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Real-tfime unsteady air flow prediction
o reduces mechanic load variations
and wind turbine maintenance costs

V. Resseguier, M. Ladvig, A. M. Picard, E. Mémin, D. Heitz, D. Voisin, C. Braud

ABSTRACT

For actively controlling aerodynamic systems — like Wind Turbine (WT) blades -- it
can be necessary to estimate in real-time and predict the air flow around those
systems. We propose here a new method which combines machine learning,
physical models and measurements for this purpose. Very good numerical results
have been obtained on wake flows.
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METHODOLOGY

1. Ultra-fast CFD simulations with intrusive reduced order models (ROM)

> Principal Component Analysis (PCA) on a dataset to reduce the degrees of freedom (dof) :
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> Approximation (at small dof n):

v(z,t) ~ i bi(t)| Pi(z) .
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> Projection of the “physics” J dx ¢;(x) - ( Physical equation (e.g. Navier-Stokes))
Q

onto the spatial modes :
(POD-Galerkin)

We get a n coupled ordinary differential equations
\ for very fast simulation of temporal modes b; (t)
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2. Measurement-simulation coupling (data assimilation)

Numerical simulations
(ROM)

On-line
measurements

Data assimilation
(particle filter + tempering)

More accurate estimation

\globally in space/f

(p(xly) < p(ylx)p(x))

 Globally in space
* Erroneous

* Sparse
* Possibly noisy

Example of estimation:

wind velocity

Need for accurate uncertainty / errors quantification : Novelty is here !

3. Randomized physics p(x;,:|x;) = Location uncertainty models (LUM)

Rigorous CFD stochastic closure, with physically-based multiplicative noise

RESULTS FOR 8-DEGREE-OF-FREEDOM (DOF) SIMULATIONS COUPLED WITH A SINGLE MEASUREMENT POINT

Reference :
PCA-projection of the DNS
(Optimal from 8-dof linear decomposition)

POD-Galerkin with Navier-Stokes
under location uncertainty (LUM)

State-of-the-art :
POD-Galerkin with Navier-Stokes + optimally
tuned eddy viscosity & additive noise

Our method:

Re 100, 2D

10 vortex
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(DNS has 10* dof)

Vorticity
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Re 300, 3D

14 vortex
shedding
cycles after the

learning period
(DNS has 107 dof)

DD

METHODOLOGY SUMMARY

CONCLUSION

Off-line : Building ROM

/ On-line : Simulation & data assimilation \

» Reduced order model (ROM) : for very fast and robust CFD
Combine data & physics (built off-line)
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» Data assimilation : to correct the fast simulation on-line
by incomplete/noisy measurements

» Robust flow prediction far outside the learning period
Optimal unsteady flow estimation/prediction
in the whole spatial domain

Flow
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> Real measurements

» Increasing complexity » Control loop
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