generations selections

[63]. There have been numerous studies to investigate selection-induced resistance in many

Table 3. Mean (± SE) demographic parameters of the susceptible (CT-S) and resistant (CT-R) strains of Aphis gossypii.

Population parameters a (Mean ± SE b) 95% CI c P-value

Susceptible strain (CT-S) Resistant strain (CT-R)

r (d−1) 0.2821 ± 0.0040 0.3165 ± 0.0055 (0.0208, 0.0479)� <0.001

λ (d−1) 1.3259 ± 0.0054 1.3724 ± 0.0076 (0.0280, 0.0648)� <0.001

R0 (offspring/individual) 39.5478 ± 1.2800 33.5286 ± 1.4674 (2.2011, 9.8371)� 0.002

T (days) 13.0336 ± 0.1751 11.0947 ± 0.1839 (1.4404, 2.4374)� <0.001

GRR (offspring/individual) 52.0845 ± 1.0530 48.9539 ± 1.2530 (-0.0738, 6.3351) 0.056

Rf
d - 0.847 - -

a r: intrinsic rate of increase, λ: finite rate of increase, R0: net reproductive rate, T: mean generation time, GRR: gross reproductive rate.
b Standard errors (SE) were estimated using the bootstrap technique with 100,000 re-samplings.
c Difference between strains were compared with paired bootstrap test. If the CI includes 0, there is no difference at 5% level.
d Rf = R0 of the resistant strain (CT-R)/ R0 of the susceptible strain (CT-S).

� Significant differences between resistant strain (CT-R) and susceptible strain (CT-S) at P = 0.05 level, paired bootstrap test using TWOSEX MS chart program.

https://doi.org/10.1371/journal.pone.0238707.t003
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insect and insecticide combinations [64–68]. The resistance ratio was lower in CT-R strain of

A. gossypii, as compared to other insects and insecticides. The difference might be due to dif-

ferences in the field collected material, their prior exposure to insecticides, and the length of

time the colony was maintained insecticide-free in the laboratory. The resistance ratio might

be higher if the population exposed to clothianidin for more generations, which is a future

prospect. Also, different insect species show different responses to insecticides.

Fitness costs associated with resistance have been broadly studied in several insect species

including B. odoriphaga, T. hawaiiensis, P. xylostella, N. lugens and M. domestica [15, 41, 45,

69–71]. In the current study, two strains with similar genetic backgrounds have been used to

accurately assess the resistance-linked fitness costs [45]. The results have shown the shorter

developmental duration of 1st instar, 3rd instar, and 4th instar nymphs of CT-R strain as com-

pared to the CT-S strain of A. gossypii. The pre-adult period of CT-R was also shorter than that

Fig 1. Age-stage specific survival rate (sxj) in susceptible (CT-S) and resistant (CT-R) strains of A. gossypii.

https://doi.org/10.1371/journal.pone.0238707.g001
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of the CT-S aphids. This shows that the clothianidin resistance development could facilitate

the nymphal growth in A. gossypii. As has been previously reported in the literature, suggesting

the decreased developmental durations of nymphal stages and pre-adult period in sulfoxaflor-

resistant A. gossypii [43]. Several studies have reported similar phenomena in M. persicae and

A. gossypii resistant populations [44, 72]. The developmental duration was also decreased in

deltamethrin and gossypol resistant strains of S. exigua compared to susceptible strain [63]. In

contrast, others have shown increased developmental durations in the resistant insect pests

compared to the susceptible strain [71, 73]. For example, the developmental period of B. odori-
phaga significantly enhanced in clothianidin resistant strain [15].

In current study, the adult longevity, TPOP, oviposition period, total longevity, and fecun-

dity were decreased significantly in CT-R strain. From the results, it is clear that the clothiani-

din resistance developed at the cost of the reduced fecundity. Overall these findings are in

accordance with findings reported by Ullah et al. and Gul et al. that development of insecticide

resistance affects the life-history traits, including fecundity and longevity of the resistant strain

Fig 2. Age-specific survival rate (lx), age-specific fecundity (mx) and age-specific maternity (lxmx) in susceptible

(CT-S) and resistant (CT-R) strains of A. gossypii.

https://doi.org/10.1371/journal.pone.0238707.g002
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[15, 45]. The longevity and fecundity were decreased significantly in deltamethrin and gossy-

pol resistant strains of S. exigua [63]. The shorter longevity (9.55%) and fecundity (15%) were

also observed in the resistant strain of M. persicae [44]. Resistance-induced fitness costs have

been reported in several other insect pests [70, 74–78].

The demographic traits can explain the growth potential of insect pest populations [79, 80].

The r and λ were significantly increased in CT-R compared to the CT-S. However, the R0 and

T were decreased in clothianidin resistant strain of A. gossypii. The findings are directly in line

with previous findings of Ma et al. showing that the r and λ were increased, while R0 and T
were decreased in sulfoxaflor-resistant A. gossypii [43]. The R0 was lowered in the laboratory

selected resistant strains of M. persicae and B. odoriphaga [15, 44, 45]. The demographic traits,

Fig 3. Age-stage specific life expectancy (exj) in susceptible (CT-S) and resistant (CT-R) strains of A. gossypii.

https://doi.org/10.1371/journal.pone.0238707.g003
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including r, λ, R0, and T were also affected by clothianidin and gossypol resistance in S. exigua
[63].

The sxj, lx, mx, lxmx, exj and vxj were significantly decreased in clothianidin resistant strain of

A. gossypii. Our findings are consistent with Ullah et al. and Gul et al. showing similar results

in clothianidin and chlorfenapyr resistant strain of B. odoriphaga [15, 45]. Many prior reports

have showed similar effects on several insect and insecticide combinations including sulfoxa-

flor-resistant A. gossypii [43], imidacloprid-resistant S. litura [75], deltamethrin and indoxa-

carb-resistant Heliothis virescens Fabricius (Lepidoptera:Noctuidae) [77] and spinosad-

resistant P. xylostella [81]. From the results, it is clear that A. gossypii has the potential to

develop resistance against widely used clothianidin insecticide. Our study also provides a com-

prehensive understanding of the fitness costs in CT-R as compared to CT-S.

Fig 4. Age-stage reproductive value (vxj) in susceptible (CT-S) and resistant (CT-R) strains of A. gossypii.

https://doi.org/10.1371/journal.pone.0238707.g004
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Conclusion

Overall, our results show clothianidin resistance development (23.17-fold) in A. gossypii under

continuous selection over 24 generations. Moreover, there are fitness costs in the resistant pop-

ulation, owing to the selection of resistance to clothianidin in A. gossypii. These findings will

be useful for understanding clothianidin resistance and associated fitness costs in A. gossypii.
However, future research on the underlying molecular mechanisms might extend the explana-

tions of clothianidin resistance in A. gossypii.
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