

Real-time unsteady air flow prediction to reduces mechanic load variations and wind turbine maintenance costs

V. Resseguier, M. Ladvig, A. M. Picard, E. Mémin, D. Heitz, D. Voisin, C. Braud

ABSTRACT

For actively controlling aerodynamic systems – like Wind Turbine (WT) blades -- it can be necessary to estimate in real-time and predict the air flow around those systems. We propose here a new method which combines machine learning, physical models and measurements for this purpose. Very good numerical results have been obtained on wake flows.

APPLICATIONS

model

- Lower WT maintenance costs
- Higher wind farm power Longer WT life cycle

Active control loops with robust and fast How? aerodynamic short-time prediction to reduces:

- blade lift variations
- wake effects within wind farms

• e-telltale • lidar

Which simple model?

How to combine model & measurements?

(or wind farm)

METHODOLOGY

- 1. Ultra-fast CFD simulations with intrusive reduced order models (ROM)
- > Principal Component Analysis (PCA) on a *dataset* to reduce the degrees of freedom (dof):

Measurement-simulation coupling (data assimilation)

Rigorous CFD stochastic closure, with physically-based multiplicative noise

RESULTS FOR 8-DEGREE-OF-FREEDOM (DOF) SIMULATIONS COUPLED WITH A SINGLE MEASUREMENT POINT

Wind

State-of-the-art: Our method: Reference: POD-Galerkin with Navier-Stokes POD-Galerkin with Navier-Stokes + optimally PCA-projection of the DNS tuned eddy viscosity & additive noise (Optimal from 8-dof linear decomposition) under location uncertainty (LUM) Vorticity Vorticity Vorticity Inflow Inflow Inflow Re 100, 2D 10 vortex shedding cycles after the learning period (DNS has 10^4 dof) Q-criterion Inflow Q-criterion Inflow Q-criterion Inflow Re 300, 3D 14 vortex shedding cycles after the learning period (DNS has 10^7 dof)

METHODOLOGY SUMMARY

SCALIAN

CONCLUSION

- > Reduced order model (ROM): for very fast and robust CFD Combine data & physics (built off-line)
- > Data assimilation: to correct the fast simulation on-line by incomplete/noisy measurements
- Robust flow prediction far outside the learning period Optimal <u>unsteady</u> flow estimation/prediction in the whole spatial domain
- Real measurements
- Increasing complexity

Control loop

NEXT STEPS

