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Kernel and dissimilarity methods for
exploratory analysis in a social context

Jérôme Mariette, Madalina Olteanu and Nathalie Vialaneix

Abstract While most of statistical methods for prediction or data mining have been
built for data made of independent observations of a common set of p numerical
variables, many real-world applications do not fit in this framework. Amore common
and general situation is the case where a relevant similarity or dissimilarity can be
computed between the observations, providing a summary of their relations to each
other. This setting is related to the kernel framework that has allowed to extend
most of standard statistical supervised and unsupervised methods to any type of
data for which a relevant such kernel can be obtained. The present chapter aims
at presenting kernel methods in general, with a specific focus on the less studied
unsupervised framework. We illustrate its usefulness by describing the extension of
self-organizingmaps and by proposing an approach to combine kernels in an efficient
way. The overall approach is illustrated on categorical time series in a social-science
context and allows to illustrate how the choice of a given type of dissimilarity or
group of dissimilarities can influence the output of the exploratory analysis.

1 Introduction

While most of statistical methods for prediction or data mining have been built for
data made of independent observations of a common set of p numerical variables,
many real-world applications do not fit in this framework. Typical such examples
include categorical variables, relations between entities (e.g., a graph or network)
or even more complex frameworks such as categorical time series. A particularly
useful simplification of these more general situations is the case where a relevant
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similarity or dissimilarity can be computed between the observations, providing a
summary of their relations to each other. In addition, when this similarity has some
mild additional properties, it is called a kernel and provides a strong mathematical
framework [5] for extendingmost of standard statistical supervised and unsupervised
methods to any type of data for which a relevant such kernel can be obtained [12, 46].
This approach has already proven useful in computational biology [45] or in social
sciences and humanities [7, 35].

Nevertheless, the choice of a relevant kernel is still an open problem. Some authors
have proposed to combine all candidate kernels into a “meta kernel” which is an
“optimal” linear or convex combination of the individual kernels. This approach is
known as the “multiple kernel learning problem” and has been widely studied in the
supervised framework [17]. The present chapter aims at presenting the less addressed
unsupervised framework. More precisely, after a brief introduction to kernels and
their relation with the more general similarity/dissimilarity settings (Section 2),
we describe how statistical methods can be extended to the kernel framework by
using the so-called “kernel trick” (Section 3). Section 4 focuses more precisely on
the extension of an exploratory method, called Self-Organizing Maps [23], to the
kernel framework and discusses the issue of complexity and how it can be solved
in this particular setting. Section 5 explains how kernels can be combined in an
unsupervised setting, as a processing prior the unsupervised methods presented
before. The overall approach is illustrated in Section 6 on categorical time series in a
social science context: originally developed in bioinformatics, sequence analysis is
indeed increasingly used in social sciences for the study of life-course processes. In
this section, we discuss how the choice of a given type of dissimilarity or group of
dissimilarities influences the output of the exploratory analysis and allows to extract
relevant patterns from this particular kind of data.

2 Kernels and more general proximity data

2.1 Kernels and RKHS

Kernel methods consider the case where data are described by a kernel obtained from
a Reproducing Kernel Hilbert Space (RKHS; [5]). Usually, the sample of interest
takes values in an arbitrary space, X that encompasses a variety of data types. This
sample is then described by a function K : X × X → R, which is symmetric
(∀ x, x ′ ∈ X, K(x, x ′) = K(x ′, x)) and positive (∀ N ∈ N, ∀(αi)i=1,...,N ⊂ R and
∀ (xi)i=1,...,N ⊂ X,

∑N
i,i′=1 αiαi′K(xi, xi′) ≥ 0) and is called the kernel. Indeed, in

this case, it is known [3, 5] that there exists a unique Hilbert space (H, 〈., .〉H) and
a unique application φ : X → H , such that

∀ x, x ′ ∈ X, 〈φ(x), φ(x ′)〉H = K(x, x ′).
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(H, 〈., .〉H) is the RKHS of K and is also often called feature space; φ is the feature
map of K .

In statistics and machine learning, this framework is often used to deal with
observations that are not just multidimensional vectors (e.g., categorical time series
or graphs, among others) or to incorporate expert knowledge in the analysis (see
Examples 1 and 2 below with standard examples of kernels often used in practice).
The sample (xi)i=1,...,n is then described by pairwise relations between observations,
as measured by the kernel. This leads to the computation of the kernel matrix
K = (kii′)i,i′=1,...,n, with kii′ = K(xi, xi′), which is symmetric and semi-definite
positive, by definition of the kernel K .

The idea of kernel methods is to perform standard linear statistical analyses in the
feature space (H, 〈., .〉H). Since the only operations involved in these analyses are
related to the computation of dot products and norms, the Hilbert space H and the
feature map φ are usually not explicitly given but used implicitly through the kernel
K instead. This principle, which we illustrate below, is called the kernel trick.

Example 1 Some useful kernels

Kernels in Rp . Kernel methods are often used for standard multidimen-
sional data to provide more flexibility and non linearity in the analyses.
In these spaces, a trivial kernel is given by using the standard dot product
of Rp: K(x, x ′) = (x ′)>x, which leads to the trivial feature map φ = Id.
The feature space is then unchanged as compared to the original space
(X = H = Rp) and the performed statistical analysis is thus still linear.
Among more interesting kernels for Rp , one of the most popular is the
Gaussian kernel (also called Radial Basis Function – RBF – kernel)
Kγ(x, x ′) = e−γ ‖x−x

′ ‖2 , which shape is controlled by a hyper-parameter
γ > 0. This kernel is of special importance since it is continuous and
universal for every compact set of X, C (meaning that the set of all
functions induced by x ∈ C → K(x, .) is dense in the set of all continuous
functions C ⊂ X → R). This property allowed Steinwart [50, 51]
to demonstrate the consistency of kernel classification and regression
methods in the statistical sense (when the sample size grows to infinity and
in terms of convergence of the error loss to its optimum). The polynomial
kernel (K(x, x ′) = (1 − (x ′)>x)γ for γ > 0) and the exponential kernel
(K(x, x ′) = e(x

′)>x) are also universal kernels.

Kernels on graphs. In many application fields including social sciences and
biology, graphs (also called networks) are widely used to represent pairwise
relations between entities (friendship, professional contacts, regulation be-
tween genes, ...). A number of kernels for graphs have been proposed to
provide a similarity measure between nodes based on the graph structure.
Most of them are derived from regularized version of the Laplacian of the
graph [25, 47] and have been used in prediction or exploratory analyses in
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biology (e.g., for introducing known relations between genes [54, 39]) or in
social sciences (e.g., to extract information from a medieval social network
[7]).

2.2 From general similarities to kernels

In practice, data are often described by similarities (or dissimilarities) that are not
necessarily definite positive (see Example 2). This situation is addressed either by
generalizing kernel methods to the “pseudo-Euclidean” framework [16, 37], by em-
bedding the sample directly into a Euclidean space whose dot product ressembles
the original similarity (Multidimensional Scaling –MDS– is one of these approaches
[11]), or by using a proper definite kernel instead of the original indefinite similarity.
In the latter case, the chosen kernel is often obtained by a simple transformation of
its spectrum meant to obtain only positive eigenvalues. [9, 42] are two reviews de-
scribing the topic of general similarity learning and its relation with kernel methods.

Example 2 Some more general similarities and dissimilarities

Categorical sequences or time series. Categorical sequences are naturally
used in biology to represent the DNA sequences or proteins (with
the categories being the amino acids). Among the many proposals for
quantifying the similarities between two sequences, edit distances (also
known as “Levenshtein distances” or “optimal matching dissimilarities”)
[36] are one of the most famous. Their main idea is to quantify the
minimum number of transformations needed to obtain a sequence from
another one. A cost is associated to insertion, deletion and substitution
transformations to allow a flexible customization of these dissimilarities.
These measures have been increasingly used in social sciences as well, for
studying life-course processes [2, 35]. Section 6 describe in further details
those dissimilarities.

Dissimilarities based on phylogeny. As already mentioned, kernels and dis-
similarities can also embed prior expert information in their computation.
A typical example is the case where variables are the abundances of dif-
ferent species for which a phylogeny information (a parental information
between those species) is given. Such frameworks are met when studying
the biodiversity of different places or in metagenomics for instance. In these
applications, data are described by vectors of counts that represent the num-
ber of times given species or Operational Taxonomic Units (OTUs) have
been found for a given individual. For these data, computing a measure of
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proximity between observations that accounts for the distances between the
species has been shown to provide a more relevant information than the
simple Euclidean distance between counts [29, 30]. Such distances include
the (weighted) UniFrac distance or the generalized UniFrac distance [8].

3 Basics of statistical learning with kernels

3.1 Supervised setting

A simple example of a supervised learning method that has been extended to kernels
is the ridge regression. More precisely, when given a training sample {(xi, yi)i=1,...,n}
for which xi ∈ Rp and yi is a real number, the ridge regression finds the best linear
predictor for (yi)i based on (xi)i that minimizes the squared loss plus a regularization
term based on the `2 norm:

β∗ = argmin
β∈Rp

n∑
i=1

(
yi − β

>xi
)2
+ λ‖β‖2 (1)

for a given λ > 0, called regularization parameter, which is usually tuned by a cross
validation approach. The solution of Equation (1) is given by:

β∗ =

(
n∑
i=1

xix>i + λIp

)−1 (
n∑
i=1

yixi

)
,

that can also be written as

β∗ =
(
XX> + λIn

)−1 X>y,

with y = (y1, . . . , yn)
> and X being the (n × p)-matrix with rows containing the xi

so that the matrix XX> is the (n × n)-matrix with entries the pairwise dot products
x>i xi′ for all i, i′ = 1, . . . , n. In summary, the solution writes

β∗ =
n∑
i=1

α∗i xi with α∗ =
(
XX> + λIn

)−1 y. (2)

The extension of this approach to samples (xi)i taking values in an arbitrary space
X through the use of kernels is called kernel ridge regression [41]. The idea is simply
to search for a linear predictor in the feature space induced by the kernel,H , which
transforms the optimization criterion of Equation (1) into:
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w∗ = argmin
w∈H

1
n

n∑
i=1
(yi − 〈w, φ(xi)〉H)2 + λ‖w‖2H . (3)

The best linear predictor inH is thus given similarly as the solution of Equation (2)
but in the feature space, replacing xi by φ(xi) and the Rp dot product by 〈., .〉H . In
particular, this means that the matrix XX> is replaced by a matrix with entries equal
to 〈φ(xi), φ(xi′)〉H , which, by the so-called kernel tricks, turns out to simply be equal
to K. We thus have that

w∗ =

n∑
i=1

α∗i φ(xi) with α∗ = (K + λIn)−1 y.

This result can also be found as a consequence of the Representer Theorem
[22, 43] or directly solving the dual of Equation (3):

α∗ = argmin
α∈Rn

1
n

n∑
i=1

(
yi − α>Ki

)2
+ λ‖α‖2K, (4)

in which Ki is the i-th row of the kernel matrix K and ‖.‖K is the `2 norm induced
by this matrix in Rn: ‖α‖2K = α>Kα.

Variants of this framework include Support Vector Machines (SVM, [6]), for
the classification case, or ε-SVM, for the regression case. In both cases, the main
difference with the kernel ridge regression lies in the loss function but the main
principle of the approach remains identical: the Representer Theorem allows to
express the solution as a linear combination of the images by φ of the observations
and the solution is obtained by solving a dual optimization problem obtained thanks
to the use of the kernel trick.

3.2 Unsupervised setting

Kernel methods have also been developed for the unsupervised setting. Among the
most direct of these extensions, the generalization of PCA [44] and that of k-means
[13] are probably the most known and used. They both use approaches similar to the
supervised case described in the previous section, and more precisely:

• computations related to the original method (i.e., standard PCA and k-means) are
performed in the feature space;

• to do so, the kernel trick is used instead of the standard computation of dot
products or norms.
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Kernel PCA.

Standard PCA is often presented as the eigendecomposition of the vari-
ance/covariance matrix associated to the (n × p)-matrix of sample measures, X.
Assuming without loss of generality that X is centered, this eigendecomposition is
equivalent to the dual eigendecomposition of XX>, that provides the coordinates (or
scores) of the projection of X on the different principal components. More precisely,
if T is the (n × k) column matrix with the first k eigenvectors of XX>, orthogonal
and with a norm equal to 1√

λ j

, then the (p × k) column matrix of the principal

components (orthogonal and with a norm equal to 1) is X>T.
Kernel PCA uses a similar approach taking advantage of the analogy between

XX> and K and between the i-th row of X and φ(xi). More precisely,

1. assuming that K is centered in the feature space1, the eigendecomposition of K
is obtained. It gives (λj)j=1,...,k , the first k eigenvalues of K, and (tj)j=1,...,k , the
associated first k orthogonal eigenvectors with a norm equal to 1√

λ j

;
2. the first k (orthogonal) principal components are thus obtained as

wj =

n∑
i=1

tjiφ(xi),

and have a norm equal to 1 in H . The coordinate of φ(xi) on the j-th principal
component is thus 〈wj, φ(xi)〉H = λj tji .

Kernel k-means.

Similarly, kernel k-means performs a standard k-means algorithm in the feature
space H . To do so, in addition to computing dot products and norms using the
kernel trick, it is necessary to obtain a representation of the cluster barycenters.
More precisely, if (xi)i∈C are the observations assigned to a given cluster C, then,
the barycenter is given by:

x̄C =
1
|C |

∑
i∈C

φ(xi)

and its (squared) distance to any other observation, xi , in the sample is obtained by:

1 if K is not centered, the centering operation is simply K− 1
n 1nK− 1

n K1n +
1
n2 1nK1n , in which

1n is an n × n matrix with all entries equal to 1.
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‖φ(xi) − x̄C ‖2H =






φ(xi) − 1
|C |

∑
i′∈C

φ(xi′)






2

H

= ‖φ(xi)‖2H −
2
|C |

∑
i′∈C

〈φ(xi), φ(xi′)〉H +
1
|C |2

∑
i′i′′∈C

〈φ(xi′), φ(xi′′)〉H

= kii −
2
|C |

∑
i′∈C

kii′ +
1
|C |2

∑
i′,i′′∈C

ki′i′′ .

In both situations (kernel PCA and kernel k-means), the adaptation of the algo-
rithms to kernel data is made by their direct rewriting in the feature space. New
data points, that were not previously in the feature space (principal components or
barycenters) are represented by linear combinations of the images by the featuremap,
φ, of observations. In addition, distances to these new elements can be expressed in
function of the kernel, using the kernel trick. These adaptations are thus very similar
to the supervised case situations.

4 Kernel self-organizing maps and complexity reduction

In this section, we present an extension of kernel k-means to a more general method,
which simultaneously performs clustering and dimensionality reduction for visu-
alization, namely the self-organizing map (SOM) algorithm. Originally designed
for unsupervised exploration of standard numerical datasets [23], the method has
been extended to handle non numeric data by using approaches based on Multiple
Correspondence Analysis [10] or by relying on an algorithm that represents all the
clusters by a prototype chosen among the data (median SOM, [24]). Even if very
general, the latter approach is very restrictive and generates representation issues,
with associated biases in the obtained maps. In the present section, we present the
extension of SOM to kernels that has been introduced by several authors for batch
and online versions [31, 7] and has also been generalized to data represented by
general dissimilarities (rather than kernels) [19]. The second part of this section will
discuss associated complexity issues when the sample size is large, and review the
different strategies that can be implemented to overcome them.

4.1 Kernel self-organizing maps

For the standard case of a dataset (xi)i=1,...,n of multidimensional observations
xi ∈ Rp , SOM algorithm is close to k-means algorithm, except that the clusters
are organized on a map equipped with a distance, d. More precisely, a map (also
sometimes called a grid) is a set of U clusters (also sometimes called units or neu-
rons) associated to physical locations in a low dimensional space. The clusters are
frequently positioned in R2 at coordinates (a, b)a=1,...,A, b=1,...,B with AB = U. Clus-
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ters are related to each other using pairwise distances, that can be, for instance, the
Euclidean distances between their coordinates in R2. In addition, every cluster, u, is
summarized by a prototype, pu that takes its values in the input space Rp .

When fixing the number of neurons U, one should take into account that SOM
is mainly intended as a method for nonlinear mapping and dimensionality reduction
–in the sense of vector quantization– than as a method for clustering the data into a
small number of clusters. Some authors [53] suggest to build very large SOMs, with
a number of units U larger than the sample size, n. In this context, SOM essentially
reduces to nonlinear mapping and to mining the underlying distribution of the data.
A second option, which is more commonly used in practice, consists in building
medium size maps that are smaller than the sample size, but still large enough to
have a few input observations representing each unit [23]. This strategy is a good
trade-off between mapping and clustering, and a heuristic suggests to set U close to√

n/10 [55].
The method aims at assigning every observation in the dataset to one of the

clusters, while minimizing the distortion of the topology between the original space
(here, Rp) and the map (as seen through the distance d). The prototypes are thus
expected to be representative of the observations assigned to their cluster, as the
barycenter is representative of its cluster in kernel k-means. To do so, the stochastic
version of the method iterates over two steps:

• an assignment step in which an observation, xi is randomly chosen and assigned
to the unit with the closest prototype:

f (xi) = argmin
u=1,...,U

‖xi − pu ‖2

where f (xi) is the cluster to which observation xi is assigned;
• a representation step in which all prototypes are updated according to the new

assignment:

∀ u = 1, . . . ,U, pu ← pu + µH(d( f (xi), u))(xi − pu)

where µ > 0 is chosen so as to vanish during the training process and H is a
decreasing function, generally chosen such that H(0) = 1 and limz→+∞ H(z) = 0.

The method is usually initialized with a random choice of the prototypes in Rp .
Different heuristics can be used to choose T : either it is defined proportionally to the
sample size (typically, T = 5n) or it is not fixed in advance and the algorithm stops
when the iterations no longer modify the solution.

The extension of SOM to kernel data is based on the same key tools as the
ones described for kernel PCA and kernel k-means, and which allow to re-write the
algorithm in the feature spaceH :

• the prototypes are expressed as convex combinations of the images by φ of the
observations, and the assignment step is written in terms of coefficients related
to each image φ(xi);

• the representation step is expressed with K by means of the kernel trick.
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The full version of the method is provided in Algorithm 1.

Algorithm 1 Stochastic kernel SOM

1: ∀u = 1, . . . ,U and ∀i = 1, . . . , n, random initialization of the prototypes: p1
u =∑n

i=1 β
1
uiφ(xi ) with β

1
ui ∈ [0, 1] and

∑
i β

1
ui = 1

2: for t = 1 to T do
3: Select randomly one observation i ∈ {1, . . . , n} . Assignment step

f t+1(xi ) = argmin
u=1, . . .,U

‖φ(xi ) − pt
u ‖

2
H

= argmin
u=1, . . .,U

(
kii − 2

n∑
l=1

βt
ulkil +

n∑
l, l′=1

βt
ulβ

t
ul′kll′

)
4: For all u = 1, . . . ,U , . Representation step

pt+1
u = pt

u + µtH
t (d( f t+1(xi ), u))(φ(xi ) − pt

u )

⇔ βt+1
u = βt

u + µtH
t (d( f t+1(xi ), u))

(
1n
i − β

t
u

)
,

where 1n
i is a vector of length n with all entries equal to 0 except for the ith, which is

equal to 1.
5: end for
6: return (pT+1

u )u (prototypes) and ( f T+1(xi ))i (clustering)

4.2 Complexity of kernel SOM

Kernel methods are generally considered efficient to deal with large dimensional data
(when the original space is a standard multidimensional space, Rp , with p large) but
often encounter scalability issues when the sample size, n, becomes large. As noted
by [40], the complexity of kernel SOM is O(n2UT) whereas the complexity of the
numeric SOM in Rp is O(npUT). When p � n and n is large, this cost can be very
prohibitive since, typically, T is of order O(n). Different strategies have been devel-
oped to overcome this difficulty, among which approximations with dimensionality
reduction or sparse representations [20, 32] or exact approaches using a storage of in-
termediate results [33]. Other alternatives to reduce the complexity of kernelmethods
directly use accelerated computations of the kernel dot products (used in most kernel
methods) with tiled reduction schemes on GPU, without even storing the kernel it-
self (see KeOps, https://www.kernel-operations.io/keops/index.html).
They would be a practicable approach to accelerate the assignment step of kernel
SOM when the full kernel matrix itself does not fit in memory but we will restrict to
the simpler case where the kernel is already computed and stored, in the remaining
of this section.
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Low rank and sparse approximations.

The first type of approaches relies on a simpler representation of the prototypes, with
a reduced number of (non zero) coefficients. [32] proposes two types of solutions.
The first one is very similar to the strategies developed in [20] and uses a direct
sparse approach in which an additional step is added to each iterations, aiming
at thresholding the smallest coefficients (βui)i for every prototype pu . The second
method relies on a prior step (a kernel PCA) to provide inputs that are the coordinates
of the original observations on the first k principal components of the kernel PCA.
The SOM algorithm then used is a simple numeric SOM with a complexity of
O(nkTU) with k � n. However, this prior step has a high computational cost itself:
the full eigendecomposition of K has a computational cost of O(n3) but it can be
reduced with the Nyström approximation [57]. This method allows to obtain an
approximation of the eigendecomposition of K using an eigendecomposition of a
submatrix K(m) based on m observations chosen at random in the original sample.
The eigendecomposition approximation is even exact if the rank of K is smaller than
m. The complexity of the approach is reduced to O(nm2) where m is usually chosen
� n.

Exact approaches.

Most of the complexity of the kernel SOM comes from the assignment step, which
is O(n2U). Re-formulating this step and transforming it into the update of stored
results, we reduced it to O(U). More precisely, the assignment step writes:

f t+1(xi) = argmin
u=1,...,U

At
u − 2Bt

ui

with At
u =

∑n
j, j′=1 β

t
u j β

t
u j′k j j′ and Bt

ui =
∑n

j=1 β
t
u j ki j . Storing these quantities in

memory (a vector of size U and a (U × n)-matrix), the representation step reduces
to an update of At and Bt :

At+1
u = (1 − λu(t))2 At

u + λu(t)
2kii + 2λu(t)(1 − λu(t))Bt

ui

Bt+1
ui′ = (1 − λu(t))B

t
ui′ + λu(t)ki′i,

with λu(t) = µtHt (d( f t+1(xi), u)). The representation step thus has a complexity
of O(nU) (update of Bt ) and the total complexity of the approach is reduced to
O(nUT). This reduction of the computational time is thus obtained at the cost of
storing operations with amemory cost ofO(U) andO(nU) for At and Bt respectively.
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5 Combining kernels

Kernel methods have proven to be particularly efficient when data are described by
multi-source and multi-type information obtained on the same n observations. In
this case, each source of data, of a given particular type (numerical, graph data,
factors, ...), can be passed through a kernel, Km (m = 1, . . . , M): this kernel provides
the similarity information between observations, seen from the point of view of the
source m. The advantage of such an approach is that it provides a common repre-
sentation of the different sources that can be easily combined. A similar framework
is the one where multiple kernels can be obtained from a single dataset, each cap-
turing a specific feature. Combining these kernels avoids having to choose between
them, and also benefits of the information coming from different aspects of the data.
Among the combination approaches [17], one that has been widely developed is the
computation of a convex combination of the M kernels into a single meta-kernel:

Kγ =

M∑
m=1

γmKm, st
{
γm ≥ 0, ∀m = 1, . . . , M∑M

m=1 γm = 1 .

In the context of supervised methods, the choice of (γm)m is usually done by solving
a global optimization problem that aims at minimizing a prediction loss, with respect
to the parameter of a given method (SVM for instance) and to the value of (γm)m
[59, 58, 21, 18]. In the unsupervised setting, choosing relevant (γm)m is harder since
the objective function might not be as easily designed or because, as it is the case
for kernel PCA, its joint optimization to estimate the principal components and the
(γm)m is degenerate [49].

Several propositions have thus been made [28, 60, 48, 56, 34] to overcome this
issue and, in the latter, we proposed two solutions that can cope with non numerical
observations, contrary to the others. The first method, named STATIS-UMKL, is
based on the STATIS method [38, 26] and aims at searching for a consensual meta-
kernel. More precisely, the method searches for the kernel that is the most similar,
on average, to all the kernels to be combined, (Km)m=1,...,M :

max
v

M∑
m=1

〈
Kv,

Km

‖Km‖F

〉
F

for Kv =

M∑
m=1

vmKm,

and v ∈ RM such that ‖v‖2
RM = 1,

where 〈., .〉 and ‖.‖F stand for the Frobenius dot product and norm. It is easy to show
that the solution is given by the spectral decomposition of a M ×M-matrix, C, such
that Cmm′ =

〈Km,Km′ 〉F

‖Km ‖F ‖Km′ ‖F
and γ is thus chosen as v∑

m vm
.

The second method first creates a proxy of the local geometry induced by each
kernel Km using a k nearest neighbor graph and the global adjacency matrix of
these M graphs, W is then used in a global criterion. This criterion is designed to
preserve at best the local geometry measured by W in the feature space induced by
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the meta-kernel Kγ:

argmin
γ∈RM

n∑
i,i′=1

Wii ‖Ci(γ) − Ci′(γ)‖
2
Rn ,

st γm ≥ 0 and
M∑
m=1

γm = 1,

with

Ci(γ) =

〈
φγ(xi),

©­­«
φγ(x1)
...

φγ(xn)

ª®®¬
〉
Hγ

=
©­­«

Kγ(xi, x1)
...

Kγ(xi, xn)

ª®®¬ .
This problem has a sparse solution that performs a selection of the kernels (some
of the entries of (γm)m are forced toward 0) because of the convexity constraint∑M

m=1 γm = 1 but this can be relaxed by replacing the `1 constraint with a constraint
of the `2 norm instead (the two versions are called sparse-UMKL and full-UMKL
where “UMKL” stands for Unsupervised Multiple Kernel Learning).

Once the kernel is obtained, it can be used as input to kernel based algorithm,
like kernel PCA, kernel k-means or kernel SOM for exploratory purpose.

6 Application

The combined-kernel SOM algorithm is illustrated on data related to school-to-work
transitions, extracted from the survey “Generation 98”2. The dataset contains infor-
mation on 16,040 young people having graduated in 1998 and monitored during 94
months after having left school. The labor-market status has nine categories, labeled
as follows: permanent contract, fixed-term contract, apprenticeship, public tempo-
rary contract, on-call contract, unemployed, inactive, military service, education.
The following stylized facts are highlighted by a first descriptive analysis of the data,
as shown in Figure 13:

• permanent contracts represent more than 20% of all status after one year and their
ratio continues to increase up to 50% after three years and almost 75% after seven
years;

• the ratio of fixed-term contracts is more than 20% after one year on the labor
market, but it is decreasing to 15% after three years and then seems to converge
to 8%;

• almost 30% of the young graduates are unemployed after one year. This ratio is
decreasing and becomes constant, 10%, after the fourth year.

2 Available thanks to Génération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] Centre
Maurice Halbwachs (CMH).
3 The graphical illustrations were carried out using the TraMineR package [15].



14 Jérôme Mariette, Madalina Olteanu and Nathalie Vialaneix

Fig. 1 Chronogram of the labor market structure as illustrated by the “Génération 98” dataset.
x-axis is time (in month) and y-axis is the proportion of each type of contract.

Some trajectories were duplicated (some people had exactly the same job trajec-
tories) so, to reduce redundancy and computational time, we used only the 12,471
unique trajectories.

Three optimal combined kernels were computed from three sets of dissimilarities
with different features, and each of these kernels was then used as input to the kernel
SOM. The three sets of dissimilarities are described with more details in the next
section. For each set of dissimilarities, the optimal combined kernel was obtained as
follows:

• first, each dissimilarity matrix, D, was transformed into a (centered) similarity
matrix by computing

∀ i, j = 1, . . . , n, s(xi, xj) = −
1
2

(
D2
i j −

1
n

n∑
l=1

D2
il −

1
n

n∑
l=1

D2
jl +

1
n2

n∑
l,l′=1

D2
ll′

)
.

Each of these resulting similarity matrices were used as kernels, even though a
small part of their spectra was non positive;

• second, the resulting kernel matrices were optimally combined using STATIS-
UMKL, as described in Section 5.

All dissimilarities were computed using the R package TraMineR [15] and
the combination of kernels was obtained using the R package mixKernel. Each
combined kernel was processed through a kernel self-organizing map using the im-
plementation provided in the R package SOMbrero. For each map to be trained, a
10 × 10 configuration was selected and default values of the package were chosen
for the initialization step, the topology of the map (choice of Ht in Algorithm 1) and
the decreasing value µt (also as in Algorithm 1). We decided to use 10×10 maps
as a trade-off between having a meaningful visualization and a reduced number of
meaningful typical trajectories. Since many trajectories are redundant –the perma-
nent contracts are overrepresented– a map with a number of units equal to about a
tenth of the number of inputs was a reasonable choice. Final results were represented
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as chronograms: more precisely, each unit of the map was featured by a rectangle
containing the chronogram of the subsample of trajectories assigned to this unit.

6.1 Three sets of dissimilarities and relations between them

There is currently a vast literature devoted to measuring similarities for longitudinal
data, and the community agrees that the differences between the various criteria
focus on three different aspects of sociological importance: the sequencing or the
order in which the states appear, the timing, and the duration of the states. A recent
and detailed review of these methods, focusing on these different aspects, and also
introducing some new and versatile criteria, is available in [52]. Starting from these
considerations, three sets of distances were selected for the present study: the first
aimed at focusing on the sequencing and possibly the duration, the second on the
timing, and the third on the duration only.

The first group of dissimilarities contains one criterion based on the number
of matching subsequences, and two based on generalizations of the classical OM
metric [36, 1]:

• The SVRspell distance, proposed by [14], is computed using the number of
matching subsequenceswithin the distinct sequences of states,where the durations
of the spells are weighted by some parameter b. Thismethod is built to be sensitive
to sequencing, and, depending on b, it may be also made sensitive to durations. In
the following, we set b = 0, so that the sensitivity to the order only is put forward.

• The OMspell distance, introduced in [52], generalizes the OM distance to se-
quences of spells. The increasing size of the alphabet and of the costs to be
specified are controlled through a linear function depending on a parameter δ,
representing the cost of extending or compressing a spell by one unit of time. For
small values of δ, the method favors the expansion or the compression of existing
spells. For δ = 0,OMspell reduces to the usual OM distance between the distinct
sequences of states. Let us remark here that the smaller δ, the less sensitive the
criterion is to the duration of the spells and the more it is to the sequencing.

• The OMstran distance, also introduced in [52], adapts the OM distance to se-
quences of transitions. Here also, the alphabet and the number of costs to be
specified are much larger than in the usual setting, but the dimension of the pa-
rameters is reduced by considering a convex combination between the costs of the
spells and the transition costs, controlled by some w. In the following, the value
of w was fixed so as to favor a criterion sensitive to differences in sequencing.

The second set of dissimilarities was focused toward highlighting timing. Four
distances were tested: the Hamming distance (HAM), based on the number of
non-matching states, the Euclidean distance (EUCLID), which, in this case, is the
squared root of the Hamming, the χ2 (CHI2), which is similar to the two previous
dissimilarities except that it gives more weights to the infrequent states, and the
Dynamic Hamming distance (DHD). For both EUCLID and CHI2 distances, the
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sensitivity between duration and timing is controlled through a parameter, L. When
L = 94 (i.e., in our case the trajectory length), scores are similar to those of the
Hamming family regarding timing, when L = 1, dissimilarity measures are more
sensitive to duration. DHD, proposed by [27], generalizes the Hamming distance
by considering an OM dissimilarity without insertions or deletions, and with the
substitution costs defined at each temporal instant from the corresponding transition
matrices. While taking the position in the sequence and time into account, DHD has
often been criticized for its risk of over-parameterization. In the following, distance
parameters used are specified between parentheses.

The third group of dissimilarities was defined to be sensitive to duration of
states. Again, four distances were selected: Euclidean and χ2 distances between state
distributions in the whole trajectories,OMspellwith δ = 1, which is sensitive both to
sequencing and duration, and a distance based on the length of the longest common
subsequence of two trajectories, LCS, as described in [4]. Whereas the Euclidean
distance is more sensitive to differences between states with a high duration, the χ2

gives more importance to rare states.
Figure S1 of Supplementarymaterial illustrates the relations between the different

distances on a cosine matrix (computed from the Frobenius dot product) for the
school-to-work transition dataset. Within the first group of distances, SVRspellwith
b = 0 appears to behave very specifically, and is even very different from the other
distances of its own group, except for the OMspell with δ = 0. This is explained by
the fact that SVRspell is sensitive to the sequencing only, and not at all to timing or
duration. Furthermore, since it is based on the number of common subsequences only,
its principle and computation are quite different from its OM-based counterparts.

The only distance highly correlated to SVRspell is theOMspellwith δ = 0, which
is also sensitive to sequencing only. The OMspell with δ = 0 is also very different
from the distances in its own group, except forOMspellwith δ = 0.1 andOMstran.
These two distances introduce some sensitivity with respect to the duration of the
spells, while still mainly favoring sequencing. These results are consistent with the
conclusions in [52], based on simulated data.

In the second group, the four distances are all very similar, and more particu-
larly HAM, Euclid and DHD. The χ2-distance stands out because of its particular
weighting. We can also note that all four distances in Group 2 are also very similar
to OMstran and OMspell with δ = 0.1, which favor sequencing and duration, and
very different from SVRspell and OMspell with δ = 0, which favor sequencing
only.

Within the third group of distances, all distances are also very similar, even if
the value of the cosine is a bit lower than within distances in the second group.
The distances in the third group are also similar to the ones in the second group, to
OMspell with δ = 0.1 and to OMstran in the first group.

In conclusion, SVRspell and OMspell with δ = 0 are very different from all
other distances, which are globally similar. This indicates that, for this dataset,
criteria favoring sequencing are quite opposite to those favoring timing or duration.
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6.2 Results of the clusterings

The map obtained with the first four distances is provided in Figure 2. For the sake
of conciseness, the other two maps are available in Figures S2 and S3 and in Section
S2 of the Supplementary material.

As one may easily see, most of the clusters show smooth sigmoidal transitions
between states, and in some cases “sandwich”-like representations. These patterns
are inherent to the fact that the first set of distances was built to point out similarities
in terms of sequencing and not in terms of timing or duration. A chronogram
representation is not a well suited representation in this case because it allows for
temporal shifts. Despite that, some clusters of particular interest can be identified,
such as the lower-left corner of the map, showing the outcomes of public fixed-term
contracts.

Fig. 2 Final map obtained with the first group of distances.

The final convex combination for the first group of distances was:
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0.27×OMstran+0.26×OMspell(δ = 0)+0.28×OMspell(δ = 0.1)+0.19×SVRspell.

It gives more weight to the OM-inspired distances, which appear to be more discrim-
inant than the SVRspell. As it has already been stressed in the comparison between
distances (Figure S1 of the Supplementary material), the SVRspell distance behaves
very differently from all the other distances and, according to [52], it is very sensitive
to sequencing and small random perturbations. The latter may be a reason for which
the other dissimilarities appear to be fitter for clustering trajectories based on their
sequencing properties.

6.3 Concluding remarks

This chapter has presented a global approach to perform exploratory analysis in
the presence of multiple sources of data or of multiple kernels describing different
features of the data. The approach has been illustrated on a dataset of categorical
time series representing labor-market status of recently graduated people. We have
shown the effectiveness of the approach to identify a relevant typography of the
dataset, with contrasting results depending on which features the focus is put on.
Different dissimilarities led to highlight different characteristics of the trajectories,
some less suited to chronogram representations than others. To fully exploit that
diversity, alternative representations would be needed, which could be able to better
represent similar duration of states or similar global distributions of the trajectories
and thus to highlight the distance features.
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