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Summary. Root knot nematodes are obligate phytoparasites that invade the roots of 
important crop plants causing severe economic losses. Arbuscular Mycorrhizal Fungi 
(AMF) are soil borne microorganisms that establish mutualistic associations with the 
roots of most plants. AMF have been frequently indicated to help their host to attenu-
ate the damage caused by pathogens and predators. In this study, the effects of a com-
mercial inoculum of AMF against Meloidogyne incognita on tomato and pepper were 
evaluated under controlled conditions. Mycorrhizal association decreased M. incogni-
ta development in pepper, and improved tolerance to nematode infection in tomato 
plants. Rapid plant mycorrhization is critical for delivering protective effects against 
biotic stress. A novel mycorrhization technique using AMF from the highly myco-
trophic plant sorghum was applied to tomato. More rapid mycorrhization was achieved 
in tomato plants grown in soil containing mycorrhized roots of sorghum than in plants 
directly inoculated with the commercial AMF.

Keywords. Crop pests, symbiosis, agricultural management.

INTRODUCTION

Phytoparasite nematodes are part of the soil microfauna with life cycles 
that are totally or partially within plants. Root-knot nematodes (RKNs) of 
the genus Meloidogyne are obligate endoparasites affecting a large number 
of plant species (Sasser and Freckman, 1987). They form characteristic galls 
in roots and block host plant conductive tissues, causing moisture stress 
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(Meon et al. 1978), poor root development and growth, 
and significantly reduce crop productivity (Hussey, 
1985; Melakeberhan and Webster, 1993).

RKNs are present in most farmlands, and can infect 
more than 5500 plant species, including vegetables, fruit 
crops, cereals and ornamentals (Blok et al., 2008). Eco-
nomic losses due to RKN are estimated at tens of billions 
of euros per year (Jones et al., 2013). For example, more 
than 40% of economic crops in the southeast of France 
are affected by Meloidogyne spp. (Djian-Caporalino, 
2010, 2012). The usual methods for controlling RKNs 
included use of bromide/chloride/phosphorus-based 
products which are very concerning for the environment 
and human health, and therefore have been phased out 
in the European Union since 2009 (Council of the Euro-
pean Union, 2009). Physical approaches include prophy-
laxis, steam disinfection and solarisation, which are not 
always effective. Biological approaches for controlling 
RKNs are based on resistant plant varieties, nematode 
parasitic bacteria, toxins from nematicidal plants, biofu-
migation from plant oil cakes, and fungi that alter nema-
tode life cycles (Djian-Caporalino et al., 2009).

Arbuscular mycorrhizal fungi (AMF) are obligate bio-
trophs that exclusively colonise plant roots. These fungi 
form hyphae connections between roots from one or 
several host species to establish the Common Mycorrhi-
zal Networks (CMNs) (Simard et al., 2012). Plants asso-
ciated with CMNs have improved assimilation of phos-
phate, macronutrients such as N, K and Mg, and some 
micronutrients (Bhatia et al., 1998; Montaño et al., 2007). 
Colonising AMF receive organic carbon from the host 
plants (Sanders and Tinker, 1971). The review of Vere-
soglou and Rilling (2012) indicated that AMF have capac-
ity to decrease losses caused by diverse plant pathogens, 
with the interaction between AMF and RKNs represent-
ing 28% of the listed reports. For example, early mycor-
rhization by mixtures of AMF species is effective against 
Meloidogyne spp. and Pratylenchus spp. (Vos et al., 2012). 
Sikora and Schönbeck (1975) reported that Funneliformis 
mosseae and Rhizophagus fasciculatus decreased M. incog-
nita infection on tomato by, respectively, 13% and 50%. In 
pepper, Peregrin et al., (2012) assessed effects of AMF and 
Bacillus megaterium (simultaneously and individually) on 
Meloidogyne incognita, although the bioprotection con-
ferred by the AMF was not clearly demonstrated. 

Tomato and pepper have been frequently reported 
as mycotrophic plants (Cress et al., 1979; Al-Karaki, 
2000; Schroeder and Janos, 2004; Schroeder-More-
no and Janos, 2008; Gashua et al., 2015; Chialva et al., 
2019). Nevertheless, tomato plants do not rapidly devel-
op intensive mycorrhization compared to highly myco-
trophic species (Schroeder and Janos, 2004; Kubota, 

2005; Thougnon Islas et al., 2014). This can be incon-
venient for horticultural applications, as any probable 
benefit from AMF against RKN may only be obtained 
through early mycorrhization (Jaizme-Vega et al., 1997; 
Molinari and Leonetti, 2019). Interconnection from 
mature plants by CMNs could improve establishment 
and growth of seedlings (van der Heijden and Horton, 
2009). Derelle et al., (2012) reported enhanced mycorrhi-
zation of Silene vulgaris (weakly mycotrophic) by mycor-
rhizal networks (MNs) previously developed by Medica-
go truncatula (highly mycotrophic) under in vitro con-
ditions. Therefore, examining new strategies for tomato 
mycorrhization involving MNs could provide worth-
while new and practically valuable knowledge.

To test bioprotection of AMF against RKNs, the 
effect of mycorrhizal colonisation against development 
of M. incognita was examined in tomato and pepper, as 
two economically important crop plants. Additionally, 
the potential of MNs for accelerating mycorrhization 
was demonstrated on tomato plants using MNs previ-
ously established by a suitable highly mycotrophic host 
such as sorghum. 

MATERIALS AND METHODS

Plant material

RKN-susceptible seedlings of tomato (Solanum lyco-
persicum ‘Saint Pierre’) and pepper (Capsicum annuum 
‘Doux long des Landes’) were transplanted into 9 cm 
× 9 cm pots containing sterilised soil, and were inocu-
lated with AEGIS powder from NIXE® (AMF inoculum 
containing Rhizophagus irregularis). Unless otherwise 
stated, all the plant cultures were in a growth cham-
ber at 25°C (± 1°C) with a 16 h light / 8 h dark illu-
mination cycle. A nutrient solution adapted for AMF 
development (200 mg L-1 Ca(NO3)2, 300 mg L-1 KNO3, 
25 mg  L-1 KH2PO4, 150 mg  L-1 MgSO4 7 H2O, 1.5 mg 
L-1 H3BO3, 0.05 mg  L-1 (NH4)6Mo7O24, 1 mg  L-1 ZnSO4 
7 H2O, 2 mg L-1 MnSO4 H2O, 0.25 mg L-1 CuSO4 5 
H2O, 225 mg L-1 Fe EDTA) was added every 3 d to the 
plants, at 1 mL per application for the first week of 
culture, then increased by 1 mL every week from the 
second to the fifth weeks. After 6 weeks of culture, 
the root mycorrhization rates were assessed for three 
plants of each species, and 5000 freshly hatched J2s of 
M. incognita suspended in water were inoculated onto 
each plant. The number of nematode egg masses was 
assessed on each plant at 6 weeks after J2 inoculation, 
by acid eosin staining. The same experiment was per-
formed simultaneously with non-AMF treated plants as 
experimental controls.
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Tomato mycorrhization by mycorrhizal networks con-
sisted of growing an AMF inoculated sorghum sudan-
grass plant (Sorghum bicolor × Sorghum sudanense (Piper) 
Stapf) under equivalent conditions to the seedlings for the 
RKN experiments. After 6 weeks, the aerial part and roots 
were shredded and integrated to the pot soil. A tomato 
seedling was then transplanted into the sorghum/soil mix, 
and the mycorrhization rate was assessed after 2 and 4 
weeks. Tomato plants inoculated directly with the com-
mercial inoculum were used as experimental controls.

Assessment of root mycorrhization rates

Plant roots were bleached with 1% (w/v) KOH solu-
tion at 80° C for 1 h, and then incubated in a 5% solu-
tion of ink/lactic acid (80%) for 12 h. After rinsing, 1 cm 
root segments were mounted in glycerol/lactic acid (1/1 
v/v) on glass microscope slides. Mycorrhization rates 
were evaluated by light microscopy, by considering the 
mycelium frequency inside and outside each root seg-
ment, the quantity of colonized root, and the abundance 
of developed arbuscules/vesicles (Trouvelot et al., 1986).

Evaluation of Meloidogyne incognita development

The roots of experimental plants were rinsed thor-
oughly with water and the M. incognita egg masses were 
stained with an aqueous solution of 5% eosin B and 0.5% 
acetic acid. The egg masses (red spots on the roots) were 
quantified. 

Statistical analyses

Results from each experiment were analysed by com-
paring measured parameters for mycorrhized and non-
mycorrhized plants. Differences between experimental 
conditions were tested by Student’s t-Test at significant 
levels (P < 0.05) using R Software. 

RESULTS

Figure 1 shows effects of inducing AMF root coloni-
sation of tomato from direct inoculation before seedling 
transplantation, compared to formation of a MN in the 

Figure 1. (Graph A) Mean mycorrhization rates (and standard errors: n ≥ 4) in tomato roots resulting from different AMF inoculation 
procedures at 2 and 4 weeks after inoculation. Before the tomato seedlings were transplanted to pots, a commercial inoculum was applied 
directly to their roots (direct inoculation: DI), or the soil was blended with leaves and roots of 6-week-old mycorrhized sorghum plants 
(micrograph D) (sorghum blend: SB).  * and **, respectively, indicate differences at P < 0.05 and 0.01. Characteristic AMF colonisation of 
tomato roots grown for 4 weeks after SB (micrograph B) or DI (micrograph C) treatments. Arrows indicate typical AMF structures.
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Figure 2. Plants grown in growth chambers for evaluating AMF effects on root knot nematode (RKN) development. Tomato plants at 4 
weeks (micrograph A) and 6 weeks (micrograph B) after RKN inoculation. Pepper plants (micrographs C and D) 6 weeks after inoculation 
with RKN. Means (and standard errors: n ≥ 9) of shoot dry weights (Graph E) and plant heights (Graph F) for 12-week-old tomato and 
pepper plants 6 weeks after inoculations with J2s of Meloidogyne incognita. Means accompanied by different letters are significantly different 
(P < 0.001 (***), Student’s test). 
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soil. Sorghum developed mycorrhization rates of 50–70% 
within 6 weeks before the tomato seedlings were trans-
planted. After 2 weeks of culture, tomato roots from the 
SB treatment had a mean of 22% mycorrhization, where-
as the plants from the DI treatment had no mycorrhiza-
tion. After 4 weeks, roots from the SB treated plants had 
a mean of 49 % of mycorrhization, while the DI treated 
plants had very low mycorrhization rates (<5%). The pre-
vious formation of a MN in the media accelerated the 
mycorrhization of tomato roots, which under the growth 
chamber conditions required 6 weeks for development of 
mycorrhization of approx. 40%.

To evaluate the protective potential of the AMF 
under growth cabinet conditions, the effects of con-
ventional mycorrhization against M. incognita develop-
ment were assessed in tomato and pepper plants. Before 
M. incognita inoculation, tomato roots had 40% (± 18% 
S.D.) mycorrhization and pepper roots had 68% (± 21% 
S.D.) mycorrhization. At 4 weeks after M. incognita 
inoculation, the AMF treated tomato plants had longer 
stems and more abundant foliage than the uninoculat-
ed plants (Figure 2A). The tomato plants were severely 
affected during the last 2 weeks of RKN infection. At 
the end of the experiment, the non-mycorrhized plants 
had shorter stems and more withered leaves than the 
mycorrhized tomato (Figure 2B). AMF treatment gave 
no obvious on shoot dry matter of the plants (Figure 
2E), but mycorrhization induced significantly increased 
plant height (Figure 2F).

The reproduction rates of the nematodes were evalu-
ated by counting the numbers of egg masses produced 

by M. incognita females, which represents the population 
of nematodes able to complete life cycles within host 
roots. There was a significant decrease (almost 30%) of 
egg masses in roots of the AMF treated pepper plants 
(Figure 3A). Mycorrhized tomato plants had greater 
numbers of egg masses than pepper plants (Figure 3A). 
However, the relatively unfavourable state of the non-
mycorrhized tomato for RKN infection could also indi-
cate that tomato was a less suitable host than pepper for 
RKN development. Therefore, the numbers of egg mass-
es were normalised to the shoot height of tomato plants 
(Figure 3B). The resulting values of mycorrhized tomato 
plants were on average 40% less than for non-mycor-
rhized plants.

DISCUSSION

Mycorrhization of tomato plants can be challeng-
ing due to their low mycotrophy compared to other spe-
cies (Schroedder and Janos, 2004). The present study 
has demonstrated that developing a MN in soil before 
transplanting of seedlings is a promising procedure for 
improving tomato mycorrhization. We used sorghum-
sudangrass because it has rapid growth, low nutrient 
demand, high mycotrophy and biofumigant properties, 
and is a known nematode trap crop. The sorghum variety 
selected here is currently used as a cover crop for nema-
tode control which can be interplanted with legumes 
such as soybean (Djian Caporalino et al., 2019; Dover 
et al., 2004). Therefore, the proliferation of AMF by a 

Figure 3. Mean numbers of Meloidogyne incognita egg masses in root segments of tomato or pepper plants (Graph A), and mean numbers 
of egg masses (normalised to plant height) in root segments of tomato plants (Graph B), with or without AMF inoculation treatments, 6 
weeks after inoculations with J2 nematodes. Means accompanied by different letters are significantly different (n ≥ 9: P < 0.05 (*), 0.01 (**) 
or 0.001 (***), Student’s test).



382 Melvin Rodriguez-Heredia et alii

highly mycothrophic host, which is eventually harvested 
and blended with soil, could be a useful technique for 
improving plant fitness and for RKN control, if the host 
also has nematicidal properties, as for the sudangrass 
cultivar selected. Rapid mycorrhization using CMNs 
has been previously tested by Derelle et al., (2012). These 
types of experiments under in vitro conditions, require 
barriers between plants to avoid competition and did not 
use relevant crop plants. In the present study, the MN 
developed by the sorghum plants could provide increased 
amounts and viability of AMF compared to more usu-
al AMF inoculum. This approach probably bypasses 
the low mycotrophy of tomato. Increased activity and 
intact spores or hyphae could explain the acceleration 
of AMF colonisation on tomato. However, many aspects 
addressing the early mycorrhization of tomato by MN 
remain unclear. For example, a comparative study of the 
response to the commercial AMF and the MN inoculum 
to the chemical signalling (i.e. branching factors) from 
the potential host has not been carried out.

Protection of pepper plants due to AMF has been 
previously demonstrated for Fusarium, Phytophthora, 
and Rhizoctonia pathogens (Sahi and Khalid, 2007; Sid 
Ahmed et al., 2003; Sid Ahmed et al., 1999). In other 
Solanaceae, protection of plants against phytoparasitic 
nematodes due to host mycorrhization has been evalu-
ated for tobacco, with reductions of 25–35% of Heterode-
ra solanacearum cysts (Fox and Spasoff, 1972), eggplant, 
with mycorrhized roots presenting 87% fewer galls of 
M. incognita than non-mycorrhized roots (Horta, 2015), 
and mycorrhized tomato, with a 13% reduction of M. 
incognita compared to controls without AMF (Masadeh, 
2005). Castillo et al., (2006) also evaluated the protection 
of olive plants using AMF, against M. javanica and M. 
incognita under controlled conditions.

Results from the present study indicate that a 6 week 
mycorrhization period prior to M. incognita infection 
considerably decreased RKN development in pepper. 
Host nutrition and root development were specifically 
restricted in this experiment, which probably explains 
the abnormal state of the plant shoots. Pepper plant were 
more tolerant than tomato under the experimental con-
ditions of this study. This research is one of few studies 
reporting ability of AMF to decrease M. incognita devel-
opment in pepper. In tomato we verified increased tol-
erance to M. incognita infection symptoms. The symp-
toms of infection by M. incognita on tomato were more 
attenuated when roots were treated with AMF. Even so, 
egg masses were more abundant in mycorrhized plants, 
so we considered plant height for adjusting numbers of 
nematode masses in roots. These indices are extensively 
used for estimating the whole plant infection, consider-

ing RKN proliferation and general plant development 
(Mateille et al., 2005). The enhanced phenotype of AMF 
treated tomato shoots was possibly due to acclimation, 
which could help hosts to resist RKN infections for long 
periods. Hyphae replacing part of roots damaged by M. 
incognita could cause tomato tolerance to M. incognita 
infections. Additionally, shoot configuration from envi-
ronmental stress may also be important, as photosyn-
thetic activity and leaf development can be positively 
affected by the AMF colonisation (Chastain et al., 2016; 
Chandrasekaran et al., 2019). This means that more M. 
incognita reproductive cycles can occur in mycorrhized 
hosts, whereas non-mycorrhized plants will not with-
stand RKN development because roots and shoots grow 
poorly and the plants will rapidly die due to infections. 
Economically, AMF treatments may provide enhanced 
or more consistent production of tomato fruit despite 
M. incognita proliferation. The differences in results 
between tomato and pepper plants confirm that AMF 
bioprotection is dependent on host species (Veresoglou 
and Rillig, 2012).

Revitalisation of indigenous AMF by highly myco-
trophic plants with nematicidal properties could be 
combined with resistant horticultural varieties for crop 
bioprotection and durable control of RKNs. The results 
of the present study on tomato also suggest that future 
research should assess leaf acclimation of mycorrhized 
plants under RKN biotic stress, using in vivo approaches 
such as monitoring of chlorophyll-a fluorescence.
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