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Real-time unsteady air flow prediction
to reduces mechanic load variations
and wind turbine maintenance costs

 Lower WT maintenance costs

 Longer WT life cycle

How ? Active control loops with robust and fast 
aerodynamic short-time prediction to reduces :  

 blade lift variations

Which simple model?      How to combine model & measurements?
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Data assimilation
(particle filter + tempering)

More accurate estimation
globally in space

3 𝑚. 𝑠−1 5 𝑚. 𝑠−1

On-line 
measurements

• Sparse
• Possibly noisy 

Numerical simulations 
(ROM)

• Globally in space
• Erroneous

Example of estimation:

wind velocity
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Novelty is here !

3.  Randomized physics 𝑝 𝑥𝑡+1 𝑥𝑡  Location uncertainty models (LUM)

Rigorous CFD stochastic closure, with physically-based multiplicative noise

Need for accurate uncertainty / errors quantification :

2.   Measurement-simulation coupling (data assimilation)

1.   Ultra-fast CFD simulations with intrusive reduced order models (ROM) 

On-line : Simulation & data assimilation
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 Reduced order model (ROM) : for very fast and robust CFD 
Combine data & physics (built off-line)

 Data assimilation : to correct the fast simulation on-line 
by incomplete/noisy measurements

 Robust flow prediction far outside the learning period 
Optimal unsteady flow estimation/prediction
in the whole spatial domain

NEXT STEPS

Re 300, 3D
14 vortex
shedding

cycles after the
learning period
(DNS has 107 dof)

Re 100, 2D
10 vortex
shedding

cycles after the
learning period
(DNS has 104 dof)

Reference :
PCA-projection of the DNS

(Optimal from 8-dof linear decomposition)

Our method :
POD-Galerkin with Navier-Stokes
under location uncertainty (LUM)
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RESULTS FOR 8-DEGREE-OF-FREEDOM (DOF) SIMULATIONS COUPLED WITH A SINGLE MEASUREMENT POINT 

CONCLUSION

State-of-the-art :
POD-Galerkin with Navier-Stokes + optimally

tuned eddy viscosity & additive noise

 Real measurements
 Increasing complexity  Control loop

Inflow Q-criterion Inflow Q-criterion Inflow Q-criterion

Inflow Vorticity Inflow Vorticity

We get a 𝑛 coupled ordinary differential equations
for very fast simulation of temporal modes 𝑏𝑖 𝑡

 Principal Component Analysis (PCA) on a dataset to reduce the degrees of freedom (dof) :

 Approximation (at small dof 𝑛):

 Projection of the “physics”
onto the spatial modes : 
(POD-Galerkin)

( Physical equation (e.g. Navier-Stokes))න
Ω
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Learned and set 
up once for all

 Higher wind 
farm power

VorticityInflow

• lidar• e-telltale

e-telltale

Wind 
fluctuations

 wake effects within 
wind farms

Estimation and prediction:
• Air flow
• Lift, drag, AoA

Observer

Controller 

Simple 
model

Simple 
model

• Blade pitch
• Fluidic actuators
• WT yaws (for wind farms)

Wind
Turbine

(or wind farm)

WT sensors

For actively controlling aerodynamic systems – like Wind Turbine (WT) blades -- it
can be necessary to estimate in real-time and predict the air flow around those
systems. We propose here a new method which combines machine learning,
physical models and measurements for this purpose. Very good numerical results
have been obtained on wake flows.
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