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Abstract

Background Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is se-
verely affected by ageing in humans.

Methods We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal
muscle from 10 studies (total n ¥4 908 muscle methylomes from men and women aged 1889 years old). We explored
the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor
binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known
transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed
muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html).

Results We identi ed 6710 differentially methylated regions at a stringent false discovery rate< 0.005, spanning 6367
unigue genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA
methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation
at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were none-
theless strongly enriched for genes showing age-related differential mMRNA and protein expression. After adding a sub-
stantial number of samples from ve datasets (+371), the updated version of the muscle clock (MEAT 2.0, total
n ¥ 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in
age prediction error), suggesting that the original version of the muscle clock was very accurate.

Conclusions We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle
and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation.
We have made our results available as an open-access, user-friendly, web-based tool calldtaMeth (https://sarah-
voisin.shinyapps.io/MetaMeth/).

Keywords Skeletal muscle; Ageing; Epigenetics; DNA methylation; Epigenetic clock; Meta-analysis; Omics
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Backg round integrated original DNA methylation data from our laboratory
(the Gene SMART cohort) with available open-access data

While human lifespan (i.e. the number of years alive) hasom multiple repositories and published studies. Firstly, we

increased by ~3.5 years per decade since 19B8althspan aimed to identify robust age-related CpGs in skeletal muscle

(i.e. number of years spent in good health) has not inin an EWAS meta-analysis of age, combimi&g908 samples

creased to the same extent. In 2015, people lived 5 yeafsom 10 datasets. Second, we performed enrichment analy-

longer than in 2000, but only 4.6 years longer in goodes to unravel the potential functional consequences of these

health? Ageing leads to the progressive loss of muscle massbust age-related DNA methylation changes. Thirdly, we in-

and strength, resulting in a disorder termed sarcopenidegrated age-related methylome changes with transcriptome

Sarcopenia is a serious condition leading to an increased rigkd proteome changes in skeletal muscle using two external,

of many conditions including cancer, type 2 diabetes (T20#rge-scale studies. Finally, we updated our skeletal muscle

and cardiovascular diseasé$his process is driven by a hostepigenetic clockwith an additional 371 samples, reaching a

of adverse molecular changes in skeletal muscle with atbtal of 1053 human skeletal muscle methylomes from 16

vancing age. Unravelling the molecular changes caused dgtasets. Importantly, we have made the results of our anal-

ageing in skeletal muscle is the basic foundation for thgsis available as an open-access, user-friendly, interactive

development of drugs and targeted health-relatedveb-based tool,MetaMeth (https://sarah-voisin.shinyapps.

interventions to help prevent sarcopenia and maximizéo/MetaMeth/), enabling users to look at age-related changes

healthspan. in any gene of interest across the muscle methylome,

Epigenetics are modcations of DNA that confer on the cell transcriptome, and proteome.

the ability to remember a past evefftEpigenetic changes are

one of the primary hallmarks of ageing, leading to dysregu-

lated nutrient sensing, mitochondrial dysfunction, and cellular

senescence, which ultimately results in stem cell exhaustidvlethods

and altered intercellular communicatiohThe best character-

ized epigenetic modcation in the context of ageing is DNAEpigenome-wide association study meta-analysis

methylation. DNA methylation occurs at millions of CpG dinwpf age in skeletal muscle

cleotides in the genome and changes considerably with age in

various human tissué$, including skeletal musclé’ e combined four datasets of genome-wide DNA methyla-
Age-related DNA methylation changes in skeletal musqi@®n in skeletal muscle [the Gene Skeletal Muscle Adaptive
may be one of the molecular mechanisms underlyingesponse to Training (SMARTthe Limb Immobilisation
sarcopenia, but the full picture is fragmentary. To date, fougnd Transcriptional/Epigenetic Responses (LITER) %tudy,
epigenome-wide association studies (EWA%S)'™ have the Biological Atlas of Severe Obesity (ABOS) Sthidynd
probed age-related DNA methylation changes in the muscige Epigenetica & Kracht (EPIK) sttfilywith ve datasets
methylome, and all relied on relatively small sample sizgfom the open-access Gene Expression Omnibus platform
(n%210-50). Studies relying on a small sample size fail to dg6SE49908, GSE50498, GSE11476% GSE38291° and
tect small effect sizes and can be prone to large error, so largeySE135063), and the Finland-United States Investigation
initiatives are needed to identify the comprehensive list obf NIDDM Genetics (FUSION) sttfdyphs000867.v1.p1).
CpG loci that change in methylation with age in human skelgshese summed up to a total aoff ¥ 908 skeletal muscle
tal muscle. Meta-analyses signantly increase statistical samples collected from men and women across the lifespan
power and are more likely to identify robust age-relatedage range 189 years old, Supporting Informatiofjgure
methylation sites-> Current understanding of epigenetic age-s1 andTable S1). Samples were 98% Caucasian and 71%
ing in skeletal muscle also remains incomplete as insight infaale (Table S1). We excluded cohorts from our recently
the functional consequences of age-related epigenetigublished papet with a narrow age range (age standard
changes remains poorly understood. Whether age-relategeviation <5 years) as age-related differences in DNA
changes in DNA methylation in muscle cause or stem frofjethylation cannot be detected if age is invariant; we also
changes in mRNA and protein expression is currentficluded datasets with a limited number of samples
unknown. (n < 20) for robustness. Samples from the Gene SMART
To address these gaps, we performed a large-scale biogshort (v ¥ 234) include two batches, and our recently
formatics analysis of DNA methylation, and mRNA and prpublished papet only includes the rst batch of 75 samples
tein changes with age in human skeletal muscle. Weavailable on the Gene Expression Omnibus platform
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(GSE151407). The additional 159 samples from the secometformed to test whether effect sizes were homogeneous
batch include both men and women, before and after exerbetween studies [a heterogeneity indei)(>50% re ects
cise intervention. heterogeneity between studies]. The CpGs associated with
Different preprocessing pipelines may result in DNA mettage at a stringent meta-analysis false discovery rate (FDR)
ylation differences between studies. To overcome this issug,0.005 were considered differentially methylated positions
we downloaded and preprocessed the data using the sam®MPs). We then idented differentially methylated regions
pipeline for 9/10 datasets whose raw data were availabl¢€DMRS) (i.e. clusters of DMPs with consistent DNA methyla-
(TableS1). Details on the preprocessing steps can be fouritbn change with age) using the&lmrcate package, at a
elsewhere’ We have also Itered out additional probes that Fishets multiple comparison statisti 0.005, a Stouffer
have been identied as cross-hybridizing by Pidsletyal.’® score <0.005, and a harmonic mean of the individual
We did not preprocess all datasets together because age dissmponent FDRs:0.005%% dmrcate works by smoothing
tributions varied widely between datasetBigureS1). As age the test statistic of CpGs separated by a maximum of
was confounded with dataset, normalizing datasets togethef000 bp using a Gaussian kernel; then, it models the
may overcorrect/under-correct DNA methylation ptes and smoothed test statistics, computes and corred®svalues,
arti cially introduced noise. Therefore, we analysed eaciind nally aggregates adjacent CpGs that are sicgnit and
dataset separately and only then perform a meta-analysisyithin 2000 bp of each other. We focused on the DMRs for
which preserves each datasetspecicity while combining all downstream analyses, as DMRs remove spatial redun-
results across datasets. We conducted independent EWASncy (CpG sites within ~500 bp are typically highly
of age in skeletal muscle in each dataset, using linear modalerrelated®), and they may provide more robust and func-
and moderated Bayesian statistics as implemented itonally important information than DMP%2¢
limma?® to isolate the contribution of age to DNA methyla-
tion variability, we regressed DNA methylation level against
age and adjusted, when the dataset included these covari-
ates, for sex, body mass index (BMI), diabetes status, batdhnrichment of differentially methylated regions in
and time point (baseline/post-intervention or training); wefunctional regions of the genome
also added, when the dataset included repeated measures
on the same individuals or related individuals, a random ine used a 2 test to compare the distribution of
tercept using the duplicateCorrelation function to accountiypermethylated and hypomethylated DMRs with that of
for repeated measures from the same individuals or tmon-DMRs (i) at different positions with respect to CpG
account for twinship. We adjusted each EWAS for bias anslands, (ii) in different skeletal muscle chromatin states from
in ation using the empirical null distribution as implementedhe Roadmap Epigenomics Projétand (iii) in CCCTC-bind-
in bacon(FigureS2)?* In ation and bias in EWAS are causedng factor (CTCF) and enhancer of zeste homologue 2 (EZH2)
by unmeasured technical and biological confounding, sudtanscription factors binding sites in HSMMtube from the EN-
as population substructure, batch effects, and cellula€CODE project. CTCF is a multifunctional protein involved in
heterogeneity?” The in ation factor is higher when the ex- gene regulation and chromatin organizatihwhile EZH2 is
pected number of true associations is high (as it is for agefhe functional enzymatic component of the Polycomb repres-
it is also greater for studies with higher statistical poér. sive complex 2 (PRC?).A P-value <0.005 was deemed
The gures we found FigureS2) were consistent with the signi cant.
in ation factors and biases reported in an EWAS of age in We performed gene ontology (GO), KEGG, and Reactome
blood?* enrichment on the age-related DMRs using all tested CpGs
Results from the independent EWAS were combined usiag the background (i.e. the 649 250 CpGs included in the
an inverse variance weighted meta-analysis with MEffALmeta-analysis), thanks to the goregion function from the
We used METAL because it does not require all DNAissMethyl package® We used our own improved
methylation datasets to include every CpG site on thannotation of the epigenome and largely based on the
HumanMethylation arrays. Different sets of CpGs may beomprehensive annotation of Zhowt al. of Illlumina
ltered out during preprocessing of each individual datasetiumanMethylation arrays as well as the chromatin states
which means the overlap between the datasets is imperfedh skeletal muscle from the Roadmap Epigenomics
and a given CpG may only be present ime out of 10 Project?’ and the latest GeneHancer informatidh. The
datasets or eight out of 10 datasets. For robustness, we ontyoregion function accounts for the biased distribution of
included CpGs present in at least six of the 10 cohortSpGs in gene¥ All GO, KEGG, and Reactome terms with
(649 250 CpGs). We used =ed effects (as opposed to ran-FDR< 0.005 were deemed signiant3*3° To make sense
dom effects) meta-analysis, assuming one true effect size of the many GO terms obtained as output, we used
age on DNA methylation, which is shared by all the includeBEVIG® that clusters GO terms according to semantic
studies. Nevertheless, Cochra-test for heterogeneity was similarity.
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Integration of methylome, transcriptome, and obtain DNA methylation prdes that were comparable be-
proteome changes with age tween datasets, we calibrated each dataset to GSE50498
using an adapted version of the BMIQ algoritfrive then

Each gene with at least one DMR annotated to it was consi¢ised elastic net regression on a transformed version of age
ered a differentially methylated gene (DMG). To gain insightg create the new muscle clock (MEAT 2aginally, given
into the functional consequences of DNA methylatiorihe limited number of datasets and the biased age distribu-
changes with age in skeletal muscle, we compared DMd8n in each dataset, we estimated the accuracy of the new
with known differentially expressed genes at themuscle clock in an unbiased manner using a leave-one-
transcriptomié¢’ and proteomié® levels with advancing age. dataset-out cross-validation procedure, as described in our
A transcriptomic meta-analysis in skeletal muscle was reriginal paper

cently published® but it focused on exercise-induced

changes instead of age-related changes. Thus, we used the

transcriptomic meta-analysis of age by 8ual. that com-
bined 2852 public gene expression arrays in skeletal musJBeSUItS

and identi ed 957 genes whose mRNA levels changed with . .
age?’ Ubaida-Mohieret al. performed a large-scale proteo-RNIdeSpread age-related DNA methylation changes

mics analysis of human skeletal muscle and idesdi 1265 At genes involved in skeletal muscle structure,

genes whose protein levels were altered with a§ave used development, and function
a 2test to see whether a disproportionate number of DMGs
were also differentially expressed at the mRNA or proteiliVe rst conducted an EWAS meta-analysis of age in skeletal
level, and aP-value< 0.005 was deemed sigréant. muscle using 10 datasets (total/a 908 samples from 601 in-
dividuals,Tablel) and uncovered a small, widespread effect
of ageing on the skeletal muscle epigenome. Six per cent of
Update of the muscle epigenetic clock (ME2Z(J) all tested CpGs were associated with age in skeletal muscle
(40 479 DMPs corresponding to 6710 DMRs, both at
Since the development of the original muscle clock that useBDR< 0.005, Figure 1A andTablesS2 and S3). We found
682 samples from 12 datasets to predict age from DNA metistightly more hypomethylated than hypermethylated DMPs
ylation data® we gathered additional 371 samples frome (57% hypo-DMPs and 43% hyper-DMR&leS2). The magni-
datasets (+159 from Gene SMART, +65 from ABOS, +42 frtmie of age-related DNA methylation changes was small and
LITER, +57 from GSE135063, and +48 from EPIK). We theimadar for both hypo-DMPs and hyper-DMPs: hypo-DMPs
fore updated the clock with these new samples, usingpst an average of ~0.8% in methylation per decade of life,
the same algorithm and methodolodyBrie y, we rst and hyper-DMPs gained an average of ~0.6% in methylation
preprocessed each dataset separately (i.e. probe/sample per decade of life EigurelB).
tering, adjustment of type | and type Il probes, and correction Each dataset had a unique study design that required
for batch effects); then, we reduced each dataset to all thadjustment for factors that are known to affect DNA meth-
CpGs that were common between them (18 747 CpGs). Vation levels, such as séXBMI** and T20*2 We adjusted

Table 1 Characteristics of the 10 cohorts included in the EWAS meta-analysis of age

Number of
unique Number of Health Age Age range
Dataset ID Array individuals  samples status (mean + SD) (min—-max) % male Ethnicity
FUSION HMEPIC 282 282 Healthy/T2D 504+79 2677 54%  Caucasian
Gene SMART HMEPIC 66 234 Healthy 32+8.1 1845 80%  Caucasian + one mixed
Aboriginal/Caucasian
ABOS HM450 65 65 Lean/obese/obese 44 + 8.2 23 61 0% Caucasian
with T2D
LITER HMEPIC 21 63 Healthy 26.0+5.9 2639 100%  75% Caucasian,
16% Asian, 8% mixed
GSE135063 HMEPIC 24 57 Healthy/obese 38.9+10 2358 100%  Caucasian
GSE49908 HM27 51 51 Healthy 50 + 17 21-77 100%  Caucasian
GSES50498 HM450 48 48 Healthy 47 + 26 18-89 100%  Caucasian
EPIK HMEPIC 14 48 Healthy 454+ 223 2671 100% Caucasian
GSE114763 HMEPIC 8 38 Healthy 29+6 1939 100%  Caucasian
GSE38291 HM27 22 22 Healthy/T2D (twins) 68+ 8 53-80 45%  Caucasian

EWAS, epigenome-wide association study; SD, standard deviation; T2D, type 2 diabetes.
The number of samples can differ from the number of unigue individuals if the same individuals have been pro  led for DNA methylation
patterns multiple times, such as before and after exercise training.
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Figure 1 Age-related DNA methylation loci in human skeletal mug@gMeta-analysis effect size-fixis) and meta-analysis sigoance y-axis) for

the 649 250 tested CpGs. Hypomethylated (blue) and hypermethylated (red) points represent differentially methylated position (DMPs) at-a false dis
covery rate (FDR¥0.005. (B) Distribution of age-related DNA methylation change at hypo-DMPs and hyper-O@Sorest plots of the top
hypomethylated and hypermethylated DMPs, showing sample size, effecPsiakje, and FDR for each individual study as well as their meta-analysis.
Studies with missing informationNA) mean that this CpG was not analysed in the dataset.

each dataset for these factors, but we noted that age was We then focused on the DMRs for all downstream
associated with BMI or T2D in some datasefalfle S1). analyses, as DMRs remove spatial redundancy (CpG sites
For example, older individuals from the GSE50498 dataseithin ~500 bp are typically highly correlaf&d, and they
had a higher BMI than younger individuals (4.1 k§/mmay provide more robust and functionally important
heavier,P ¥ 0.0011), so it is possible that the age-relatednformation than DMP$>2® As with DMPs, we found
signal captured in this dataset was partially confoundedlightly more hypomethylated than hypermethylated DMRs
by BMI. We repeated the meta-analysis without{61% hypo-DMRs and 39% hyper-DMREble S3).
GSE50498, but results were largely unchang&igure DMRS distribution in chromatin states was different from
S3a). We also repeated the meta-analysis excluding T2D paat of all tested CpGs ¢ test P-value <2.2 x 1016,
tients from the FUSION, ABOS, and GSE38291 datasets, Higure2). DMRs were strongly under-represented in quies-
results remained unchangedigureS3b). We also repeated cent regions, while over-represented at enhancers and
the meta-analysis without the ABOS dataset whose muscéeound active transcription start sites (TSSs). However,
of origin differed from that of the other datasets (rectushypo-DMRs were more strongly over-represented in genic
abdominis vs. vastus lateralis muscle). However, resukshancers and around active TSSs; conversely, only
remained unchangedF{gureS3c). Finally, we repeated thehyper-DMRs showed over-representation in and around bi-
meta-analysis omitting eight non-Caucasian individuals fromalent enhancers and promoters, and in regions actively re-
the Gene SMART and LITER cohorts. However, respitesssed by PolyComb proteins. The distribution of
remained unchangedF{gure S3d). This corms that our hyper-DMRs and hypo-DMRs also varied with respect to
results are not confounded by BMI, T2D, the type of skel€&zpG islands: both were under-represented in open seas
tal muscle, or the presence of a few ethnically diversand over-represented in CpGs island shores, but only
individuals. hyper-DMRs were over-represented in CpG islands
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Figure 2 Distribution of hypomethylated and hypermethylated differentially methylated regions (DMRs) and non-DMRs in functional regions of the
genome.(A) Distribution in chromatin states from male skeletal muscle from the Roadmap Epigenomics 5rcﬂ§):distribution with respect to

CpG islands, shorg =2 kb from the CpG island, shélf +2-4 kb from the CpG island, and open se& kb from a CpG island; an(€)distribution

in CCCTC-binding factor (CTCF) and enhancer of zeste homologue 2 (EZH2) binding sites in skeletal muscle myotubes differentiated from the HSMM
cell line (HSMMtube) from the ENCODE project. The grids underghees represent the residuals from thé test, with the size of the circles being
proportional to the celk contribution; red indicates an enrichment of the DMR category in the functional region, while blue indicates a depletion of

the DMR category in the functional region.

(2 test Pvalue <2.2 x 10 Figure 2). Finally, both DMGs. A pathway enrichment on the DMRs revealed that
hypo-DMRs and hyper-DMRs were under-represented DMGs were enriched for 48 GO termi&apleS4), all of which
CTCF binding sites in differentiated skeletal musclelated to skeletal muscle structure development, muscle
myotubes, but only hyper-DMRs were stronglycontraction, and calcium transporter regulatioRigure 3).
over-represented in EZH2 binding sitésglre2). In agreement with this, we also found enrichment for

Next, we integrated a comprehensive annotation ofthe KEGG terntardiac muscle contractioffFDRY2 0.0038)
lllumina HumanMethylation arrayswith chromatin states and for the Reactome term ‘muscle contraction
from the Roadmap Epigenomics Profécand the latest (FDRY4 0.00020). Of note, a GSEA enrichment restricted
GeneHancer informaticii to map the DMRs to gene§able to the hypomethylated DMGs yielded very similar results
S3). Including non-coding genes, there were 6367 genes th@able S5), but no signicant enrichment was found for
harboured at least one DMR, hereinafter referred to asypermethylated DMGs.

muscle system e
i muscle | structure
development
sySte m ’ regulation of
- calcium ion
p ro cess actl n transmembrane
] transport
nea rt. cytoslfele_ton
contraction organization | c°fmeteolism

Figure 3 Gene set enrichment analysis of the differentially methylated genes. This treemap shows the clustering of the 48usigréne ontology
(GO) terms belonging to thiiological processésategory. The 48 GO terms were clustered based on semantic similarity measures using REVIGO,
with each rectangle corresponding to a single cluster representative. The representatives are joinsdpetelustersof loosely related terms, visu-
alized with different colours. The size of the rectangles is proportional to-bg, o(P-value) of the GO term.
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Differentially methylated genes are enriched for expression in muscle. We utilized two external published

genes showing age-related changes at the mRN#udies: a transcriptomic meta-analysis of age that combined
and protein levels 2852 public gene expression arrays in skeletal mdéeled a

large-scale proteomic analysis of age in skeletal muscle from
We investigated the potential downstream effects of thesé8 healthy individuals aged 287 years®® Suet al.*” identi-
age-related DNA methylation changes on mRNA and proteied 957 genes whose mRNA levels change with age, and

Figure 4 Integration of DNA methylation, and mRNA and protein changes with age in human skeletal sCieerlap between genes that change

with age at the DNA methylation level (yellow, present study), mRNA level (gre&n,aiff), and protein level (purple, Ubaida-Mohiet al.38). On

each side of the Venn diagram, we showed the distribution of differentially expressed genes among the differentially methylated genes (DMGs) and
the non-differentially methylated genes (non-DMGs).2 test P-value< 0.005.(B) Relationship between age-related DNA methylation changes and
mRNA changes (right) or protein changes (léft¢gative relationshipmeans that a gene that was up-regulated with age at the gene expression level
showed lower DNA methylation with age in the present study, and a gene that was down-regulated with age at the gene expression level showed
higher DNA methylation with age in the present study. As the relationship between DNA methylation and gene expression differs depending on
the genomic context, we further split the age-related DNA methylation changes between those located in regions of active transcription and those
located in other regiong(C)Scatter plot showing the change in mRN#akis) and proteinytaxis) per year of age for the 57 genes altered at all three
omics levels. Each gene was coloured according to the number of DMRs annotated to it,-f8oBMRs for most genes all the way up to 9 DMRs.
Naturally, longer genes (e.g. NXN and ABLIM2) have a greater propensity to have more DMRs given their high numbers of CpGs.
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Ubaida-Mohieret al.38 identi ed 1265 genes whose protein  We also looked at age-related DNA methylation changes in
levels change with age. Forty-one per cent of the gendght of age-related physiological changes in muscle, namely,
whose mRNA levels change with age were also altered miuscle atrophy? alterations in lipid metabolisrft® and in-
the DNA methylation level, and 42% of the genes whose prerease in the proportion of hybrid muscleres (type 11xf®
tein levels change with age were also altered at the DN¥We focused on DNA methylation, mRNA expression, and pro-
methylation level Figure 4A). Furthermore, the DMGs tein expression changes at genes known to promote muscle
included proportionally many more differentially expressedtrophy FBX@2 TRIMB3 MYOGHDA®, andHDAG),*" in-
genes than the non-DMGs { test P-value<2.2 x 10 volved in fatty acid metabolism in muscle€€B86 GOT,
Figure 4A), indicating that such a large overlap betweerCPTA, HADH LPL. SL27A1, SLQ7A4, and UCE‘?),“SJ51 and
differential DNA methylation and differential gene expressioencoding myosin light and heavy chains that discriminate
with age cannot be attributed to chance alone. type |, type lla, and type lixbres MYH5, MYH7, MYHL,
Next, we investigated in more details the relationship beMYL3, and MYH?).5? While only three lipid metabolism
tween DNA methylation and mRNA or protein expressiomgenes were DMGs, with no corresponding changes in gene
This relationship is complex and depends on the genoméxpression, all genes promoting muscle atrophy were
context, particularly the underlying chromatin st&fean in- hypomethylated with increased age. In particulatPA@
crease in DNA methylation is usually associated with \eas mostly hypomethylated, and there was a corresponding
down-regulation of gene expression, but the opposite patncrease in mRNA level3dble2), and atrogin-1 was also
tern is observed in gene bodies of actively transcribed genelsypomethylated, with a corresponding increase in protein
We found that the relationship between DNA methylationlevels Table2). Nearly all genes encoding the myosin chains
and mRNA expression was negative in only 63% of case®re hypomethylated, but no gene expression changes were
regardless of whether the DMR was in a gene body or notletected [Table2).
and the relationship between DNA methylation and protein We also compared our DMPs with CpGs associated with
expression did not show any predominant patternage in two of the individual studies used in our meta-
(Figure4B). Fifty-seven genes were altered at all three omianalysié® to con rm and validate genes and regions. We
levels TableS6,Figure4C). There was a high concordancdound that half of the DMPs discovered by Zykovighal.”
between the transcriptomic and proteomic studies: arand 60% of the DMPs discovered by Detyal.? were vali-
age-related increase in mRNA level was most often mirrorethted by our meta-analysis. For instance, we aoned the
by an age-related increase in protein level and vice versmidespread intragenic hypermethylation ofBCD and
(Figure4C). NFATC.” Such a large overlap is not surprising given that

Table 2 Age-related epigenetic, transcriptomic, and proteomic changes at candidate genes involved in skeletal muscle atrophy, lipid metabolism, and
bre-type specication

Gene Number DNA methylation Gene expression
Gene name symbol of DMRs change with age change with age
Muscle atrophy Atrogin-1 FBX032 2 Hypomethylation Increased protein expression
MuRF1 TRIM63 3 Hypomethylation
Myogenin MYOG 1 Hypomethylation
Histone deacetylase 4 HDAC4 19 Hypo and Increased mMRNA expression
hypermethylation
Histone deacetylase 5 HDAC5 2 Hypomethylation
Fatty acid metabolism Fatty acid translocase CD36 0
Plasma membrane fatty GOT2 0 Decreased mRNA and
acid binding protein protein expression
Carnitine palmitoyltransferase | CPT1A 0
-Hydroxyacyl-CoA dehydrogenase HADH 2 Hypomethylation
Lipoprotein lipase LPL 1 Hypomethylation
Long-chain fatty acid SLC27A1 0
transport protein 1
Long-chain fatty acid SLC27A4 0 Decreased protein expression
transport protein 4
Uncoupling protein 3 UCP3 1 Hypomethylation
Fibre type-speci ¢ genes Myosin heavy chain 2 MYH2 1 Hypomethylation
Myosin heavy chain 1 MYH1 0
Myosin light chain 3 MYL3 2 Hypomethylation
Myosin heavy chain 6 MYH6 1 Hypomethylation
Myosin heavy chain 7 MYH7 5 Hypomethylation

DMR, differentially methylated region.
DNA methylation chansges are from the present EWAS meta-analysis, mMRNA changes are from Stet al.,>” and protein changes are from
Ubaida-Mohien et al.’
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both studies were included in the meta-analysis. For unbgraph: users simply need to hover their mouse on one point
ased replication, we compared our DMPs with CpGs assoacf-the graph to be shown the name of the gene and the num-
ated with age in a recent, independent stutfyOnly 7% of ber of DMRs annotated to it. The code used to produce the
the DMPs identied by Turneret al'* were replicated in website is available in open access on Sarah VeiiitHub
our meta-analysis, but 99% of them were consistentlgccount (https://github.com/sarah-voisin/MetaMeth).
hypomethylated or hypermethylated with age. As reported
by Turneret al.,'* we also found a systematic alteration
of all HOXgene clustersHOXA HOXBHOXCand HOXD, More samples in the muscle epigenetic clock do
but not necessarily the saméiOXgenes or in the same not change age prediction accuracy
direction!* We detected nine DMRs in th&élOXAcluster
that were nearly all hypomethylated, one hypermethylatedrhe present EWAS meta-analysis of age utilized all of the
DMR atHOXE/HOXB-AE four hypermethylated DMRS in datasets included in the original muscle epigenetic clock
the HOXCcluster, and two hypermethylated DMRs in the(MEAT) that we recently published, with the exception of
HOXDcluster Figure5). datasets that were invariant in age and the datasets that
were too small i < 20) (see Methodsj.The present study
. . . . included an additional 371 samples frome datasets. Using
MetaMeth: an online tool to visualize the ageing the same algorithm and methodology, we updated the mus-
pro le of human skeletal muscle cle clock with these new samples, reaching a total of
n % 1053 human skeletal muscle samples from 16 datasets.
We have made the results of the EWAS meta-analysis of agefife updated version of the clock (MEAT 2.0) uses DNA
skeletal muscle available as an online webtool Ca"eﬁhethylation at 156 CpGs to predict age, 73 of which were
MetaMeth  (https://sarah-voisin.shinyapps.io/MetaMeth/). in common with MEATHRigure 6A). We found that MEAT
The home page of the website provides a detailed list 0§ o only slightly outperforms MEAT, with an average Pearson
instructions on how to visualize results and focus on speci correlation coefcient of 0.69 across datasets (vs. 0.62 for

CpGs, genes, or genomic regions of interest in a usqteA?) and a median error of only 4.4 years across datasets
friendly, interactive manner. To obtain forest plots forws. 4.6 years for MEAT(Figure6B).

individual CpGs, users can enter the name of their CpG of

interest (e.g cg11109027 in the ‘Forest Plottab, and the

corresponding graph will appear, with the possibility to down-_ .

load the plot in jpg, png, or tif formats and at any resolution.DISCUSSION

To help with choosing CpGs to display, users dger the list

of CpGs based on their genomic location (e.g. genomic regiofy paint a comprehensive picture of age-related DNA methyl-
annotated gene, position with respect to CpG islands, chromation changes in human skeletal muscle, we conducted an
tin states in male and female skeletal muscle, and TF bindinggWAS meta-analysis of age in human muscle across the
To download summary statistics for DMPs or DMRs in a tabliéespan, combining 908 samples from 10 independent
format, users can go to thE&Summary Tablésab and down- datasets. In this study, we were able to demonstrate a pro-
load the data as an excel or csle, after optionally ltering found effect of age on the muscle methylome. Additionally,
data based on genomic location and statistics. Finally, we hawe have provided a detailed account of the genomic context
also displayed the scatter plot of genes showing methylatiomf age-affected regions, reported putatively affected path-
and mRNA and protein changes with age as an interactiveays, and integrated methylome changes with known

Figure 5 Genome browser view (hg38) of differential DNA methylation at the four HOX gene clusters. Tracks, from top to bottom, correspond to
hypermethylated and hypomethylated DMRs in the present meta-analysis, CpG islands, genes from RefSeq, and GeneHancer regulatory elements
and interactions.
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Figure 6 Original and new version of the muscle clock (MEAZ)Original (left, MEAT) and new version (right, MEAT 2.0) of the muscle &IBiuk.

Venn diagram represents the number of CpGs included in each clock and the number of CpGs in common between the two clocks. The graphs show
predicted -axis) against actuak{axis) age for each sample in the 16 datasets used to build the clocks. A leave-one-dataset-out cross-validation
(LOOCYV) procedure was used to obtain predicted age for a given dataset in an unbiased manner (16 LOOCV were performed, one per dataset). The
summary statistics reported on the left-hand side are the average correlation between actual and predicted age across datasets, the median absolute
error in age prediction across datasets, and the number of CpGs automatically selected by the algorithm to build th@prear in age prediction

either as the difference between predicted and actual age (left panel) or as the residuals from a linear model of predicted against actual age (right

panel). Note that both panels are on different scales.
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transcriptome and proteome changes in muscle. To maximizeduced plasticity of the hypermethylated genes. This was
the usefulness of this large-scale EWAS meta-analysis etatirely consistent with our ndings: hypermethylated DMRs
the scientic community, we created a website namedwere strongly enriched in CpG islands and EZH2 binding sites
MetaMeth  (https://sarah-voisin.shinyapps.io/MetaMeth/), (EZH2 is the enzymatic subunit of the Polycomb complex).
which allows researchers to visualize results in an interacti@olycomb target genes and bivalent chromatin domains are
and user-friendly manner. Finally, we updated our musclinked to developmental and differentiation processés,
clock with 371 newly acquired DNA methylation samplesvhich corroborated the pathway enrichment showing nu-
and found that the original version of the clock was alreadynerous GO terms related to muscle cell differentiation and
at optimal prediction accuracy. skeletal muscle development. Neither the root nor the func-
Previous studies on the overall pattern of age-related DN#onal consequences of enhancer hypomethylation are
methylation changes in muscle showed mixed results, thrdenown, but it may stem from altered DNMT and TET enzymes
reporting more hypermethylation with agé'*and one nd- activity and might lead to activation of cryptic transcripts or
ing slightly more hypomethylation with ag® We included disrupt enhancefrgene interactions* Taken together, our
three of these studies (GSE49908, GSE50498, and EPIK)ndings indicate a widespread effect of age on DNA methyl-
our meta-analysis and found balanced amounts of hypometion levels in skeletal muscle at genes fundamental for
thylation and hypermethylation. Differences in coveragskeletal muscle development, structure, and differentiation.
between studies are unlikely to explain the discrepancy in It is challenging to speculate regarding the consequences
results, because the three HumanMethylation arrays weref DNA methylation changes on gene expression, as both hy-
represented in these studies (27k, 450k, and 850Kk). It is mopmethylation and hypermethylation have been associated
likely that the overall direction of age-related DNA methylawith increased gene expressi6fic® likely depending on
tion change became more nuanced once these small-scdlee genomic context (i.e. CpG density, location with respect
studies were combined with the other nine datasets. Thito promoter/ rst exon/gene body/enhancer). In addition,
highlights the advantage of the meta-analysis approach we8% of DMGs harboured both hypermethylated and
utilized in identifying robust ageing-related CpG sites acrobypomethylated DMRs, further complicating the interpreta-
multiple, potentially conicting studies. We detected thou- tion of DNA methylation changes. We suggest that DNA
sands of age-related DMRs, likely thanks to the unpreceaethylation changes likely rect changes in gene activity,
dented power achieved with 908 human muscle samplebut the directionality is unclear. This is consistent with our
We found limited but highly consistent overlap betweenintegration of the present EWAS meta-analysis of age with
age-related changes idengd in our meta-analysis and thosetwo large, published transcriptomic and proteomic studies
recently identied in a small, independent study. In of age in human skeletal muscié3® Genes altered at the
particular, we validated age-related changes intiXgene DNA methylation level were much more likely to be altered
clusters. This is intriguing as epigenetic and transcriptomat the transcriptomic and proteomic levels. However, the re-
alterations of allHOXclusters were recently reported in a lationship between DNA methylation and gene expression
mouse model of accelerated ageify,suggesting that a was negative only ~580% of the time. We could not assess
dysregulation of developmental genes controlling celivhether age-related DNA methylation changes are a cause or
identity underpins mammalian ageing. Additionally, we found consequence of age-related gene expression changes, but
hypomethylation at genes promoting muscle atrophythe two scenarios are not mutually exclusive. We also noted
mirrored by an increase in gene expression HDA@ and that age-related mRNA and protein changes in skeletal
an increase in protein expression fatrogin-1. muscle were highly consistent, as there was a strong positive
Age-affected regions were not randomly spread across thmrrelation between mRNA and protein changes with age in
genome and were particularly abundant around active TSfiman skeletal muscle. This reinforces the utility of large-
regions and in enhancers. Furthermore, hypomethylatesicale studies, including meta-analyses, to produce robust,
and hypermethylated regions showed a distinct distributiomeplicable results identifying DNA methylation targets. Future
largely consistent with previous reports on ageing; duringtudies should explore the origin and functional conse-
ageing, DNA methylation tends to increase at Polycomipuences of these age-related omic changes in human skeletal
target genes**®and bivalent chromatin domairs;>®while muscle and investigate whether the cause of the ageing
decreasing at enhancers in both mice and hum#h®To ex- processes is similar across tissues. As changes in the epige-
plain the age-related hypermethylation of Polycomb targetetic landscape are one of the primary hallmarks of ageing,
genes, Jung and Pfeifer proposed a mechanism involvingderstanding its origin would narrow down our focus on pu-
competition between Polycomb complexes and DNA methytative genetic or/and epigenetic regions, with the ultimate
transferase 3 (DNMT3} the ability of the Polycomb machin- goal of targeting them with lifestyle or pharmacological inter-
ery to target unmethylated CpG-rich target sequences erodegntions to slow down the ageing process at the molecular
with age, leaving room for DNMT3 to bind and slowly methlevel. Future studies should aim tand interventions easily
ylate Polycomb target genes over time, potentially leading taccessible to a wide range of people, such as exercise training
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or dietary interventions, to slow down, or perhaps everhave created a user-friendly, interactive, and transparent

reverse, age-related epigenetic changes in skeletal muscleway to explore our results. We built a web-based tool called
Recently, we established an epigenetic clock for humadetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/),

skeletal muscle, using 682 samples from 12 data3éisre largely inspired by theVletaMex tool developed by Pillon

we updated this clock (MEAT 2.0) by using 1053 samples al. for transcriptomic meta-analysis of exercise training

from 16 datasets, particularly adding more female an@nd inactivity in human skeletal musclg@Users are able to

middle-aged individuals that were under-represented imxplore DMPs, DMRs, forest plots, and omics integration

MEAT. MEAT 2.0 automatically selected 205 CpGs for am®l to Iter and download the results. This freely available

prediction, only 98 of which were in common with the CpGsvebsite is likely to advance theeld of ageing science as a

selected by MEAT. While such a small overlap may seem swiole.

prising, it likely stems from the machine learning algorithm

underlying the clocks: tens of thousands of CpGs change with

age, but only a handful of Cst are selected by the elaStIC.n?{UthOI’ contributions

model, so this group of CpGs is only one of the many possible

combinations of CpGs that can predict age with hlg%.v. and N.E. contributed in the conceptualization of the

accuracy. We tested whether the accuracy of the muscle ) . ] . . .

g . . study; S.V. and S.H. in the methodology; S.V. in the investiga-
clock is improved by feeding more samples to the maching

learning algorithm. Surprisingly, the accuracy of the ne\&on; S.V.in the formal analysis; M.J., S.L., N.R.H., LM.H., L.R.
) ' - G., S.G.,, M.O., M.J.,, KJ.A., J-LM.T.,,AG., CJ.,,R.C.,HV.,V.R,,

version of the clock barely improved, from 0.62 10 0.66 i- , "p, £ "s 8"\ 1 A p.S. AS. MR. S.H. and N.E. in the re-
average correlation between predicted and actual age and

from 4.6 to 4.5 years in median error in age prediction. Thigolu.rces; S.V. in the software; S.V. and N.E. in writing of the
suggests that the original muscle clock was already _Suforlglnal draft; S.V., M.J., S.L., S.G., M.O., M.J., KJ.A., A.G,, C.
. L ., F.P.,JM.C, SB., M.T., AP.S,, AS., M.R,, S.H., and N.E. in
ciently accurate for age prediction in human skeletal muscle’... - .
. . . writing of the review and editing; and S.V., L.R.G., and N.E.
using the lllumina HumanMethylation array technology. W|en funding acquisition
have however updated the R packagiATon Bioconductor ’
with this new clock, providing users the possibility to choose
between the original version (MEAT) and updated version
(MEAT 2.0) of the clock for their analyses. Acknowledgements
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