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New residual feed intake criterion 
for longitudinal data
Ingrid David* , Van‑Hung Huynh Tran and Hélène Gilbert 

Abstract 

Background: Residual feed intake (RFI) is one measure of feed efficiency, which is usually obtained by multiple 
regression of feed intake (FI) on measures of production, body weight gain and tissue composition. If phenotypic 
regression is used, the resulting RFI is generally not genetically independent of production traits, whereas if RFI is 
computed using genetic regression coefficients, RFI and production traits are independent at the genetic level. The 
corresponding regression coefficients can be easily derived from the result of a multiple trait model that includes FI 
and production traits. However, this approach is difficult to apply in the case of multiple repeated measurements of FI 
and production traits. To overcome this difficulty, we used a structured antedependence approach to account for the 
longitudinality of the data with a phenotypic regression model or with different genetic and environmental regres‑
sion coefficients [multi‑ structured antedependence model (SAD) regression model].

Results: After demonstrating the properties of RFI obtained by the multi‑SAD regression model, we applied the 
two models to FI and production traits that were recorded for 2435 French Large White pigs over a 10‑week period. 
Heritability estimates were moderate with both models. With the multi‑SAD regression model, heritability estimates 
were quite stable over time, ranging from 0.14 ± 0.04 to 0.16 ± 0.05, while heritability estimates showed a U‑shaped 
profile with the phenotypic regression model (ranging from 0.19 ± 0.06 to 0.28 ± 0.06). Estimates of genetic correla‑
tions between RFI at different time points followed the same pattern for the two models but higher estimates were 
obtained with the phenotypic regression model. Estimates of breeding values that can be used for selection were 
obtained by eigen‑decomposition of the genetic covariance matrix. Correlations between these estimated breeding 
values obtained with the two models ranged from 0.66 to 0.83.

Conclusions: The multi‑SAD model is preferred for the genetic analysis of longitudinal RFI because, compared to the 
phenotypic regression model, it provides RFI that are genetically independent of production traits at all time points. 
Furthermore, it can be applied even when production records are missing at certain time points.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ 
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
According to the United Nations Population Fund, the 
global human population is expected to reach 9.1 billion 
by 2050 [1]. Thus, a 70% increase in food production will 
be necessary to fullfil the food security requirements of 
this population in a context of climate change [2]. Feed 
efficiency in livestock production, which is defined as 
the ability to transform input (feed) into output (such 

as body weight), is a key factor in meeting this need. 
Different criteria to measure feed efficiency have been 
proposed in the literature. Feed conversion ratio (FCR), 
which is defined as feed intake per unit of average daily 
gain, is well understood by farmers and thus widely used. 
However, due to problems that are inherent to selection 
on ratio measures [3], residual feed intake (RFI) may 
be a preferred measure of feed efficiency [4]. RFI cor-
responds to the difference between an animal’s actual 
feed intake and that predicted on the basis of the ani-
mal’s production and maintenance requirements [4]. 
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In growing animals, RFI is usually obtained by a multi-
ple regression of feed intake on measures of production, 
body weight gain, and tissue composition [5]. On the one 
hand, if phenotypic regression is used for this purpose, 
the resulting RFI is not genetically independent of pro-
duction and body weight/composition traits. Thus, to 
avoid detrimental effects on production traits, selection 
based on RFI obtained by phenotypic regression must be 
performed using a selection index that combines RFI and 
production traits with appropriate weights (derived from 
the covariance matrix between the components of RFI) 
[6, 7]. On the other hand, if genetic regression is used to 
derive RFI, it is then independent of the other traits at 
the genetic level (but not at the phenotypic level) [5]. The 
use of different regression coefficients for the genetic and 
environmental parts of the component traits (feed intake, 
production, body weight/composition traits), in a mul-
tiple trait approach, accounts for the multiple origins of 
the phenotypic correlations [8, 9] and provides a RFI that 
is independent of the other traits at the genetic level.

Using automatic self-feeders [10–14], individual feed 
intake can be recorded whenever an animal accesses its 
feeder. Since repeated recordings of body weight and 
body composition are also possible, it is conceivable to 
compute repeated measurements of RFI at various ages 
[15]. Compared to the use of an average RFI over the 
growing period, the main advantage of such longitudinal 
RFI data is the ability to describe changes in the trait over 
time and to provide more accurate estimates of breed-
ing values for genetic selection [16]. However, applying a 
multiple trait model to account for covariances between 
measurements at different time points becomes problem-
atic when there are more than five time points. Several 
flexible mixed-model approaches that require estimation 
of fewer parameters than the multiple trait model have 
been proposed for the analysis of longitudinal data in the 
genetic context: random regression (RR), character pro-
cess (CP), and structured antedependence (SAD) models 
[17–19]. To evaluate longitudinal RFI and propose appro-
priate selection criteria, extension of these longitudinal 
models to the multivariate case is necessary; indeed, a 
multiple trait analysis of longitudinal FI and production 
traits would allow the genetic and environmental covari-
ances between FI and production traits to be estimated. 
Such an extension is not straightforward for the CP 
model [20] and may result in convergence issues for the 
RR model due to the large number of parameters to be 
estimated ( 

∑n
i=1

di(di+1)
2  per matrix of random effects for 

n traits for a polynomial of degree di for trait i).
The objective of our study was to propose a multi-

variate SAD model to estimate the genetic and environ-
mental covariances between FI and production traits. 
Based on these estimates, we propose the use of genetic 

regression coefficients for the genetic and environmental 
parts of the component traits of RFI to obtain genetic and 
environmental components of longitudinal RFI that will 
be independent of production traits at the genetic level. 
The proposed multivariate SAD regression model was 
applied to pig data and compared to a longitudinal model 
based on phenotypic regression at each time point.

Methods
SAD model for longitudinal RFI
To present the general form of the SAD model used in 
this study, RFI is considered as a function of four compo-
nent traits, as usually applied in pigs [7, 21]: feed intake 
(FI), average daily gain (ADG), metabolic body weight 
(MBW), and backfat thickness (BF). The extension to 
include different components or additional components 
is straightforward. For the sake of simplicity, these ‘pro-
duction and maintenance traits’ are hereafter referred to 
as ‘production traits’.

Let ADGij , MBWij , BFij , and FIij be the observed values 
for ADG, MBW, BF, and FI of animal i at time tj ( j = 1 to n ), 
and ADGj , MBWj , BFj , and FIj the corresponding vectors 
of observations across animals for time point j . Here, we 
propose to model longitudinal RFI in two ways: longitudi-
nal RFI obtained by a phenotypic regression of FI on the 
production traits at each time point (phenotypic regression 
model), which is the most commonly used and easiest way 
to compute RFI [22], versus RFI obtained with a genetic 
and environmental regression on the production traits, 
which corresponds to a multi-SAD genetic regression to 
model longitudinal RFI (multi-SAD regression model). 
In both cases, we used the SAD approach to account for 
covariances between measurements at different time 
points [23], and to account for covariances between FI 
and production traits in the multi-SAD regression model. 
Like the RR model, the SAD approach attempts to model 
the form of the random effects function to provide the 
most appropriate and parsimonious covariance function 
for the different random effects in the model. To do so, the 
RR approach uses (orthogonal) polynomials of time. Then, 
the covariance matrix between time points is derived from 
the covariance matrix of the random coefficients. Exten-
sion to the multiple trait case is straightforward and is done 
by considering the covariance matrix of the random coef-
ficients for each trait involved, i.e. the random coefficients 
for different traits are correlated. In the single trait case, 
the SAD approach models the random effects function 
by assuming that a random effect at time point tj can be 
explained by its previous values (i.e. at time point tk , k < j ). 
A random effect at time point tj is then obtained by a 
regression on its preceding value(s). The covariance matrix 
between time points can be derived from the value of the 
regression coefficients and the variance of the error term 
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in the regression. Extension to the multiple-trait situation 
is obtained by assuming that, in addition to the within-trait 
relationship, a random effect of one trait can be a function 
of the same random effect of the other traits considered, 
i.e. by adding the values of that random effect for the other 
traits in the regression. The covariance matrix between 
time points and traits is then derived from the values of the 
regression coefficients and the variances of the error terms. 
To reduce the number of parameters to be estimated, in the 
SAD approach it is generally assumed that the regression 
coefficients (called antedependence and cross-antedepend-
ence parameters) and the variance of the error term (called 
innovation variance) are functions of time [17, 24].

Phenotypic regression model
The equation to obtain the genetic and environmental 
components of RFI for animal i at time point tj is:

where µFI ,ij represents the fixed effects at time point tj ; 
bADGj , bMBWj , and bBFj are the phenotypic regression 
coefficients of FI on ADG, MBW, and BF for time point tj 
(

bADGj =
cov(ADGj ,FIj)

σ 2
ADGj

, bMBWj =
cov(MBWj ,FIj)

σ 2
MBWj

, and, bBFj

=

cov(BFj ,FIj)
σ 2
BFj

)

 , uRFI ,ij is the additive genetic effect for RFI 

of animal i at time point tj , and eRFI ,ij is the random resid-
ual. Genetic and residual effects of different time points 
are not independent. To account for covariances between 
time points, the SAD approach models a random effect at 
time point tj by a regression on the preceding observa-
tions, leading to:

where θuRFI ,j and θeRFI ,j are the antedependence parame-
ters at time point tj for the genetic and residual compo-
nents of RFI, and εuRFI ,ij and εeRFI ,ij are the genetic and 
residual error terms at time point tj , which are assumed 
to be random normally distributed effects with a mean 0 
and innovation variances Aσ 2

εuRFI ,j and Iσ 2
εeRFI ,j , respec-

tively, where A is the numerator genetic relationship 
matrix and I an identity matrix of appropriate size. To 
reduce the number of parameters to be estimated, 
antedependence parameters and innovation variances are 
considered as functions of time: θs,j =

∑βs
q=0 asqt

q
j  for a 

function of degree βs ( s = uRFI or eRFI ), and 
σ 2
εs,j = exp

(

∑γs
q=0 dsqt

q
j

)

 for a function of degree γs [25]. 
Hereafter, the notation SAD βsγs is used to shorten the 
description of the SAD model. Then, the 

FIij = µFI ,ij + bADGjADGij + bMBWjMBWij

+ bBFjBFij + uRFI ,ij + eRFI ,ij ,

uRFI ,ij = θuRFI ,juRFI ,i(j−1) + εuRFI ,ij

eRFI ,ij = θeRFI ,jeRFI ,i(j−1) + εeRFI ,ij
,

variance–covariance matrices G and P of the genetic and 
environmental components of RFI can be obtained by 
calculating their inverse using a Cholesky decomposition 
[26]: P−1 = L

′
D

−1
L , where D is a diagonal matrix with 

innovation variances for RFI as components, and L is a 
lower triangular matrix with 1s on the diagonal and the 
negatives of the antedependence parameters for RFI as 
off-diagonal entries (the same reasoning applies to the G 
matrix). The phenotypic value of RFI for animal i at time 
point tj in the phenotypic regression model is then com-
puted as RFIij = uRFI ,ij + eRFI ,ij . In this model, the genetic 
covariance matrix between RFI and longitudinal produc-
tion traits is not estimated which prevents the computa-
tion of an optimum selection index of RFI and production 
traits.

Multi‑SAD regression model
The multi-SAD regression model is derived from a multiple 
trait SAD model [24, 27]. A detailed description of the gen-
eral form of the multiple trait SAD model is given in David 
et al. [24]. The set of model equations is as follows:

where µADG,ij , µMBW ,ij , µBF ,ij , and µFI ,ij represent the 
fixed effects at time point tj , uADG,ij , uMBW ,ij , uBF ,ij , and 
uFI ,ij are the additive genetic random effect functions, 
and eADG,ij , eMBW ,ij , eBF ,ij , and eFI ,ij are the random resid-
ual functions for ADG, MBW, BF, and FI, respectively. To 
account for covariances between traits and between time 
points within a trait, the SAD approach makes it possible 
to model the form of the random effects function with a 
regression on the preceding observations and on corre-
lated traits. To model RFI, the following genetic random 
effects functions are used:

where θuADG,j , θuMBW ,j , θuBF ,j , and θuFI ,j are the antedependence 
parameters at time point tj for the genetic components of 
ADG, MBW, BF, and FI, respectively; bu,ADGj , bu,MBWj , and bu,BFj 
are the genetic regression coefficients (cross-antedependence 
parameters) of FI on ADG, MBW, and BF at time point  

tj 
(

bu,ADGj =
cov

(

uADG,j,uFI,j
)

σ 2
uADG,j

, bu,MBWj =
cov(uMBW,j,uFI,j)

σ 2
uMBW ,j

, and 



















ADGij = µADG,ij + uADG,ij + eADG,ij

MBWij = µMBW ,ij + uMBW ,ij + eMBW ,ij

BFij = µBF ,ij + uBF ,ij + eBF ,ij

FIij = µFI ,ij + uFI ,ij + eFI ,ij

,

(1)

uADG,ij = θuADG,juADG,i(j−1) + εuADG,ij

uMBW ,ij = θuMBW ,juMBW ,i(j−1) + εuMBW ,ij

uBF ,ij = θuBF ,juBF ,i(j−1) + εuBF ,ij

uFI ,ij = θuFI ,juFI ,i(j−1) + bu,ADGjuADG,ij

+ bu,MBWjuMBW ,ij + bu,BFjuBF ,ij + εuFI ,ij

,
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bu,BFj =
cov(uBF,j,uFI,j)

σ 2
uBF ,j

)

 and εuADG,j , εuMBW,j , εuBF,j , and εuFI,j 

are random normally distributed effects (error terms) with 
mean 0 and innovation variances Aσ 2

εuADG,j , Aσ 2
εuMBW ,j , 

Aσ 2
εuBF ,j , and Aσ 2

εuFI ,j , respectively. The same approach is 
used to model the residual random function:

where θeADG,j , θeMBW ,j , θeBF ,j , and θeFI ,j are the antede-
pendence parameters at time point tj for the residual 
components of ADG, MBW, BF, and FI, respectively; 
beADGj , beMBWj , and beBFj are the environmental regres-
sion coefficients of FI on ADG, MBW, and BF at time 
point tj , and εeADG,j , εeMBW,j , εeBF,j , and εeFI,j are random 
normally distributed effects (error terms) with mean 0 
and innovation variance Iσ 2

εeADG,j , Iσ
2
εeMBW ,j , Iσ

2
εeBF ,j , and 

Iσ 2
εeFI ,j .

As in the phenotypic regression model, antedepend-
ence parameters and innovation variances are assumed 
to be continuous functions of time to reduce the number 
of parameters to be estimated (i.e. θs,j =

∑βs
q=0 asqt

q
j  for a 

function of degree βs ( s ∈ {eADG,uADG, eMBW ,uMBW ,

eBF ,uBF , eFI , uFI} ) and σ 2
s,j = exp

(

∑γs
q=0 dsqt

q
j

)

 for a 
function of degree γs . Regression coefficients (cross-
antedependence parameters) are also assumed to be 
functions of time: bs,j =

∑δs
q=0 csqt

q
j  for a function of 

degree δs ( s ∈ {eADG,uADG, eMBW ,uMBW , eBF ,uBF} ). 
Given Eqs. (1) and (2), it is possible to obtain the genetic 
and residual components of RFI*, computed with the 
multi-SAD regression model, by adjusting FI for ADG, 
MBW and BF at the genetic and environmental levels. 
Then, we obtain RFI*, which is independent from ADG, 
MBW and BF at the genetic level as:

The phenotypic value for RFI for animal i at time point 
tj in the multi-SAD model is RFI∗ij = u∗RFI ,ij + e∗RFI ,ij . See 
Additional file 1 for a demonstrative example.

The variance–covariance matrices G∗ of the genetic 
component of RFI* can be obtained by calculating its 
inverse using the following Cholesky decomposition: 

(2)

eADG,ij = θeADG,jeADG,i(j−1) + εeADG,ij

eMBW ,ij = θeMBW ,jeMBW ,i(j−1) + εeMBW ,ij

eBF ,ij = θeBF ,jeBF ,i(j−1) + εeBF ,ij

eFI ,ij = θeFI ,jeFI ,i(j−1) + be,ADGjeADG,ij

+ be,MBWjeMBW ,ij + be,BFjeBF ,ij + εeFI ,ij

,

u∗RFI ,ij = uFI ,ij + θuFI ,j

(

u∗
RFI ,i(j−1) − uFI ,i(j−1)

)

− bu,ADGjuADG,ij

− bu,MBWjuMBW ,ij − bu,BFjuBF ,ij

e∗RFI ,ij = eFI ,ij + θeFI ,j

(

e∗
RFI ,i(j−1) − eFI ,i(j−1)

)

− bu,ADGjeADG,ij

− bu,MBWjeMBW ,ij − bu,BFjeBF ,ij

.

G
∗−1 = L

∗′
D

∗−1
L
∗ , where D∗ is a diagonal matrix with 

genetic innovation variances for FI as components, and 
L
∗ is a lower triangular matrix with 1s on the diagonal 

and the negatives of the genetic antedependence param-
eters for FI as off-diagonal entries [cross antedependence 
is excluded, (see Additional file 1 for the demonstration)]. 
The environmental covariance matrix P∗ of RFI* and pro-
duction traits is obtained using the following covariance 
function: P∗ = BPTB

′ , where PT is the environmental 
covariance matrix for FI and production traits, and B is a 
lower triangular matrix of regression coefficients:

where bes/FI (s ∈ {ADG,MBW ,BF} ) are lower triangular 
matrices with the negative of the genetic cross-antede-
pendence parameters (genetic regression coefficients) on 
the diagonal and the negatives of the product of environ-
mental antedependence parameters with genetic cross-
antedependence parameters as off-diagonal entries 
(

for cell
(

i, j
)

, i < j : −
∏j

k=2 θeFI ,kbu,si

)

:

for n measurement times. By construction, RFI* at time 
point tj is then independent of ADG, MBW, and BF at all 
time points at the genetic level.

Model implementation
The phenotypic regression and multi-SAD regression 
models can be implemented using the ASReml software 
[28] and the OWN Fortran program developed by David, 
which are freely available on the Zenodo platform [29]. 
The degrees of the polynomials of time for each func-
tion can be selected by comparing nested models using 
likelihood ratio tests. In the multi-SAD regression model, 
to reduce the number of models to be compared, we 
selected the specification of the antedependence and 
innovation variances for each trait independently, and 
then the cross-antedependence specification. For the first 
part of the selection process, we started with the most 
parsimonious model (smallest degree for the polynomial 
functions of time), and then increasing the degree of the 
polynomial functions of time (alternating the antede-
pendence parameter and the innovation variance) until 

B =







IADG

0 IMBW

0 0 IBF

beADF/FI beMBW /FI beBF/FI IFI






,

bs/FI =























−bu,s1
−θeFI ,2bu,s1 · · ·

−
j
�

k=2

θeFI ,kbu,s1 · · · −bu,sj

...
...

... · · ·

· · · · · · −
n
�

k=2

θeFI ,kbu,sj · · · −bu,sn























,
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there is no further significant improvement of the model. 
Next, an increase in the degree of the cross-antedepend-
ence parameters is tested. For this step, we increased the 
degree of all cross antedependence parameters together. 
In addition, to reduce computing time and avoid conver-
gence issues, antedependence and innovation variance 
parameters for ADG, MBW, and BF were considered as 
known (i.e. fixed to their values estimated in the first step 
of the selection process).

Both models provide estimated breeding values (EBV) 
for each time point tj of observation (TEBV: Time EBV). 
No simple procedure exists to use ‘raw’ TEBV for selec-
tion, as it requires the n TEBV to be accounted for. 
Instead, animals should be selected based on the trajec-
tory of their TEBV over time. This selection requires a 
limited number of descriptive parameters of these tra-
jectories, which are usually obtained by eigendecompo-
sition of the genetic covariance matrix [15, 30]. It has 
been shown that the two first eigenvectors obtained with 
longitudinal models are usually sufficient to describe the 
trajectory of feed efficiency [15]. The corresponding sum-
marised estimated breeding values (SBV1 and SBV2), 
which are the product of the vector of TEBV with the 
first or the second eigenvectors, generally correspond to 
the EBV for average feed efficiency and the EBV for the 
main slope of the trajectory over time, respectively [15].

Application to pig data
We used data from 2435 French Large White boars, 
castrated males, and gilts from nine generations of two 
lines that were divergently selected for RFI (called here-
after high RFI line and low RFI line). All pigs were raised 
after weaning on the Rouillé experimental farm (Vienne, 
France, https:// doi. org/ 10. 15454/1. 55724 15481 18584 
7E12) [21]. The animals were selected based on their RFI 
over an 18-week test period, starting at ~ 10 weeks of age, 
which was obtained by a defined phenotypic regression 
of FI on ADG, MBW, and BF over the test period (i.e. one 
observation per animal). From each farrowing batch, 48 
pigs from at least six litters were moved to a growing-
finishing room at ~ 10 weeks of age, with four groups of 
12 animals (boars separated from females and castrated 
males) placed in pens that were each equipped with a sin-
gle-place electronic feeder ACEMA 64 (Pontivy, France; 
[31]). Over the 18-week test period, the animals were fed 
a pelleted diet of cereals and soybean meal with 10  MJ 
NE/kg and 160 g CP/kg, and a minimum of 0.80 g digest-
ible Lys/MJ NE. The animals had free access to water. 
Feed intake was recorded each time a pig accessed the 
feeder. For 16 consecutive weeks of the test period (from 
11 to 26 weeks of age), body weight (BW) was recorded 
weekly for the males, while females and castrated males 

were weighed at 11, 15, 19, and 23 weeks of age, and more 
frequently if the test lasted for more than 23 weeks. Back-
fat thickness was measured ultrasonically on males at 
around 35, 65, 90, and 95 kg body weight, as the average 
of six measurements that were recorded at three areas 
of the body: the neck, the back, and the kidney, on both 
sides of the spine. For the females and castrated males, 
BF was measured in the same way, but at 11, 15, 19, and 
23 weeks of age.

For longitudinal analyses, phenotypes were computed 
at weekly intervals. Average daily gain of animal i at week 
j was calculated over a 4-week period following [32] as 
ADGij =

BWi(j+2)−BWi(j−2)
agei(j+2)−agei(j−2)

 and MBW was calculated as 
MBWij = BW 0.6

ij  . BFij corresponded to the measure-
ments of BF on animal i at week j . Outliers, as defined in 
Huynh-Tran et al. [15], were removed from the analysis. 
Data for the first week in the growing-finishing room 
(11 weeks of age), which was considered to be an adapta-
tion period for the animals, and for weeks corresponding 
to 25 and 26 weeks of age, as the number of pigs weighed 
per week decreased at the end of the test period (animals 
already slaughtered), were also removed from the data-
set. The final data set included production and FI records 
over a 10-week period from ~ 13 to ~ 22  weeks of age, 
which will be denoted as weeks 1 to 10, hereafter. The 
relationship matrix for use in the analyses was built from 
pedigree, which included 3986 animals.

Comparison of models
Given the poor properties for RFI obtained from the phe-
notypic regression model (genetically correlated with 
production traits), our aim was to compare RFI obtained 
with the phenotypic regression and RFI obtained with the 
multi-SAD regression models, in order to evaluate the 
advantages of applying the multi-SAD model. The core 
issue was to evaluate whether the EBV for RFI obtained 
with the multi-SAD model are sufficiently different from 
those obtained with the phenotypic regression model 
to consider applying such a complex model to the data. 
Fixed effects included in the two models were the same 
for all traits: week (10 levels), batch (66 levels), sex (3 
levels), birth herd (2 levels), age at the start of the test 
(covariate), and pen (16 levels). To apply the phenotypic 
regression model, missing phenotypes for BW and BF 
were replaced by their predictions from linear interpola-
tions then MBW and ADG for all weeks were computed 
using the predicted BW, as described in Huynh-Tran 
et  al. [32]. To make the phenotypic and multi-SAD 
regression models comparable, these phenotypes were 
also used in the multi-SAD regression model, although 
this model can cope with missing values. Spearman rank 
correlations were used to compare the weekly EBV and 
the first and second SBV obtained with the two models. 

https://doi.org/10.15454/1.5572415481185847E12
https://doi.org/10.15454/1.5572415481185847E12


Page 6 of 13David et al. Genet Sel Evol           (2021) 53:53 

In addition, the trajectories of individual EBV over weeks 
were classified into groups by a non-hierarchical k-mean 
analysis [33] for both models. Finally, we evaluated the 
effect of the divergent selection on RFI obtained by a 
phenotypic regression at the test level (i.e. one observa-
tion over the test period) on the profile of RFI from the 
multi-SAD regression model over weeks by comparing 
changes in SBV due to selection.

Results
The descriptive statistics of the traits per week are in 
Table 1. The phenotype of all traits increased with time. 
The coefficients of variation were in the same range for 
ADG, MBW and FI (ranging from 0.13 to 0.21) and lower 
for MBW (ranging from 0.07 to 0.10). The SAD models 
that were retained for the phenotypic regression model 
and the multi-SAD regression model are described in 
Table 2. The degrees of the functions of the cross-antede-
pendence parameters (genetic and environmental regres-
sion coefficients of FI on ADG, MBW, and BF) were all 
equal to 1 in the multi-SAD regression model. The corre-
sponding equations are in Additional file 2. The estimates 
of heritabilities of FI and production traits with the multi-
SAD model are shown in Additional file 3: Figure S1. All 
heritabilities increased with time from 0.20 to 0.39 for FI, 
from 0.32 to 0.39 for ADG, from 0.21 to 0.60 for MBW, 
and from 0.27 to 0.48 for BF. Estimates of the genetic and 
phenotypic correlations between weeks for FI and pro-
duction traits that were obtained with the multi-SAD 
model are shown in Additional file  4: Figure S2. Simi-
lar patterns were observed for FI and production traits, 
i.e. within trait, estimates of the genetic and phenotypic 
correlations decreased as the time between measure-
ments increased, and estimates of the phenotypic corre-
lations were slightly weaker than estimates of the genetic 

correlations. Within week, estimates of the genetic cor-
relation between FI and ADG ranged from 0.60 and 0.75. 
They were lower between FI and MBW (ranging from 
0.15 to 0.37), and between FI and BF (ranging from 0.10 
to 0.28). Estimates of the phenotypic correlations fol-
lowed the same patterns but with lower values.

Estimates of the regression coefficients obtained 
with the phenotypic regression and multi-SAD regres-
sion models are in Table 3. Estimates of the phenotypic 
regression coefficient for ADG were quite stable from 
week 1 to 5, ranging from 0.87 to 1.00, then increased to 
1.32 in week 6, and finally decreased linearly to a value 
of 1.00 in week 10. Estimates of the phenotypic regres-
sion coefficient for MBW increased from week 1 to 3 
(from 1.04 to 1.29), then tended to decrease until week 

Table 1 Descriptive statistics of the data

ADG average daily gain, MBW metabolic body weight, BF backfat thickness, FI feed intake

Week ADG (10× g/d) MBW (10×  kg0.6) BF (0.1× mm) FI (10× g/d)

Mean ± sd % missing Mean ± sd % missing Mean ± sd % missing Mean ± sd % missing

1 74 ± 14 12 90 ± 9 52 75 ± 10 87 168 ± 36 < 1

2 77 ± 14 59 96 ± 10 59 76 ± 13 95 181 ± 38 < 1

3 77 ± 13 55 106 ± 10 8 107 ± 20 46 193 ± 39 < 1

4 81 ± 14 61 112 ± 10 58 107 ± 16 92 202 ± 40 < 1

5 84 ± 15 8 118 ± 10 53 104 ± 14 89 213 ± 41 < 1

6 86 ± 14 60 124 ± 11 52 103 ± 16 87 221 ± 42 < 1

7 89 ± 15 53 133 ± 10 < 1 128 ± 27 37 229 ± 43 < 1

8 91 ± 16 55 138 ± 10 13 122 ± 23 86 234 ± 44 < 1

9 81 ± 17 14 145 ± 10 32 126 ± 19 82 242 ± 44 < 1

10 87 ± 18 74 150 ± 10 35 123 ± 18 77 245 ± 44 6

Table 2 SAD models retained for the genetic and environmental 
components in the phenotypic regression and multi‑SAD 
regression models

SAD αβ implies a polynomial function of degree α for the antedependence 
parameter and of degree β for the innovation variance

ADG average daily gain, MBW metabolic body weight, BF backfat thickness, FI 
feed intake, RFI residual feed intake
a In addition, the degree of the functions of the cross-antedependence 
parameters in the model for FI were all equal to 1 for the genetic and residual 
parts

Genetic 
component

Environmental 
component

Multi‑SAD regression model

 ADG SAD00 SAD00

 MBW SAD00 SAD01

 BF SAD00 SAD01

 FI SAD11a SAD12a

Phenotypic regression model

 RFI SAD11 SAD12
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9 (0.90), and increased again in week 10 (1.17). Estimates 
of the phenotypic regression coefficient for BF were quite 
stable over time, ranging from 0.34 to 0.47. Given the 
form of the multi-SAD regression model used (Table 2), 
estimates of all the genetic and environmental regres-
sion coefficients changed linearly with time. Estimates 
of the genetic regression coefficient for ADG decreased 
with time from 1.13 to 0.56 (slope = − 0.06 ± 0.02), 
while estimates of the environmental regression coeffi-
cient were quite stable (ranging from 0.92 to 0.93, with 
a slope that was not significantly different from 0); for 
MBW, estimates of both the genetic and environmental 
regression coefficients decreased with time from 1.48 
to − 0.08 (slope = − 0.17 ± 0.03) and from 0.48 to 0.15 
(slope = − 0.04 ± 0.01), respectively. Finally, for BF, esti-
mates of the genetic regression coefficients remained 
stable over time at 0.18, while estimates of the environ-
mental regression coefficients ranged from 0.22 to 0.28 
(slope = 0.006 ± 0.008).

Heritability estimates for RFI over time obtained with 
the phenotypic regression and the multi-SAD regression 
models were moderately high (see Fig.  1). Those esti-
mated with the multi-SAD regression model remained 
quite stable over time, ranging from 0.14 ± 0.04 to 
0.16 ± 0.05, and those estimated with the phenotypic 
regression model were slightly higher and showed a 
U-shaped profile, with a minimum value (0.19 ± 0.06) in 
week 6 and a maximum value in week 10 (0.28 ± 0.06). 
Based on 95% confidence intervals, only the heritability 
estimates obtained for weeks 1 to 3 and week 10 differed 
significantly between the two models.

The genetic correlations between RFI at different time 
points estimated by the phenotypic and the multi-SAD 
regression models followed the same pattern over time 
between the two models (Fig.  2), but those obtained 
with the phenotypic regression model were higher, i.e. 

(1) estimates of genetic correlations between two suc-
cessive time points increased over time and ranged from 
0.46 to 0.97 with the phenotypic regression model, and 
from 0.32 to 0.77 with the multi-SAD regression model; 
and (2) genetic correlations tended to decrease as time 
between measurements increased, with estimates of 0.10 
and 0.00 between the first and last week of estimation 
with the phenotypic regression and multi-SAD regres-
sion model, respectively.

Figure  3 shows the estimates of the phenotypic and 
genetic correlations between RFI obtained with the phe-
notypic regression and multi-SAD regression models for 
the phenotyped animals by line and by week. Estimates 
of the phenotypic correlations were high and similar 
between the two lines, ranging from 0.87 to 0.98; they 
decreased from week 1 to 3 and then showed an inverted 
U-shaped profile, with a maximum value in week 7. The 
correlations between weekly EBV decreased over time, 

Table 3 Estimates of phenotypic, genetic, and environmental regression coefficients (± se) for each week and production trait with 
the phenotypic regression ( bADG , bMBW , bBF ) and multi‑SAD regression models ( bu,ADG , bu,MBW , bu,BF , be,ADG , be,MBW , be,BF)

ADG average daily gain, MBW metabolic body weight, BF backfat thickness, FI feed intake

Week bADG bu,ADG be,ADG bMBW bu,MBW be,MBW bBF bu,BF be,BF

1 0.89 ± 0.05 1.13 ± 0.10 0.92 ± 0.04 1.04 ± 0.09 1.48 ± 0.15 0.48 ± 0.07 0.38 ± 0.05 0.18 ± 0.08 0.22 ± 0.04

2 0.90 ± 0.05 1.07 ± 0.08 0.92 ± 0.04 1.24 ± 0.09 1.30 ± 0.13 0.44 ± 0.06 0.47 ± 0.05 0.18 ± 0.07 0.22 ± 0.04

3 0.87 ± 0.05 1.00 ± 0.07 0.92 ± 0.03 1.29 ± 0.08 1.13 ± 0.11 0.41 ± 0.05 0.40 ± 0.04 0.18 ± 0.04 0.23 ± 0.03

4 0.97 ± 0.04 0.94 ± 0.06 0.92 ± 0.03 1.21 ± 0.08 0.96 ± 0.09 0.40 ± 0.04 0.35 ± 0.04 0.18 ± 0.04 0.24 ± 0.03

5 1.00 ± 0.04 0.88 ± 0.05 0.92 ± 0.02 1.25 ± 0.07 0.79 ± 0.08 0.33 ± 0.04 0.35 ± 0.04 0.18 ± 0.04 0.24 ± 0.02

6 1.32 ± 0.04 0.82 ± 0.05 0.93 ± 0.02 1.10 ± 0.07 0.62 ± 0.08 0.30 ± 0.04 0.34 ± 0.03 0.18 ± 0.04 0.25 ± 0.02

7 1.23 ± 0.04 0.75 ± 0.06 0.93 ± 0.03 1.19 ± 0.07 0.44 ± 0.09 0.26 ± 0.04 0.34 ± 0.03 0.18 ± 0.04 0.26 ± 0.03

8 1.15 ± 0.04 0.69 ± 0.07 0.93 ± 0.03 1.11 ± 0.08 0.27 ± 0.11 0.22 ± 0.05 0.42 ± 0.03 0.18 ± 0.05 0.26 ± 0.03

9 1.06 ± 0.04 0.63 ± 0.08 0.93 ± 0.04 0.90 ± 0.08 0.10 ± 0.13 0.19 ± 0.06 0.42 ± 0.03 0.18 ± 0.06 0.27 ± 0.04

10 1.00 ± 0.04 0.56 ± 0.10 0.93 ± 0.04 1.17 ± 0.08 − 0.08 ± 0.15 0.15 ± 0.07 0.34 ± 0.03 0.18 ± 0.08 0.28 ± 0.04
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Fig. 1 Heritability estimates of RFI over a period of 10 weeks 
obtained with the phenotypic regression (green) and with the 
multi‑SAD regression (black) models. Shaded area = 95% confidence 
interval
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ranging from 0.96 to 0.79 in the High RFI line and from 
0.95 to 0.77 in the Low RFI line.

The trajectories of individual EBV over weeks were 
classified into three groups by a non-hierarchical k-mean 
analysis. These three patterns (see Additional file 5: Fig-
ure S3) differed by their means and slopes, which varied 
in the same direction, i.e. a higher mean was associated 
with a higher slope, and reciprocally. A Cohen’s kappa 
clustering agreement of 0.80 was found between the two 
models. The first two estimated breeding values SBV1 
and SBV2 summarized the trajectory pattern into just 
two parameters: to some extent, SBV1 corresponded 
to the average RFI over the test period and SBV2 to the 
slope of the curve over time for each individual. Corre-
lations between the first two SBV obtained with the two 
models are in Table  4. They were higher for SBV1 than 
for SBV2, similar in the two lines for SBV1 [0.83 (High 
RFI) and 0.82 (Low RFI)], and lower in the Low RFI line 
for SBV2 (0.76 versus 0.66). Figure  4 shows how SBV1 

and SBV2 that were obtained with the multi-SAD model 
changed with selection. After seven generations of selec-
tion, animals of the Low RFI line had, on average, lower 
SBV1 and SBV2 than animals of the High RFI line, i.e. the 
trajectory of EBV over weeks for the Low line was char-
acterised by a lower mean and a lower slope.

Discussion
We chose the SAD approach to account for the genetic 
and environmental covariances between longitudinal 
production traits and FI in order to compute longitudinal 

RFI independent of production traits at the genetic level 
using the multi-SAD regression model, and to account 
for covariances between successive measurements in the 
phenotypic regression and multi-SAD regression models. 
Thus, applying the multi-SAD approach to components 
of RFI, we were able to obtain estimates of the covari-
ance between FI and production traits over time and EBV 
for RFI independent of production traits. These prop-
erties are expected to be useful for selection [9] and for 
the study of patterns of feed efficiency over time at the 
genetic and phenotypic levels [34]. A random regression 
(RR) approach [19] could also have been used to account 
for these different covariances, as analysis of the longi-
tudinal feed conversion ratio by phenotypic regression 
with RR or SAD approaches have recently been shown 
to produce similar results [15]. The RR approach has also 
been used to model RFI when FI is recorded longitudi-
nally but only single records are available for production 
traits [35]. However, applying the RR approach to mul-
tiple traits requires estimation of more parameters than 
with the SAD approach and can lead to convergence 
problems [27]. The SAD approach has also other advan-
tages over the RR approach, including providing a better 
fit to the data in many situations [17, 18, 24, 25], suffer-
ing less from the drawbacks reported for the RR model 
such as border effects [36], and from the challenge to 
properly estimate correlations that decrease over time 
[18]. In spite of these advantages compared to RR, we had 
to apply several constraints to the multi-SAD regression 
model to facilitate convergence: (1) we did not account 
for covariances between production traits (i.e. set to 0), 
and (2) we fixed the antedependence and innovation vari-
ance parameters for the production traits to their values 
estimated in the first steps of the analysis using single 
trait SAD models. It should also be noted that the units 
of measure for production traits and FI were chosen 
such that the variances of the traits were of similar mag-
nitude to facilitate convergence, which is why ADG was 
expressed in 10× g/d, BF in 0.1× mm, etc. Initial analy-
ses with fewer traits and time points showed that these 
constraints had no impact on the estimates of the genetic 
and environmental parameters for RFI.

It must be acknowledged that the multi-SAD regres-
sion model is a complex model that may have practical 
identifiability issues. Exploring the information matrix 
I
(

ω̂

)

 helps to detect such problems for the unknown 
parameter vector ( ω ) [37]. The condition number (square 
root of the ratio of the first to the last eigenvalue) of the 
information matrix I

(

ω̂

)

 of the SAD model used in our 
study was low, i.e. 26, which suggests that there was no 
practical identifiability issue for the data analyzed.

Using results from the multi-SAD model, we esti-
mated RFI that is independent of production traits at the 
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Fig. 2 Estimates of genetic correlations between RFI in different 
weeks obtained with the phenotypic regression model (above the 
diagonal) and multi‑SAD regression model (below the diagonal)
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genetic level by regressing FI on production traits using 
genetic regression coefficients. Different RFI traits can be 
estimated from the results of the multi-SAD model. On 
the one hand, estimates of phenotypic regression coef-
ficients corrected for fixed effects (i.e. extracted from 
the estimated phenotypic covariance matrix [9]) can be 
used to obtain a measure of RFI that is phenotypically 
but not genetically independent of production traits. 
On the other hand, estimates of the genetic regression 
coefficients can be used for the genetic part and esti-
mates of the environmental regression coefficients for 
the environmental part to obtain a measure of RFI that 
is independent of production traits at both the genetic 
and phenotypic levels (see Additional file  1). However, 
the meaning and advantage of this measure of pheno-
typic RFI remain to be investigated. Here, we also derived 
RFI using a phenotypic regression model that does not 
account for the systematic effects that affect production 

traits. We investigated this model in spite of the known 
poor properties of the resulting EBV for RFI, i.e. the EBV 
are not independent of production traits, and the low 
accuracy of RFI parameter estimates [7, 38], because phe-
notypic regression of FI on ADG, MBW, and BF over the 
test period (i.e. one observation per animal) was used in 
the divergent selection experiment. In addition, it is the 
easiest and most common measure of RFI used in pigs 
and other species (e.g. cattle, sheep, chicken and even fish 
[39–42]), although some authors recommend to compute 
RFI from the genetic covariance matrix, such as Mebra-
tie et al.[8]. Our results obtained with the multi-SAD and 
the phenotypic regression models were different. Given 
the known theoretical benefit of the multi-SAD model 
over the phenotypic regression model, our comparison 
suggests that applying the multi-SAD model would be 
preferable in practice. However, this must be confirmed 
by a more in-depth analysis of the costs (computing time) 
and benefits (improving RFI by genetic selection without 
detrimental effects on production traits at different time 
points) of applying the multi-SAD model over the phe-
notypic regression model. This will require evaluation of 
direct and correlated responses to selection [9] in their 
different dimensions (over time and generations) under 
scenarios that differ in the model and selection criteria 
used (subset of the SBV of interest, BV at a given time 
point, etc.).

Estimates of heritability of FI were moderate and 
tended to increase with age (see Additional file 3: Figure 
S1), in agreement with previous studies [7, 43, 44]. Esti-
mates of heritability of the production traits were similar 
to previous estimates over the test period (i.e. one obser-
vation per animal) in the same population [45] and were 
within the range of estimates reported for three French 
pig breeds [46], for an Irish commercial cross [9], and as 
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Fig. 3 Spearman correlations per week and per line between 
 phenotypesa (dashed lines) and estimated breeding  valuesb (solid 
lines) for RFI obtained with the phenotypic regression and the 
multi‑SAD regression models. aFor week j, ρ
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∗
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 where 

phenotypes of animal i  at week j  are ̂RFIij = ûRFI,ij + êRFI,ij and 
̂RFI

∗

ij = ̂u∗
RFI,ij

+ ê
∗
RFI,ij

 for the phenotypic regression and multi‑SAD 
regression models, respectively. bFor week j, ρ

(

û.j , û
∗
.j

)

 where ûRFI,ij 

and û∗
RFI,ij

 correspond to the estimated breeding values for RFI for 
animal i  at week j  obtained with the phenotypic regression and 
multi‑SAD regression models, respectively. Correlations calculated for 
1229 phenotyped animals for the low RFI line and 1122 phenotyped 
animals for the high RFI line. Shaded area = 95% confidence interval

Table 4 Spearman correlations [0.95 confidence interval] per 
line between summarised estimated breeding values for RFI 
obtained with the phenotypic regression and the multi‑SAD 
regression models

Summarised breeding 
value

High RFI line Low RFI line

SBV1 0.83 [0.81, 0.85] 0.82 [0.79, 0.83]

SBV2 0.76 [0.73, 0.78] 0.66 [0.62, 0.69]
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with the multi‑SAD regression model over generations of selection 
for the High and Low RFI lines
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reviewed by Clutter [47]. Longitudinal estimates for these 
traits are more rarely reported in pigs. For FI and RFI 
over 10 consecutive weeks of growth in three pig breeds, 
Shirali et al. [36] reported estimates of heritability rang-
ing from 0.13 to 0.23 and from 0.02 to 0.20, respectively. 
As in our study, heritability estimates tended to increase 
with time for FI but their estimates followed a U-shaped 
curve for RFI and were lower than in our study. Using 
random regression approaches with different splines 
and Legendre polynomials, Cai et  al. [48] reported esti-
mates of heritability for longitudinal FI, BW, BF between 
90 and 210  days of age on Yorkshire RFI selection lines 
at Iowa State University that, in some cases, increased at 
the extreme ages, which is typically due to the limits of 
the RR model listed earlier in the Discussion. Their esti-
mates, were higher than our estimates for BW and BF 
and slightly lower for FI.

Estimates of heritability for weekly RFI obtained 
with the phenotypic and multi-SAD regression mod-
els (Fig. 1) were within the range of heritabilities, from 
0.13 to 0.38 [6, 7, 22, 46], that have been reported 
in the literature for average RFI in pigs over the test 
period. Heritability estimates obtained with the multi-
SAD regression model tended to be lower (but only 
significantly lower in weeks 1, 2, 3, and 10) than those 
obtained with the phenotypic regression model. The 
lower estimates were the result of lower estimates of 
genetic variance, while estimates of environmental 
variance for RFI were similar for the two models. Con-
comitantly, in spite of a similar pattern, estimates of 
the genetic correlation between RFI at different time 
points obtained with the multi-SAD regression model 
were lower than those obtained with the phenotypic 
regression model. These differences (heritabilities and 
correlations) between these two models are probably 
the result of the genetic correlations with production 
traits that persist in the phenotypic regression model, 
whereas they were null in the multi-SAD regression 
model. Indeed, as demonstrated by Kennedy et  al. [5], 
genetic independence between production traits and 
RFI obtained by phenotypic regression is achieved only 
when 

(

1− h2P
)

cov(uFI ,uP) = h2Pcov(eFI , eP) , where P is 
the production trait. In our study, this condition was 
probably not met at all time points and, as expected, 
correlations of weekly EBV for RFI with weekly EBV 
for production traits tended to be weaker with the 
multi-SAD regression model than with the pheno-
typic regression model (see Additional file  6: Figure 
S4). The non-zero genetic correlations with production 
traits obtained with the phenotypic regression model 
may also explain the decreasing correlations between 
weekly EBV for RFI obtained with the two models over 
time (model differences that accumulate over time). 

Estimates of phenotypic correlations between weekly 
RFI obtained with the two models were weaker when 
phenotypic correlations of RFI with production traits 
were non-zero in the multi-SAD model (negative cor-
relations with MBW at the beginning of the test period 
and slightly positive correlations with ADG at the end of 
the test period (see Additional file 4: Figure S2c), while 
RFI was phenotypically independent of the production 
traits with the phenotypic regression model. It should 
be noted that use of the phenotypic regression model at 
the test-period level (one single observation per animal) 
resulted in near genetic independence between RFI and 
production traits, with estimates of genetic correlations 
equal to − 0.05, 0.07 and 0.36 for RFI with ADG, BF, and 
MBW, respectively. In this case, the correlation between 
EBV obtained with the phenotypic regression and the 
multi-SAD regression model (adapted to a single obser-
vation for each trait) was high (0.96).

Estimates of the phenotypic regression coefficients 
obtained with the phenotypic regression model changed 
slightly over time (Table 3). For BF and MBW, the differ-
ence between the maximum and minimum phenotypic 
regression coefficients was not significantly different from 
0 given the standard errors of the estimates, whereas for 
ADG, the regression coefficient estimates were signifi-
cantly higher in weeks 6, 7, and 8 than in weeks 1, 2, and 
3. However, when applying a linear regression model on 
these regression coefficients, none of the slopes were sig-
nificantly different from zero (estimated slopes of 0.028, 
− 0.014, and − 0.004 for ADG, MWB, and BF, respec-
tively, p_values > 0.30). This outcome is explained as 
follows: in the selection experiment, pigs were fed the 
same diet throughout the test period and the diet was 
formulated to cover the animals’ energy and amino acid 
requirements, such that feed intake was essentially driven 
by the net energy content of the feed [49]. Thus, the phe-
notypic relationships that we observed for FI with ADG, 
MBW, and BF were driven mainly by the energy costs of 
these traits. In most models, the energy costs of main-
tenance (MBW) and of fat and protein deposition are 
considered to be constant for an animal during growth 
[50], although in some cases individual factors have been 
shown to affect maintenance requirements (visceral mass 
versus lean tissue, for instance) [51]. In the final multi-
SAD regression model, the cross-antedependence param-
eter functions (regression coefficients) were of degree 1 
because higher degree cross-antedependence functions 
led to convergence problems or to spurious variance 
estimates. Thus, in the SAD model, genetic and environ-
mental regression coefficients were considered to evolve 
linearly over time. Interpretation of changes in estimates 
of regression coefficients over time is more difficult for 
genetic and environmental regression coefficients than 
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for phenotypic regression coefficients, and no infor-
mation on these aspects is available in the literature. In 
practice, different factors could influence the partitioning 
between genetic and environmental components of the 
phenotypic covariation of FI with production traits over 
time. For example, competition for access to the feeder 
may increase over time for pigs raised in groups, which 
means that the importance of the environmental factors 
may increase relative to the genetic determinism of how 
feed is used for growth. In addition, estimates of regres-
sion coefficients varied most from the beginning to the 
end of the period for MBW, which was the trait with the 
smallest genetic and environmental variance estimates 
(ranging from 5 to 66 and from 17 to 45, respectively), 
while they varied least for BF, which was the trait with 
the largest genetic and environmental variance estimates 
(ranging from 18 to 203 and from 48 to 218, respectively). 
Thus, these changes in coefficients might have limited 
impacts on covariances of the trait with FI and on the 
resulting RFI.

For the purpose of comparison, missing pheno-
types for production traits were replaced by their lin-
ear interpolations for both models. As stated in the 
Methods section, the multi-SAD regression model 
can cope with a substantial number of missing values 
for the production traits, which is another advantage 
of this model. In the phenotypic regression model, if 
one of the production traits is missing at a given time 
point for an animal, RFI is also missing, which would 
be problematic if many phenotypes were missing for 
the different production traits. In our case, applying 
the phenotypic regression model to the original data-
set (i.e. the set with numerous missing phenotypes for 
production traits) led to spurious variance estimates 
[estimates of heritability of RFI were very high, up to 
0.78, (see Additional file  7 Figure S5)]. Results of the 
multi-SAD regression model applied to the original 
dataset (the same multi-SAD regression model) are 
provided in Additional file 7: Figure S5 and Additional 
file  8: Figure S6. The heritability estimates that were 
obtained with the multi-SAD regression model applied 
to the initial dataset did not differ from those obtained 
with the dataset using linear interpolation of missing 
phenotypes. Patterns of estimates of the genetic and 
environmental regression coefficients over time were 
also similar between the two datasets, as were the slope 
estimates, although we did note a tendency for steeper 
slopes when phenotypes were missing. The main dif-
ferences between the two datasets were evident for the 
SBV. When phenotypes were missing, the correlations 
between SBV obtained with the phenotypic regression 
and the multi-SAD regression model were weaker than 
the correlations obtained when models were applied to 

data with no missing phenotypes: 0.76 [0.73, 0.79], 0.80 
[0.78, 0.82] for SBV1, and 0.48 [0.44, 0.52], 0.63 [0.60, 
0.67] for SBV2 for the High and Low lines, respectively. 
This result indicates that, in practice, when applying 
the multi-SAD regression model to data with missing 
records, selection based on SBV will differ markedly 
from selection on estimates obtained with the pheno-
typic regression model, particularly regarding the pro-
file of RFI changes over time (SBV2). Values of the first 
eigenvector with the multi-SAD model, which was used 
to compute SBV1, were all positive and increased with 
time, while the sign of the values of the second eigen-
vector changed at week 7. This means that selection for 
SBV1 would lead to selection in the same direction at all 
time points, while selection for SBV2 would have oppo-
site effects for the beginning versus the end of the test 
period. In our study, animals were divergently selected 
based on RFI obtained by phenotypic regression over 
the test period (one record per animal). Changes in 
SBV1 and SBV2 obtained with the multi-SAD model 
showed that this selection had, as expected, an impact 
on the average level of RFI over the test period, but 
also on the dynamics of RFI during the test period. This 
result is confirmed by the distribution of the individu-
als from the two lines into three trajectory patterns: 
90% of the animals that were classified into the cluster 
with the lowest mean and slope were from the Low RFI 
line, while 94% of the animals that were classified into 
the cluster with the highest mean and slope were from 
the High RFI line. A previous study in the same popula-
tion on the impact of selection for RFI at the test period 
level on the trajectory of feed conversion ratio reported 
similar results [15]. In practice, selection for RFI based 
on SBV1 and SBV2 allows control of the average level of 
RFI, as well as its changes with age. Nonetheless, fur-
ther research is needed to identify the desired pattern 
of the RFI trajectory to select for. Indeed, is it prefer-
able to select animals with a constant RFI over time, or 
an RFI that increases or decreases with age? To answer 
this question, studies on the covariation of longitudinal 
RFI with other traits of interest, such as carcass com-
position and meat quality, are needed, as well as on the 
evaluation of the economic impact of RFI at different 
ages.

Conclusions
The multi-SAD regression model is preferred over the 
phenotypic regression model for analysis of longitudi-
nal RFI because the multi-SAD regression model can 
be applied even when phenotypes for production traits 
are missing. In addition, RFI obtained with the multi-
SAD regression model are genetically independent of 
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production traits at all time points, in contrast to the 
phenotypic regression model. Selection on SBV for RFI 
does not result in selection of the same animals when 
based on these two models.
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