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Abstract—This paper deals with the closed-loop control of a
free shear flow subjected to mismatched disturbances. The goal
is to maintain it in a desired state whatever the disturbances.
Our approach consists of linearizing the Navier-Stokes equations
about the desired state and next to perform a discretization
step to obtain a linear state formulation. The components of
the state vectors are the stream function evaluated at different
points of the space assumed to be estimated via image techniques.
The proposed control law writes as the sum of two terms. The
first one allows to impose a behavior in regulation while the
second one describes a behavior in attenuation. We show that this
second term writes simply as a feedback gain that has to apply
to the perturbation vector. However, since we consider that the
disturbance is unknown, we propose a disturbance observer to
derive the control law. Next, we prove the input-to-state stability
of our control scheme. Simulations results on the DNS (direct
numerical simulation) solver Incompact3d validate our approach.

Index Terms—Closed-loop control, free shear flow, mismatched
disturbances, observer based-control, visual servoing

I. INTRODUCTION

Fluid flow control is widely used in lot of different ap-
plication areas. For instance, in aviation laminarization is
investigated to reduced the drag in order to reduce fuel
consumption (see e.g. [1]). In the road transport, the same
objective is expected (see e.g. [2]). Performance improvement
of wind turbines is also expected, see [3] for a recent review. In
contrast, in other application domains such as industrial chem-
istry, turbulence phenomena are encouraged to improve heat
exchange [4] or to enhance chemical reactions or combustion
performance [5].

Fluid flows are infinite dimensional systems described by
partial differential equations (PDEs). The field of PDE control
systems design has recently emerged as an important field of
research in both applied mathematics and automatic control.
However, this is a very daunting task due to the inherent
difficulty of the Navier-Stokes equations and for now it could
only be approached in some simplified particular cases (see
[6] among others) or for more simple PDEs (see e.g. [7], [8]).
Therefore, the common design approach assumes a first stage
of linearization and spatial discretization, followed by a second
stage of controller design based on classical control theory as
in [9].

In this paper, we focus on the case of a spatially developing
plane shear layer. This flow is induced by two parallel incident

streams with different velocities separated by a thin plate
where the actuator is located. This flow is known to be con-
vectively unstable and to be a typical noise amplifier, leading
to a very high sensitivity to upstream boundary conditions,
see Fig. 1. Therefore, acting on the upstream conditions is an
efficient way to enhance or reduce mixing due to turbulence.
To do that, we have first linearized the Navier-Stokes equations
about a desired state and then performed a spatial discretiza-
tion to transform this set of partial differential equations to an
ordinary set of linear differential equations. In addition, we
assume that the state can be completely measured by image
techniques (known as optical flow techniques) leading to a
consistant state vector according to the physics of the flow
(details are given in [10]). This approach is known as a visual
servoing approach.

Since this flows is an amplifier, we propose in this paper
a way to attenuate the consequences of an input disturbance.
Contrary to our previous work where the matched case was
considered [11], that is the disturbance evolves into the same
space as the actuator one, the mismatched case is here studied.
As in [11], we assume that the disturbance is unknown, but,
in addition, we consider here the case where its spatial distri-
bution is also unknown. To do that, a disturbance observer is
introduced in the control law. The input-to-state (ISS) stability
of the whole control scheme is proven under very weak
conditions for the linearized system but simulation results will
prove that this assumption is valid.

This paper is structured as follow. Section II is devoted
to the modeling of the flow according to control issues. The
problem of disturbance rejection / attenuation is detailed in
Section III. The proposed disturbance observer is detailed
in Section IV. The ISS stability is discussed in Section V.
Section VI validates our approach through simulations results.

II. MODELING FOR FLOW CONTROL

The non dimensionalized Navier-Stokes equations and the
continuity equation of an incompressible flow and Newtonian
fluid are given by ∂tu + (u.∇) u = −∇p+

1

Re
∆u

∇u = 0

(1)



Fig. 1. A small disturbance is amplified in the streamwise direction.

where u = [u v w]
> is the velocity vector at point X =

[x y z]
> ; p being the pressure at X; Re is a dimensionless

number called the Reynolds number. The x-axis is associated
to the streamwise direction, the y-axis to the normal direction
and the z-axis to the spanwise direction of the flow (see Fig. 1).

We attach to the separated plate the following frame
(O, ex, ey, ez) where vector ei is pointing along the direction
of i-axis (i ∈ {x, y, z}). We assume that the stream below
the separated plate writes as: U1 = U1ex with U1 a constant
value, while the stream above the separated plate writes as:
U2 = U2ex with U2 also a constant value (see Fig. 1).

To perform the nondimensionalization of the system (1), we
used U0 = U2 − U1, the volumetric mass density ρ0 and the
initial thickness of the shear layer δ0. Therefore, the dynamic
viscosity λ writes as the inverse of the Reynolds number Re =
ρ0U0δ0/λ.

Next, we proceed as proposed in our previous paper [11]
and refer to this paper for more details. In [11], we considered
the case where the flow was subject to small variations about
a steady state leading to the velocity field vector Ub and the
pressure Pb according to (Ub.∇) Ub = −∇Pb +

1

Re
∆Ub

∇Ub = 0.

(2)

Ub can be obtained by an approximation of the Blasius
solution of (2): Ub = [Ub 0 0]

> with Ub = U1 +
1
2 (tanh(2y) + 1).

As in [11], we consider the case of a 2D flow such that
the stream function ψ(x, t) in x = [x, y]> can be introduced
to derive the well known vorticity-stream function formula-
tion [12] of the linearized system (1) about Ub:

∆ψ̇ = Dψ, (3)

where D =
(
−Ub∂x∆ + d2Ub/dy

2∂x + 1
Re

∆2
)

is a differ-
ential operator acting on ψ. The stream function ψ is defined
from {

δu = +∂yψ (4a)
δv = −∂xψ (4b)

with δu the x component and δv the y component of the vector
δu = u−Ub. Consequently, δu describes the small variations
of u about Ub.

A. Boundaries Conditions

To effectively solve (3) one needs to specify the boundary
conditions, that is the boundary of the study area defined by
its dimensions Lx along x and Ly along y. We used Dirichlet
boundary conditions at the inlet (x = 0), at the outlet (x = Lx)
and at the top and bottom (y = ±Ly2 ):
• At the inlet, ψ(x, t)|x=0 is imposed by the stream

function profil of the disturbance ψd(x, t)|x=0 and the
stream function profil deduced from the control law
ψq(x, t)|x=0. Thus, we have:

ψ (x, t) |x=0 = ψd(x, t)|x=0 + ψq(x, t))|x=0 . (5)

• At the outlet, the conditions are given trough the resolu-
tion of the following convection equation:(

∂t +
(
U1 +

1

2

)
∂x

)
ψ(x, t)|x=Lx = 0 . (6)

• At the top and bottom boundaries, assuming that no
disturbance and no action occur, we can write:

ψ (x, t) |
y=±Ly2

= 0. (7)

B. Modeling for control issue

To explicitly reveal in (3) the parameters associated with
the control law and with the disturbance terms, we transform
the ordinary non homogenous differential equation (3) into a
homogenous one by setting:

ψ(x, t) = ψh(x, t) + ψq(x, t) + ψd(x, t) (8)

where ψh is the solution of the new ordinary homogenous
differential equation. This equation is obtained by substituting
(8) in (3):

∆ψ̇h(x, t) = Dψh(x, t)−
(

∆ψ̇q(x, t)−Dψq(x, t)
)
−(

∆ψ̇d(x, t)−Dψd(x, t)
)
. (9)

As proposed by several authors (e.g. [13]), we assume that
the control and disturbance terms write as separable functions
of time and space:{

ψq(x, t) = f(x)q(t)

ψd(x, t) = g(x)d(t)
(10)

where f and g are penetrating functions. They respectively
model the way the actuator and the disturbance spatially
impact the flow.

Considering (10), (9) becomes:

∆ψ̇h(x, t) = Dψh(x, t)−∆f(x)q̇(t) +Df(x)q(t)−

∆g(x)ḋ(t) +Dg(x)(x)d(t). (11)
To obtain a linear formulation of (11), a spatial discretiza-

tion step is required. To do that, a finite difference scheme has
been used. More precisely, the stream function ψh has been
discretized on a cartesian mesh of size n = nx×ny according
to high-order compact schemes leading to

Lψ̇h(t) = Mψh(t)+Fq̇(t)+FDq(t)+Gḋ(t)+GDd(t) (12)



where ψh =
[
[ψh 1,1 · · ·ψhnx,1] · · ·

[
ψh 1,ny · · ·ψhnx,ny

]]>
with ψh i,j = ψh (xi, yj). L and M are full rank (n × n)-
dimensional matrices while ψh, F, FD, G and FD are n-
dimensional vectors.

Since L is full rank, (12) can be rewritten more simply as
follows:

ψ̇h(t) = Aψh(t)+B1q̇(t)+B2q(t)+B3ḋ(t)+B4d(t) (13)

with A = L−1M, B1 = L−1F, B2 = L−1FD, B3 = L−1G
et B2 = L−1GD.

However, this equation is not suitable to effectively control
a flow. Indeed, ψh cannot be measured, only ψ (given by (8))
can be. Noting that the terms q̇(t) and ḋ(t) in (13) come from
the Laplacian operator applied to (10), the vector z defined by

z(t) = ψh(t)−B1q(t)−B3d(t) (14)

is nothing but a spatial discretized approximation of ψ which
is measurable for example by image-based techniques as
mentioned in the introduction.

Finally, (13) becomes

ż(t) = Az(t) + Bqq(t) + Bdd(t) (15)

with Bq = AB1 + B2 et Bd = AB3 + B4.
In the next section we will focus on the way to attenuate

the consequences of the disturbance on the flow.

III. MISMATCHED DISTURBANCE REJECTION

A. General case

In a more general case, the scalar q(t) and d(t) become
vectors: respectively the m-dimensional vector q(t) and the
r-dimensional vector d(t) leading to the n × m matrix Bq

and to the n× r matrix Bd instead of vectors. Therefore, we
have:

ż(t) = Az(t) + Bqq(t) + Bdd(t). (16)

We consider of course the case where the matrices Bq are
Bd different, this case is known in the literature as the
”mismatched case”.

In order to specify different behaviors in regulation and
rejection, the control law is split into two parts:

q(t) = u(t) + v(t) (17)

where u(t) will regulate to zero the state vector z(t) while v(t)
will be devoted to counteract the disturbance d(t). Without
loss of generality, we consider the case where u writes as a
state feedback u(t) = −Kzz(t). Moreover, by plugging (17)
in (16), we have

ż(t) = (A−BqKz)z(t) + Bqv(t) + Bdd(t). (18)

The matrix gain Kz is of course computed to ensure that A−
BqKz is Hurwitz. Therefore, to reject the disturbance d(t),
we have to find v(t) such that Bqv(t) + Bdd(t) = 0. This
problem has been studied by Johnson [14]. Indeed, Johnson
has shown that Bqv(t) + Bdd(t) = 0 if, and only if, Bd

writes as:
Bd = BqΓ (19)

where Γ is a m× p matrix. In that case, it is straightforward
to show that the control law v(t) = −Γd(t) ensures the
convergence of the state to zero even if a disturbance d(t)
occurs (in the case of course where d(t) is perfectly known).

Otherwise, the designer of the control law has no other
choice than to attempt to minimize the effect of the disturbance
while ensuring that the closed-loop system remains simply
stable since the asymptotic stability of (18) can no longer be
reached. We will return to this important problem at section V.

B. Case of the mixing layer

In that case, only one actuator is available, thus m = 1. We
consider also the case where the magnitude of the disturbance
d(t) is scalar and constant, that is d(t) = d, ∀t and above all
unknown. In addition, we consider that Bd is also unknown
since the penetrating function g involved in (10) is assumed
to be unknown. Thus, (18) becomes

ż(t) = Aclz(t) + Bqv(t) + W (20)

in which we have Acl = A−BqK
>
z and W = Bdd.

It is obvious that (19) is not verified for any given pen-
etrating function g. Thus, we propose to minimise J =
‖ Bqv(t) + W ‖2 to limit the effect of the disturbance W
on the flow. The control law is obtained by expressing the
minimum of J with respect to v(t) :

∂J

∂v(t)
= 2B>q Bqv(t) + 2B>q W (21)

which gives:
v∗ = −K>wW (22)

with

K>w =
B>q

B>q Bq
. (23)

It is of course a minimum since ∂2J
∂2v(t) = B>q Bq is a positive

scalar. In addition, let us point out that the gain Kw is a
constant vector, thus it can be computed off-line.

Consequently, the whole control law (17) writes simply
as a state feedback added by a feedback operating on the
disturbance:

q(t) = −K>z z(t)−K>wW. (24)

Remark: In the matched case, we have W = Bqd where,
once having been plugged into (22), leads to v∗ = −d and
to J = 0. We recover here that the control law perfectly
counteracts the disturbance.

Since the control law (24) depends on the disturbance
vector W, it is essential to estimate it as best as possible.
It is the issue of the next section.

IV. DISTURBANCE OBSERVER

We extend here the observer proposed in [15]. Indeed,
in [15], Bd involved in (15) is known. Thus, our observer
is able to estimate as well the magnitude of the disturbance
as its spatial distribution. Moreover, we present here a simpler
derivation.



A way to express the problem is to try to ensure an
asymptotic decrease of the observation error W̃(t) defined
as follow:

W̃(t) = Ŵ(t)−W. (25)

This can be done by imposing an exponential decrease of the
error:

˙̃
W(t) = −λW̃(t), λ > 0 (26)

where λ is also used to tuned the convergence rate.
Thereafter, by plugging (25) in (26) and taking into account

that W is constant, we have
˙̂

W(t) = −λ
(
Ŵ(t)−W

)
. (27)

In the previous relation, W is not known, but it is involved in

ż(t) = Az(t) + Bqq(t) + W (28)

which yealds

˙̂
W(t) = −λ

(
Ŵ(t)− ż(t) + Az(t) + Bqq(t)

)
. (29)

However, in the above formulation the time derivative of the
space is required. To remove this dependency, the following
change of variable based on the one proposed in [15] is used:

ξ(t) = Ŵ(t)− λz(t) (30)

leading to ξ̇(t) =
˙̂

W(t)− λż(t) which becomes by using the
expression of ˙̂

W(t) from (29):

ξ̇(t) = −λ
(
Ŵ(t) + Az(t) + Bqq(t)

)
(31)

which simplifies by expressing Ŵ(t) from (30) as follows:

ξ̇(t) = −λ (ξ(t) + λz(t) + Az(t) + Bqq(t)) . (32)

This last expression gives the final formulation of the distur-
bance observer:∣∣∣∣ Ŵ(t) = ξ(t) + λz(t)

ξ̇(t) = −λ
(
ξ(t) + λ (In + A) z(t) + Bqq(t)

)
.

(33)
It is clear that it is an asymptotic observer since it has been
designed to satisfy (26).

Finally, the control law (24) becomes

q(t) = −K>z z(t)−K>wŴ(t). (34)

The next section is devoted to the stability analysis of (20)
controlled by (34).

V. STABILITY ANALYSIS

When no disturbance occurs, the equilibrium point z = 0
is asymptotically stable for the linearized closed-loop system.
In contrast, as it has been shown in III-A, when it is disturbed
the state cannot converge anymore to z = 0.

We will show in this section that, if the disturbance remains
bounded, the state will be also bounded. This propriety is
known in the literature as the ISS stability and has been first
introduced by Sontag for nonlinear systems [16].

Let us recall the equations governing the linearized closed-
loop system: 

ż(t) = Az(t) + Bqq(t) + W (35a)

q(t) = −K>z z(t)−K>wŴ(t) (35b)
˙̃

W(t) = −λW̃(t) (35c)

W̃(t) = Ŵ(t)−W (35d)

which gives by plugging (35b) in (35a):

ż(t) = Aclz(t)−BqK
>
wŴ(t) + W (36)

and by expressing Ŵ(t) from (35d):{
ż(t) = Aclz(t)−BqK

>
wW̃(t) +

(
In −BqK

>
w

)
W (37a)

˙̃
W(t) = −λW̃(t) (37b)

that we can treat as the following augmented system:

ζ̇(t) = Āζ(t) + B̄W (38)

where ζ(t) =
[
z(t),W̃(t)

]>
and

Ā =

[
Acl −BqK

>
w

0 −λIn

]
, B̄ =

[
In −BqK

>
w

0

]
. (39)

For an initial condition ζ(t) = ζ0, an explicit solution of
(38) can be obtained:

ζ(t) = eĀ(t− t0)ζ0 +

∫ t

t0

eĀ(t− τ)B̄Wdτ. (40)

Since: (i) the matrix Acl is Hurwitz by construction, (ii) the
matrix −λIn is Hurwitz since λ > 0, therefore the matrix Ā

is also Hurwitz. Thereafter, ‖ eĀt ‖ is bounded for any t > 0
and there exist two positive constants k and µ such that

‖ eĀ(t− t0) ‖ ≤ ke−µ(t−t0). (41)

Consequently, we have

‖ζ(t)‖ ≤ ke−µ(t−t0)‖ζ0 ‖+ k

∫ t

t0

e−µ(t−τ)‖B̄‖‖W‖dτ
(42)

and finally

‖ζ(t)‖ ≤ ke−µ(t−t0)‖ζ0 ‖+
k‖B̄‖
µ
‖W‖. (43)

Therefore, for any bounded constant disturbance W, the state
of the system controlled by (35b) is also bounded.

In addition, we have

lim
t→+∞

‖ζ(t)‖ ≤ k‖B̄‖
µ
‖W‖. (44)

Remark: It is easy to verify that Kw given by (23) minimizes

also ‖B̄‖ in (44).



VI. SIMULATION RESULTS

The whole control scheme has been implemented in the
Navier-Stokes equations solver Incompact3d [17]. It solves (1)
according to the boundaries conditions detailed in section II-A
and taking (10) into account.

The control law has been computed from (35b). The gain
Kz has been computed by resolution of the Ricatti equation
to derive a classical LQR control law (more details are given
in [11]). The penetrating functions f and g (see section
II-B) are defined such that f(x) = exp ((−x/4)

2
)hf (y) and

g(x) = exp ((−x/4)2)hg(y) where the fonctions hf and hg
are plotted in Fig. 2 (more details concerning these choices
are also given in [11]). These figure clearly shows that we are
in the mismatched case (Bq 6= Bd): hg(y) cannot be deduced
from hf (y) by a constant coefficient. The estimation of the
disturbance (its magnitude and its spatial distribution g(x))
is obtained thanks to the observer described by the set of
equations (33) (λ has been set to 5). The value of the Reynolds
number has been set to 300, the value of nx was 64 while the
value of ny was 32.

To evaluate both the relevance of using a linearized system
and the behavior of the observer, we have introduced the
following error signal: EW = z̃>k+1z̃k+1 where z̃k+1 =
zk+1 − ẑk+1. The vector ẑk+1 is obtained by integration of
the following dynamic system:

˙̂z(t) = Az(t) + Bqq(t) + Ŵ(t) (45)

between t = kT and t = (k + 1)T where q(t) and Ŵ(t)
are assumed to be constant during the integration time. T has
been set to 0.1 in dimensionless time. The initial condition
concerning z(t) is given by the Navier-Stokes solver at t =
kT : zk = z(kT ) as well as zk+1 = z((k + 1)T . Indeed, if
Ŵ(t) converges to the true value W and if our approach of
linearization is valid, then EW will tend to zero.

Fig. 3 depicts the behavior of the mixing layer when the
disturbance is assumed to be occurred at t = 0 and with
z(0) = 0. As can be seen in Fig. 3a, ‖z(t)‖2 is very affected
by the disturbance when no control law is applied (in red), as
well as only a state feedback control law is applied (in green).
In contrast, the proposed control scheme is very efficient since
‖z(t)‖2 has been drastically decreased (in blue). However, in
the three cases, the same behavior is observed. The state vector
is growing during the transient step until the steady state is
reached. The duration of the transient state is around 30 in
dimensionless time.

Let us detail more precisely the way the control scheme
is used in practice. Fig. 3b depicts the behavior of K>wŴ(t)
at the very beginning of the simulation, its convergence to
a stable value does not occur immediately, consequently we
propose to take Ŵ(t) into account in the control law only
when a stable value is reached. In practice, it happens for
t = t∗ (approximately 1.1 in this simulation). Then, for t <
t∗ only the state feedback is applied. Next, for t ≥ t∗, the
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Fig. 2. Penetrating functions f(x) and g(x) at x = 0.

compensation term K>wŴ(t) is used. In addition, to avoid a
discontinuity in the control law we use:

q(t) = −K>z z(t)−H(t− t∗)
(

1− e−
t−t∗
τ

)
K>wŴ(t) (46)

where H(.) is the Heaviside function. The parameter τ has
been set to a small value (τ = 1) to ensure that the
compensation term v(t) is quickly reached. Fig. 3c depicts
the behavior of the control law (46).

Fig. 3d details the behavior of log10(EW) with (in green)
or without compensation term (in red). First, these signals
decrease rapidly until they reach a plateau corresponding to
the duration of the transient step. That means that some
non linearities occur since K>wŴ(t) has already reached its
convergence value (see Fig. 3e). Once the transient step is
finished, EW vanishes and consequently also W̃(t), but that
also means that the state vector obtained from the linearized
model is very closed to the ground true given by the Navier-
Stokes equations solver. This result proves that even if z is
relatively high (see Fig. 3a, and it is especially the case when
only the LQR control is applied), the linearized model is still
valid in the steady state.

Fig. 4 confirms that our approach is valid even for state
vectors far from the desired state about which the lineariza-
tion has been performed. Indeed, in this 2nd simulation the
magnitude of the disturbance is twice the one in the previous
simulation. As can be seen in Fig. 4a, using a compensation
term is still very efficient. Moreover, here again, EW have the
same behavior than in the previous simulation and of course
the same conclusion can be drawn. In addition, for the first
simulation we have z2∞ = lim

t→+∞
‖z(t)‖2 = 31.0708 while

for the 2nd one we have z2∞ = 128.0328 (when using the
compensation term in the control law). Thus, we have almost
a factor 4 between the two steady states. Consequently, even if
the flow has been very affected by the disturbance, it behaves
like the linearized system. Indeed, it is easy to show from
(37a) that in that case z∞ is directly proportional to W.

Remarks: The control law (46) is of course robust with
respect to t∗. However, the sooner a valid compensation term
is applied, the lower the value of the maximum of ‖z(t)‖2
is. The control law (46) is also robust with respect to τ . This
parameter is involved in the instantaneous energy consumption
of the actuator. A compromise has then to be done between
energy consumption and efficiency to limit the influence of
the disturbance.
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wŴ(t) vs.
time ; (c) Control signal vs. time ; (d) Behavior of log10(EW) vs. time; (e)
Zoom on K>

wŴ(t) vs. time.

VII. CONCLUSION AND FUTURE WORKS

We have proposed a control scheme of a mixing layer flow
subject to mismatched disturbances. Our approach allows to
attenuate the influence of a completely unknown disturbance,
that is as well its magnitude as its spatial distribution. To
do that, we have designed an observer that leads to an
estimation of the whole disturbance (magnitude and spatial
distribution). Next, this estimation is used in the control law.
The proof of the ISS stability has been given considering the
linearized system under very simple conditions. Unfortunately,
the extension of our result to the Navier-Stokes equation
seems to be out of reach. Nevertheless, simulation results on a
Navier-Stokes equations solver have proven that our approach
based on linearization is valid.

Future work will concern the case where disturbances are
slowly times varying. We plan also to validate our approach
on our wind tunnel.
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