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Abstract
The assessment of rice yield at territory level is important for strategic economic decisions. Assessing spatial and temporal yield
variability at regional scale is difficult because of the numerous factors involved, including agricultural practices, phenological
calendars, and environmental contexts. New remote sensing data acquired at decametric resolution (Sentinel missions) can
provide information on this spatial variability. The study objective was thus to evaluate the potential of Sentinel-2 images for
monitoring rice cropping systems and yield from farm to region scales. The approach considered both observations and modeling. In-
depth farmers surveys were carried out in the Camargue region, Southeastern France. The novelty was to use operational tools
(BVNET and PHENOTB) to compute leaf area index, to daily interpolate this biophysical variable from 44 images acquired in
2016 and 2017 for each rice field, and to derive key phenological parameters from the analysis of the temporal profiles. The STICS
cropmodel was spatially used, considering the biophysical variables derived from remote sensing.We tested four simulation strategies,
differing in the integration intensity of remote sensing information into the model. Results have shown that (1) Sentinel-2 data allowed
distinguishing early and late rice varieties. (2) The phenological stages mapped at the regional level allowed to better understand the
agricultural practices of farmers. (3) The assimilation of remote sensing data to the STICS crop model significantly improved yield
estimation and provided useful information on the spatial variability observed at regional scale. It was the first time that Sentinel-2 data
are used with STICS crop model to assess rice yield at both farm and regional scale in the Camargue area. The proposed method is
based on free open data and free access model, easily reproducible in other environmental contexts.

Keywords Paddy . LAI . Productionmapping . Remote sensing . Farm scale

1 Introduction

Although rice is not a staple food in Europe, this crop plays an
important sociocultural (Picazo-Tadeo et al. 2009) and eco-
logical (Longoni 2010) role in several Mediterranean coun-
tries. Timely and accurate estimations of the area of rice

production and the associated yields can provide invaluable
information for governments, planners, and decision-makers
that need to formulate agricultural and environmental policies
(Mosleh et al. 2015). Climatic and soil conditions that influ-
ence the various yield components can be reinforced or miti-
gated through appropriate choice of variety and technical
practices such as sowing dates and fertilization (Delmotte
et al. 2011). Sometimes even small changes in the sowing
date, depending on climatic hazards, variety, and soil type,
can lead to important yield reductions from cold-induced ste-
rility (Confalonieri et al. 2009b). Technical practices can be
used to avoid problems like weed competition (Delmotte et al.
2011). However, assessing the spatial variability of these ag-
ricultural practices through field surveys at regional scale is
generally difficult, time-consuming, and costly.

An alternative is to use models for the assessment of yields.
Crop models have been used extensively to analyze different
practices such as applying nutrients, managing water, or
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altering genetic coefficients (Boote et al. 1996; Van Keulen
and Asseng 2019). Some authors such as Jin et al. (2018)
reviewed the development of the crop models over time.
Bregaglio et al. (2017) analyzed the potential effects of climat-
ic changes on rice productions using two crop models and
showed that advancing the sowing date and adopting
varieties with longer crop cycle can moderate the impact of
higher temperatures on rice yields. Li et al. (2015) point out the
uncertainties in predicting rice yield by current crop models un-
der a wide range of climatic conditions. With these issues in
mind, they considered thirteen models in their study, among
them, the STICS crop model (Brisson et al. 2003), whose results
corresponded well with the observations (Li et al. 2015).

There are different crop model categories. Their classifica-
tion can be done according to the simulated processes. Some
of the most widely used rice models are ORYZA2000
(Bouman and van Laar 2006), APSIM-RICE (Gaydon et al.
2012), CERES-RICE (Singh et al. 1993), DNDC-Rice
(Fumoto et al. 2008), GEMRICE (Yoshida and Horie 2010),
McWLA (Tao and Zhang 2013), RiceGrow (Tang et al.
2009), WOFOST (Zhou et al. 2019), WARM (this last one
being mainly applied in Italy (Confalonieri et al. 2009a)), and
STICS (with a specific rice module developed by Irfan
(2013)). Most models require genotype data, soil characteris-
tics, cultivation practices, and meteorological information as
forcing variables.

STICS is a generic crop model (Brisson et al. 2003) with
specific modules to account for the water, nitrogen, and car-
bon balances in the system from the initial to final stages and
the remaining quantities after the cropping season (Ruget et al.
2016). This model has proven to be robust, able to simulate a
large range of pedoclimatic conditions, and behave well in the
intercomparison of rice crop models through the AGMIP pro-
gram (Li et al. 2015). It has been calibrated from a large
dataset and is well suited for the Camargue area (Irfan 2013;
Bregaglio et al. 2017).

While the implementation of STICS is relatively easy at the
local scale where the main characteristics of the soil and agri-
cultural practices can be gathered from punctual measure-
ments or from surveys, its application at a larger scale is more
difficult because soil, climate, and crop management can vary
considerably. A lack of knowledge about spatial variations in
these factors leads to uncertainties, mainly affecting physio-
logical growth simulations that can induce large errors in yield
estimations (Jin et al. 2018). Hansen and Jones (2000) have
reviewed different approaches in applying crop models at
scales larger than individual fields. They conclude that the
most rigorous approach requires characterizing the spatial dis-
tribution of all model inputs, but this can be very difficult due
to the complexity of the model considered. The requested
parameters can indeed be very numerous and almost impossi-
ble to inform, unless expensive and time-consuming field
campaigns are conducted. Some approaches have proposed

to use statistical methods, but these approaches sometimes
involve significant assumptions based on distributions and
related probabilities (Hansen and Jones 2000). Paltasingh
and Goyari (2018) proposed a review on the statistical model-
ing of crop-weather relationship in India. Shi et al. (2013)
compared three main statistical methods using historical data
and identified the main issues related to the extent of spatial
and temporal scale, non-climatic trend removal, collinearity
existing in climate variables, and non-consideration of
adaptations.

Other approaches have used remote sensing, where contin-
uous and temporal information can be provided from a wide
range of sensors operating all over the world (Courault et al.
2016). Remote sensing data have often been combined with
cropmodels to improve their performance for yield prediction,
mostly for cereals (Battude et al. 2017) or beets (Launay and
Guerif 2005). Jin et al. (2018) and Delecolle et al. (1992)
describe various assimilation methods. The choice of method
depends on various factors, such as model complexity, com-
puting time, and the number of parameters to estimate.

Forcing methods generally involve biophysical variables
such as LAI (leaf area index) as input data in crop models
(Clevers et al. 2002; Courault et al. 2010; Tripathy et al.
2013; Yao et al. 2015). Inversion methods are commonly used
for model calibration with, for example, the simplex search
algorithm (Battude et al., 2016; Claverie et al. 2012). More
complex variational or sequential approaches (which require
more computing time) are also found in the literature (Jin et al.
2018). A review on the practical aspects of data assimilation is
presented in Jarlan and Boulet (2014).

Microwave remote sensing has the advantage of acquiring
images in any type of weather and has often been used in
tropical areas for rice yield assessment (Bouvet and Thuy Le
2011; Bouvet et al. 2014; Pazhanivelan et al. 2019; Shen et al.
2009). Sentinel-1 images have shown a high accuracy to iden-
tify rice fields (Bazzi et al. 2019). Chakraborty et al. (2005)
have used RADARSAT data to estimate crop height, among
other rice crop parameters.

In Mediterranean regions, as the weather was less cloudy
than tropical regions, many studies have preferred to use op-
tical data in crop models (Courault et al. 2010; Tornos et al.
2015; Gilardelli et al. 2019). Biophysical variables derived
from optical data such as LAI developed from operational
algorithms like the BVNET tool (Baret et al. 2007) have prov-
en their robustness and are widely used. Such products (LAI)
are now freely distributed through different remote sensing
platforms (e.g., https://lpdaac.usgs.gov/products, and https://
www.theia-land.fr/en/products/). Operational vegetation
indexes, such as MODIS-derived EVI, have also been used
for yield estimations at large scale (Palakuru and Yarrakula
2019; Zhou et al. 2019). Other MODIS products (MOD9,
MOD13) have been analyzed in different pedoclimatic con-
texts (Boschetti et al. 2015; Manfron et al. 2012). However,
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the spatial resolution of MODIS products (1 km) does not
allow to distinguish different management practices at the
scale of a single farm (Merlin et al. 2010). Downscaling
methods have been proposed, combining low- and high-
resolution data to gain a deeper understanding of crop system
dynamics, but the developed methods are not currently used
routinely for operational applications (Gilardelli et al. 2019).

Until recent years, the issue of temporal and spatial resolu-
tion of most remote sensors posed the greatest challenge. Data
from low spatial resolution imagery were not suitable for
distinguishing practices at the field scale. This issue was re-
solved from June 2015, the launch of the first Sentinel-2A
satellite which provides a large and unprecedented amount
of free data with high-resolution images (10 m, every 10 days
in 2016 and every 5 or 3 days since the Sentinel-2B launch in
March 2017). These data are particularly well suited for crop
monitoring in Mediterranean regions where the days are often
dry and clear.

The objectives of our study were then to evaluate the con-
tribution of Sentinel-2 dataset in two undertakings: (1) to
monitor the phenological calendar of rice plots in order to
better understand the agricultural practices of the farmers
and (2) to assess rice production and its spatial variability at
regional scale for the whole Camargue, combining the STICS
crop model and remote sensing data. The developed approach
also aims to propose an operational method to get annual map
of rice production for various territory stakeholders.

2 Materials and methods

2.1 Study area and rice crop management

The Camargue area in southeastern France (center 43° 36′
4.31 N–4° 33′ 23.22 E, 5 m above sea level on average) is a
large wetland plain of 145,000 ha located in the Rhone delta.
Approximately 70,000 ha is used for agricultural production,
and the remaining land is a nature reserve (UNESCO reserve
since 1977). The region is characterized by warm summers
(with average daily temperatures varying between 18.5 and
27°C over the period 1991–2020) and mild winters (daily
minimum temperatures are usually higher than 0°C and can
reach up to 17°C in some years). Precipitation mainly occurs
in the autumn and winter months (603 mm for annual average
from 1991 to 2020), with large interannual variations. The
Fourques station (43.704 N 4.561 E) recorded 564 mm in
2016, but only 277 mm in 2017 (Supplementary Material 1).
Strong and prevalent winds (known as le Mistral) cause sig-
nificant evapotranspiration of up to 1300 mm/year. The high
water deficit promotes the capillary rise of saline ground water
(Trolard et al. 2018). Flooding of rice fields from March to
September contributes to the desalinization of the soil (irriga-
tion from the Rhone river provides roughly 25,000 to 30,000

m3·ha−1 of water each year). Themain soil types correlate with
small variations in the topography. There are hydromorphic
shallow soils and deeper soils with a higher sand content. Four
soil types have been defined at the regional scale (Ruget et al.
2016): sandy soils and clay soils, each classified as deep or
shallow (topography above or below 1.5 m.a.s.l., correspond-
ing to salinity pressure).

Rice farming constitutes the most widespread crop in the
delta, either in rotation with wheat or as a monoculture. The
rice cycle lasts between 80 and 120 days depending on the
variety and the weather conditions. Cultivated rice belongs to
the Oryza japonica ecotype, which adapts well to large vari-
ations in climate, from tropical to Mediterranean. Water man-
agement is crucial all along the growth cycle, from sowing to
harvest. Small channels are dug in bare fields to better regulate
irrigation and drainage (see Fig. 1a). Most farmers sow 4 to 5
days after flooding. The minimum temperature for emergence
is 12°C and for flowering 20°C. Depending on the choice of
cultivar (early or late), the soil type (shallow and deep), and
the temperature, sowing dates can extend from mid-April
(DOY 105) to the end of May (DOY 148). Management of
the water level and the water temperature are also essential
factors for seedling emergence and weed control. Successive
depletion and replenishment results in variations of 15 to
30 cm in the water level, which is regulated according to the
climate and crop interventions. For example, farmers lower
the water level during weeding operations and try after to keep
a certain level of water for thermal regulation. During the
growing period, nitrogen fertilizer can be applied 2 to 3 times
(total of 150 kgN·ha−1 in average). Harvest usually starts in
mid-September (DOY 258) and continues until the end of
October (DOY 288). The grain humidity must be below
22% for the rice to be harvested.

Stubble management varies between farms. Some farmers
bury the stubbles and plow the soil immediately in order to
sow a new crop. Others prefer to burn rice straw residues (Fig.
1f), even though this practice is increasingly seen as problem-
atical because of the negative impact on the environment
(Delmotte et al. 2011). During winter, some rice fields are left
fallow or planted with alfalfa to increase soil nitrogen content.

2.2 Ground observations and surveys

During Sentinel-2 acquisitions in 2016 and 2017, ground ob-
servations of 830 fields were made for land use identification
throughout the Camargue area. In 2017, hemispherical photo-
graphs were taken over 12 rice fields at the same dates than
Sentinel-2 along the crop cycle, in accordance with the Valeri
protocol (http://w3.avignon.inra.fr/valeri/). These
photographs were then processed by Can-eye software
(https://www6.paca.inra.fr/can-eye) to estimate the LAI to
monitor crop growth.
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Additionally, seven farms with crop surfaces varying from
170 to 490 ha, including more than 200 rice fields, were sur-
veyed about a number of specific agricultural practices and
elements: soil preparation, sowing date, rice variety, plant
density, water management, chemical treatments, fertilizer
dates and quantity, harvest date, production, and residue man-
agement. The average size of rice fields was around 3 ha. In
2016, 298 fields were cultivated in rice on these farms; in
2017, they cultivated 243 rice fields. These farms were chosen
as representative of the soil and variability of practices en-
countered throughout the Camargue region. In each farm,
we observed a variability of crops and practices (e.g., rice
cultivars, sowing dates; see Supplementary Material 2).

2.3 Sentinel-2 data

In 2016 and 2017, 44 cloud-free Sentinel-2 images (24 in
2016, 20 in 2017, acquired from DOY 100 to DOY 290) were
downloaded from the THEIA platform (http://www.theia-
land.fr/) at level 2 (georeferenced in UTM projection and
corrected from atmospheric effects according to the MAJA
chain described in http://www.cesbio.ups-tlse.fr/multitemp/).

The first stage was to separate rice from the other crops. A
land use map was made using the following spectral Sentinel
bands, B3 green, B4 red, B8 near-infrared, and B12 middle
infrared band, and 6 dates were chosen from April to October
to separate at the best the various crops. A supervised non-
parametric classification algorithm, support vector machine
(SVM), has been used considering the ground observation
points mentioned above. SVM is basically a binary classifier
that delineates two classes by fitting an optimal separating
hyperplane to the training data in the multidimensional feature
space to maximize the margin between them (Ndikumana
et al. 2018b). Among the 830 ground observations, 400 were
used for the learning step and 430 for the validation. We
defined 4 classes: rice, wheat, grassland (the dominant crops)

and the last class which groups all other crops. The learning
dataset was chosen in order to include the main crops encoun-
tered in the study area; the rice surfaces covered 800 ha in the
learning dataset and 900 ha in the validation dataset. The
fields were selected from a wide spatial distribution in order
to cover the spatial variability of practices and soils. Accuracy
was evaluated by computing the confusion matrix and the
kappa index.

The second stage consisted in computing the biophysical
variable (LAI) at each date to get information on the pheno-
logical calendar of each rice field. LAI were estimated using
the BVNET tool and the Sentinel-2 reflectances of the three
spectral bands B3, B4, and B8. BVNET relies on reflectance
simulations made from the PROSAIL radiative transfer model
combined with a neural network (Baret et al. 2007). The solar
and sensor angles are necessary for computation. The normal-
ized difference vegetation index (NDVI) was also computed
for each image to extract the sowing date according to the
method described in Courault et al. (2020) (a brief summary
is given in Supplementary Material part 3).

In order to obtain the boundaries of each field in the
Camargue area, we used Envi software to build a shapefile
based on the land use map obtained for each year studied
(vectorization of the initial raster format). To compensate for
limits in the accuracy of our pixel scale classification
(vectorization did not always match actual field boundaries),
we merged, using QGIS3.6.3 software, the boundary informa-
tion obtained from the RPG file (IGN http://professionnels.
ign.fr/rpg) corresponding to the fields as declared by farmers
requesting subsidies. To avoid edge effect, we allowed for a
buffering of 3 m between the fields, and to complete the file,
all of our ground observations were also considered. The
resulting shapefile was then overlaid with all the raster LAI
and NDVI images for each Sentinel-2 date in order to extract
the mean and standard values for each rice field. This step was
done using QGIS3.6.3 software and zonal stats functions

a b c d e f

g h i j k

350m

Fig. 1 Top photos show the different surface states of rice fields: a soil
preparation, plowing with small channels for irrigation, b flooding, c crop
emergence, d maturity stages, e senescence before the harvest, and f
residues burned in October. Lower photos (g through k) show colored

compositions of Sentinel-2 images over rice fields during the growing
cycle. Coded in red, band 8 (near-infrared range); in green, band 4 (red);
in blue, band 3 (green); the images are taken from April to October
2016 at the main stages of rice development displayed above.
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developed with R software. Finally, excel files containing the
mean value of LAI and NDVI for each field (3453 and 3645
rice fields in 2016 and 2017, respectively) and for each date
were analyzed according to information collected with
farmers.

Figure 2 details the different steps of image processing up
to crop modeling. The models and software are in gray boxes.
The boxes in red underneath summarize the key points. The
next step consisted of fitting a phenological model (double
logistic function, see Eq. 1 in Supplementary Material part
4) to the LAI observations. We used the algorithm proposed
by Inglada (CESBIO Toulouse, http://tully.ups-tlse.fr/jordi/
phenotb). The parameters were optimized using a
Levenberg-Marquardt optimizer available in the free OTB
toolbox. Key phenological parameters such as the emergence
and senescence dates and the length of maximum develop-
ment were derived from the temporal profiles (see
Supplementary Material part 4).

2.4 Description of the STICS crop model

STICS is a generic crop model (Brisson et al. 2003) adapted
for rice by Irfan (2013) and Ruget et al. (2016), which simu-
lates crop phenological development at a daily time-step as a
function of thermal time accumulation. The model’s structure
is modular, with each module representing a process: devel-
opment, conversion, grain formation, water balance, transfor-
mation of assimilates into grain, and water and nitrogen cy-
cles. The model can consider different farming management
practices as inputs.

Leaf growth was simulated based on development rates,
development stages, temperature, and water and nitrogen
stresses (see Supplementary Material 5). Possible water and
nitrogen stresses are assessed with three indices that can re-
duce leaf growth and biomass accumulation. They are calcu-
lated from the water and nitrogen balances. For our study case,
we did not consider the limiting effects of water because rice
cropping systems are flooded all along the cycle. To maintain
the flood conditions from the sowing date to the beginning of
September, approximately 25 irrigations were undertaken,
varying from 20 to 40 mm every 5 days (the total water
amount varies from 500 to 800 mm depending on weather
conditions).

The simulated LAI is used to estimate photosynthesis and
respiration and then to compute the biomass. The biomass was
transferred into yield using a harvest index, which is upper
limited by the product of grain number by maximum grain
weight. The maximum value of radiation use efficiency is
modulated by temperature, radiation, and crop development
stage (see Supplementary Material 5 for more details).

STICS requires daily weather inputs (Table 1) and soil
descriptions of the corresponding layers characterized by their
chemical and physical properties (for the rice, two soil layers
were defined, a first layer of 25 cm and a second thin soil layer
of 5 cm with a low value of infiltration at 0.01 mm/day to
obtain an impermeable soil layer to avoid water loss). Four
soil types were defined in the Camargue region by Ruget et al.
(2016), distinguished mainly by their clay and organic nitro-
gen contents (see Table 2 in Supplementary Material 5).

The main parameters used for our simulation are reported
in SupplementaryMaterial 5, Table 1. Since most encountered

Fig. 2 Scheme summarizing the main steps of image processing up to
cropmodeling. Sentinel-2 data are acquired at different dates (t). The land
use map is obtained from a supervised classification (SVM support vector
algorithm); the shapefile contains all the field boundaries (built from the

land use vectorization merged with the RPG (Registre Parcellaire
Graphique) file); ITK parameters mean all parameters describing the
main agricultural practices; LAI, leaf area index.
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rice varieties in 2016 and 2017 were semi-early, we chose to
use the parameters defined for the Ariete variety for all simu-
lations (see values given for the main processes in
Supplementary Material part 5, based on Bregaglio et al.
2017).

The agricultural practices for each field (sowing date, fer-
tilizer dates, and quantities) were identified through our sur-
veys with the farmers. The surveys showed a large variability
in nitrogen inputs (N); thus, nitrogen stress was activated in
our simulations. Four simulation strategies were evaluated
(described in the next section).

2.5 Studied cases

The analysis of all surveys showed a large variability in the
agricultural practices. Most farmers use conventional manage-
ment with herbicides and nitrogen fertilizer to promote tiller-
ing. Nitrogen is generally applied on two dates, the first with
ammonium phosphate or urea at a dose of 52 kgN·ha−1 on
average (end of April) and the second averaging 106 kgN·
ha−1 (end of June). A bimodal distribution was fitted by a
normal law on these collected values and analyzed using the
R function fitdist, of the R package fitdistrplus (Delignette-

Table 1 Main inputs of STICS related to the climate, soil, plant characteristics, and technical practices and their sources for the different simulation
strategies. N for a normal distribution, the first argument is the mean value, and the second the standard deviation, U for uniform distribution.

Main inputs Source

Climate Precipitation, air temperature, air moisture, global
radiation, wind speed

Fourques station (data downloaded from the Climatik toolbox (database
Agroclim INRAE AVIGNON))

Soil Tillage depth, physical and chemical properties,
water holding capacity, soil nitrogen status

Soil map with 4 classes defined by Ruget 2016 (see Table 2 in Supplementary
Material 5)

(For the strategy 4: Norg and Nmin are assessed from Sentinel-2 LAI)

Plant/variety Duration of different growth stages, grain weight
temperature required for growth and grain filling

For strategy 1: Semi-early variety chosen (Ariete parameters, see Table 1 in
Supplementary Material 5, LAI is simulated by STICS)

Strategies 2-3-4: LAI from Sentinel-2 is used as input data, the other plant
parameters are the same as in strategy 1 (see Table 1, Supplementary Material
5)

Management
practices

Sowing date (iplt0 unit DOY)

Ammonium phosphate date (julapN(1) DOY)
Urea date before sowing (julapN(2) in DOY)
Urea date after sowing (julapN(2) in DOY)
Ammonium phosphate dose (doseN(1) kgN·ha−1)
Urea dose (1 or 2 intake) (doseN(2) kgN ha−1)
Organic nitrogen in the soil (Norg, %)
Mineral nitrogen in the soil (NO3init, %)

Strategy 1: iplt0 drawn from the statistical distribution, N(130,10)
Strategies 2-3-4: iplt0 estimated from Sentinel-2 (Kennedy 2018)
Strategies 1-2-3-4: drawn from statistical distribution, N(111,4) and N(167,7)
Strategies 1-2-3-4: julapN(2)+ N(68,10)
Strategies 1-2-3-4: julapN(2)+N[24;34]
Strategies 1-2-3-4: drawn from statistical distribution, N(54,12)
Strategies 1-2-3-4: drawn from statistical distribution, N(52,12)/N(106,8)
Strategies 1-2-3: 0,15; strategy 4 simplex optimization U[0,10;0,25]
Strategies 1-2-3: 32; strategy 4 simplex optimization U[0;30]

Table 2 Results of the different simulations made with STICS
according to the strategies described in Section 2.5 for 2016;
R2 determination coefficient between yield observed and simulated

(t·ha−1), RMSE, root mean square error; bias average difference between
simulation and average yields; interval [min ; max]. P P-value,
C Camargue level (156 fields), F farm scale (50 fields).

No
strategy

Initial parameters and variables R2 P RMSE
(t·ha−1)

Bias
(t·ha−1)

Interval
(t·ha−1)

0 Constant values - - 0.64 +0.64 5.74

1 Randomly drawn from statistical distributions C:0.13
F:0.04

0.26
0.79

2.90
4.70

3.70
4.70

C:[4.01–9.10]
F:[7.90–9.00]

2 Daily LAI Sentinel-2 + parameters drawn from the distributions C:0.56
F:0.24

<0.01
0.13

1.29
1.26

−0.05
1.00

C:[3.10–5.90]
F:[3.10–5.71]

3 Daily LAI + sowing date Sentinel-2 + other parameters drawn from distribution C:0.34
F:0.53

<0.01
<0.01

1.35
1.26

0.09
1.16

C:[3.0–5.22]
F:[3.50–5.70]

4 Optimization Norg, Nmin from LAI Sentinel-2 + SD + other parameters drawn from
distribution

C:0.27
F:0.50

0.02
<0.01

1.59
0.53

0.80
0.23

C:[3.02–5.40]
F:[3.50–5.22]

49    Page 6 of 17 Agron. Sustain. Dev. (2021) 41: 49



Muller and Dutang 2015). This led to two normal distributions
for nitrogen fertilization dates, N (111,4) and N (167, 7), and
two for nitrogen amounts: N (52,6) and the second N (106,8).
Farmers’ practices did not significantly differ between the two
years, with farmers applying fertilizers similarly from 1 year
to another in response to observed crop development.

In the same way, we observed that the sowing dates were
spanned several weeks, from mid-April to the beginning of
June. A slight difference was observed between 2016 and
2017, with a little more variability in 2017 than in 2016. The
spring of 2017 was rainy with low temperatures, particularly
in April, leading the majority of farmers to sow later than
usual, around the 10th of May (corresponding to a normal
distribution N (130,10)). Statistical analyses (scatterplots to
analyze 2 by 2 correlations) between the studied variables
have shown that variables are not interdependent.

We compared different simulation strategies, in order to
evaluate the use of remote sensing information into the crop
model.

– Strategy 0: STICS is used without remote sensing data
information, considering constant inputs. A reference
field was chosen considering the most represented culti-
var (Ariete) and soil (silty clay). Mean values were taken
from the surveys for the agricultural practices.

– Strategy 1: Corresponded to the standard case with only
the soil map as spatialized information. The fertilizer
dose, application date, and sowing date are defined for
each rice field from a random draw in the distribution
established from surveys. A probability P of 0.55 was
randomly assigned to the fields receiving 2 or 3 applica-
tions of fertilizer, with the “probability of success” (the
highest value) corresponding here to two applications be-
cause the data showed 55% of the parcels receiving two
applications while 45% received three. LAI values are
simulated by STICS (according to equation given in
Supplementary Material 5), and yield estimations are
compared to values provided by the surveyed farmers.
No remote sensing information is used in STICS.
(Remote sensing data are used in this case only to estab-
lish the rice map.) Simulations are done for each rice field
for the two years.

– Strategy 2: The mean values of LAI, computed for each
rice field from Sentinel-2 data and interpolated daily, are
used as forcing inputs in the STICS crop model. All other
parameters remain the same as in strategy 1. This study
case was aimed to quantify the impact that accounting for
the spatial variability of LAI has on the yield estimations.

– Strategy 3: The sowing dates (SD) are estimated from
Sentinel-2 NDVI time series using a method described
by Courault et al. (2019, 2020) and Kennedy (2018)
(see Supplementary Material 3). SD and LAI are estimat-
ed from remote sensing data computed for each field and

are introduced as forcing inputs in the crop model. The
difference with the previous case was the additional in-
formation on the sowing date assumed known in themod-
el (derived from Sentinel observations).

– Strategy 4: Sentinel-2 LAI values are used to calibrate
two unknown soil parameters: initial soil organic nitrogen
content (Norg) and soil mineral nitrogen content (Nmin).
The simplex algorithm (Nelder and Mead 1965) is used
for this optimization. Constraints are given for the maxi-
mum values (140 KgN/ha for Nmin, and 0.09 % for
Norg), to have realistic values according to the expert
knowledge of F. Ruget and measurements available in
the area. SD is estimated from Sentinel-2 and used as
input data. This case was studied because nitrogen has
an important effect on rice growth and on LAI. Field
experiments and farmers’ perceptions consistently identi-
fy soil quality and fertilizer use as factors that can explain
yield variability. There are also interactions between soil
properties (percentage of clay) and nitrogen quantities
(Irfan 2013). The organic nitrogen content in the soil
(Norg), which is related to the field history (pre-rice, crop
before rice, vegetables or alfalfa, etc.), and the mineral
nitrogen content (essentially NO3 brought by farmers),
which is assimilated by the plant (only a residual part
remains in the soil and impacts crop growth), are two
key variables that are difficult to determine for the entire
region. These quantities vary according to the biological
activity in the soil, temperature, and oxygenation and are
generally difficult to assess (Delmotte et al. 2011).

To better analyze this nitrogen impact on the main vari-
ables, preliminary sensitivity analysis has been done by vary-
ing both nitrogen inputs and soil type, with and without acti-
vating the nitrogen stress in the model. The results obtained on
the simulated LAI compared with the observed LAI from
Sentinel-2 are shown in Supplementary Material part 6. LAI
simulations with activated nitrogen stress were closer to the
observations, outlining the strong impact of nitrogen. The ni-
trogen also influences strongly the biomass estimation. The
highest clay soils with high content of Norg present also the
highest biomass. So, it appeared relevant to retrieve these
initial values through assimilation method, based on remote
sensing observation, as LAI was also a good indicator for crop
development and easily derived from Sentinel-2 data.

Table 1 summarizes the main inputs of STICS model and
their sources according to the cases studied.

The performances were evaluated at two scales: the farm
and the Camargue region. Root mean square error (RMSE)
and bias were computed between simulated and observed
yields. Note that the yield data provided by the farmers were
sometimes more or less precise and include different water
contents for the grain (between 18 and 22%). A correction
for water content was applied to compare only dry yield to

Page 7 of 17     49Agron. Sustain. Dev. (2021) 41: 49



STICS simulations. Some farmers gave average values for the
same rice variety, others clustered several fields according to
their water management (small areas called îlots), and still
others gave values for each rice field.

3 Results and discussion

The global accuracy of the land use map was 88% of well-
classified crops (rice, wheat, and grassland) and 99% for the
rice class, which was quite satisfactory. Details on the statis-
tical scores can be found in Courault et al. (2020). Rice and
wheat can be easily distinguished because their cultural cycles
are staggered in time (wheat being sown in winter and har-
vested at the end of July and rice being sown in April and
harvested in autumn). The different dates chosen for Sentinel-
2 classifications allowed a good discrimination between these
two main crops. It is important to mention that other methods
based on the use of Sentinel-1 images can provide also good
results to identify rice crops as shown by Bazzi et al. (2019)
and Ndikumana et al. (2018a).

3.1 LAI analysis and variability of phenology
parameters

Effective LAI obtained from hemispherical photographs proc-
essed with the Can-eye software (described in Section 2.2)
was compared to LAI computed fromBVNET. The root mean
square error (RMSE) was 0.9 m2/m2 for the maximum growth
period. The BVNET algorithm was also previously evaluated
on Camargue rice over a longer period with similar optical
data and gave 17% error with an RMSE between observed
and simulated LAI of approximately 0.8 m2/m2 (Bsaibes et al.
2009).

LAI maps computed for each Sentinel-2 date (Fig. 3a)
showed wide variability in rice growth at the scale of individ-
ual farms.

3.1.1 Analysis at the farm scale

We selected the farm where the most detailed input data were
provided by the farmer (Supplementary Material 2). We ob-
served intra-field heterogeneities, which can be partly ex-
plained by the plant density and soil variability. In Fig. 3a,
rice LAI at mid-July 2016 varied from 2 to 4 m2/m2. These
differences were explained primarily by a difference in the
variety (Opale ½ early cultivar and Apollo, medium cultivar
sown at the same date 5/5, information given by the farm
survey). In 2017 (Fig. 3b), rice fields with Opale cultivar were
sown on April 27 while fields with Volando cultivar were
sown later (May 16). Figure 3c shows the temporal profiles
of the mean values of LAI extracted for the same Opale rice
field displayed in Fig. 3a for both years, 2016 and 2017. We

can clearly detect that the studied field was sown 9 days earlier
in 2017 than in 2016. LAI values were higher at the maximum
period in 2017 than in 2016. Rice growth was faster at the
beginning of the cultural cycle in 2017 than in 2016, partly
because of the difference in the sowing dates and partly be-
cause of the weather conditions (see Supplementary Material
1). Spring temperatures were higher in 2017 than they were in
2016, particularly in May (the Fourques station recorded a
mean value of 17.9°C in May 2017 compared to 16.6°C in
2016). The 2017 conditions were thus very favorable for crop
development, with favorable plant densities. This resulted in
the higher yield observed for this field in 2017 (4.7 t·ha−1,
value given by the farmer, field cultivated with the Opale
cultivar) than in 2016 (3.5 t·ha−1, value given by the farmer).
The crop cycle shifted in 2017 in comparison with 2016 by
approximately 24 days, resulting in an earlier harvest date in
2017 (September 14) than in 2016 (October 9).

The LAI profile in 2016 also showed a small peak around
the end of May, followed by a rapid decrease and then regular
growth again in July. The first decrease observed corresponded
weeding interventions that occurred on May 25 and June 16,
2016. In 2017, a chemical weeding treatment was applied just
before sowing. Weeds and soil salinity are among the main
factors affecting rice growth. A higher density of rice plants
ensures greater competition with weeds and a sufficient num-
ber of panicles per unit area at harvest (Delmotte et al. 2011).
The density reported in our survey varied from 207 to 344
plants/m2. The simulations presented in the next section use
the mean value of 310 p·m−2 for all strategies studied.

3.1.2 Analysis for the entire Camargue area

The use of the phenological model (described in
Supplementary Material 4) to obtain daily LAI values provid-
ed key parameters that allowed the monitoring of rice growth.
The quality of the temporal interpolation for all fields and all
dates was analyzed with classical statistical criteria, resulting
in an RMSE value of 0.62 m2·m−2 for 2016 and 0.58 m2·m−2

for 2017, with biases of 0.17 m2·m−2 and 0.09 m2m−2, respec-
tively. The mean error of the LAI maximum is approximately
0.33 m2·m−2. This is on the same order of magnitude of errors
obtained between in situ measurements which vary from 0.1
to 0.8 m2·m−2, depending on the dates (Bsaibes et al. 2009),
and LAI estimations reported by Demarez (2018). LAI esti-
mations can thus be considered satisfactory.

Figure 4 shows the statistical distributions of the main land
surface phenology parameters computed for all rice fields in
the Camargue area. The different parameters t0, t1, t2, and t3
are computed according the method described in the
Supplementary Material part 4, and for more details see
http://tully.ups-tlse.fr/jordi/phenotb. Analysis of the
emergence (t0), senescence (t3) dates, and length of the
plateau (L) (at maximum LAI values) confirmed that rice
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growth across the entire Camargue region was early in 2017,
when compared to growth in 2016. This was due to more
favorable weather conditions at the beginning of the crop
cycle. These phenological parameters can be considered
good indicators for rice monitoring and can be mapped over
the studied region to analyze farmers’ strategies.

The choice of cultivar (early or late) can be crucial for crop
development. Research in genetic selection has developed
various cultivars that better adapt to weather conditions, resist
pathogens, and correspond to market expectations. Cultivars
can be classified according to their precocity. Late varieties
with a crop cycle greater than or equal to 100 days are defined
as productive but may suffer from poor conditions at the end
of the cycle in the late season, because of lower temperature
and radiation. Early varieties, with a crop cycle of around 80
days, may allow a second sowing, or a shift in the cycle, and
are recommended in organic agriculture or as a means of lim-
iting inputs. A typology is added according to the grain size
(see Table 4 in Supplementary Material 5). There are

relationships between the grain size, its main constituents,
and the quality. Camargue farmers have various strategies
for choosing cultivars depending on the start of the season
and market demands (Mouret and Leclerc 2018). Some of
them prefer to select late varieties that are less sensitive to
climatic hazards (to avoid low temperatures at the beginning
of the cycle), while others prefer to mix early, medium, and
late, deciding on the sowing date according to the tempera-
tures and the advice given by the CFR (Centre Français du
Riz; French Rice Center). Figure 5 shows a comparison of the
mean values and the standard deviation of LAI profiles com-
puted for all fields planted with the same cultivar for the two
years studied (information from the surveyed farmers). These
profiles are obtained using the first equation given in
Supplementary Material 4, applied to all days of the year (x
represents the time scale as DOY from 1 to 365; the various
fitted parameters are described below the first equation in
Supplementary Material 4). A significant shift (up to 20 days)
in the LAI profiles was observed between early and late

Fig. 3 LAI (leaf area index, m2·m−2) maps obtained from Sentinel-2: (a)
acquired on July 17, 2016, and (b) on July 19, 2017 (the x- and y-axes
give the Lambert coordinates). Graph: (c) LAI temporal profiles obtained

for the same field (Opale cultivar) for the two years studied; computed
with the BVNET tool, DOY: day of year.
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cultivars, depending on the sowing date. The Volano cultivar
(early variety) always appeared in advance of the later
Gageron variety according to the LAI profiles, as expected.
A large variability in the maximum values of LAI was also
observed for the same cultivar. This can be explained by soil

heterogeneities and the various technical practices found at the
field scale.

A correlation analysis between yield data provided by the
farmers and the cumulative LAI values for each phenological
stage was done and have shown that the highest correlation
values between LAI and yield were for the mature period

Fig. 4 Distributions of phenological parameters extracted from the daily interpolations of LAI (leaf area index). See Supplementary Material 4 for the
details on parameters computation. The x-axis corresponds to days of year (DOY).

Fig. 5 LAI (leaf area index) profiles computed from all rice fields planted
with the same variety (information given by farm surveys). The envelope
curve corresponds to the standard deviation, the middle line to the mean
value; rice variety can be classified according to its earliness, its type, and

its size or format (long A, B, or medium). The classification of the
different varieties can be found on the CFR website (http://www.
centrefrancaisduriz.fr/tableau_synthetique-47.html).
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(between t2+23 days and t2+51 days, t2 being the end of
plateau, see Supplementary Material 4 for the details of the
t2 computation and Supplementary Material 7). The signifi-
cant determination coefficients between LAI and yield for this
stage were R2= 0.58 in 2016 (RMSE=1.46) and R2=0.73 in
2017, (RMSE=0.96) (these values were obtained using the
Spearman method with P-value <0.01).

3.2 Analysis of STICS simulations

Simulations have been made for the different strategies for the
two studied years. The results presented at both farm (shown
in Supplementary Material 2) and Camargue levels in Table 2
correspond to the year 2016, chosen as a standard year with no
exceptional weather events reported by the French weather
service. The values obtained for 2017 are discussed in parallel
in the text and compared to 2016 at the end of this section. The
corresponding mean value of the yield simulated by the
STICS crop model, considering constant inputs (strategy 0),
was 5.74 t·ha−1 in 2016 and 5.21 ton/ha in 2017. The first
value was slightly higher for 2016 (+ 0.64 t·ha−1) than the
declarations made by the farmers for the IGP for the entire
Camargue region (5.10 t·ha−1). This first result must be con-
sidered with caution, since the simulation reproduced a study
case corresponding to the mean values of our surveys. No
comparison with IGP declarations was possible in 2017 be-
cause data were not available from CFR.

For strategy 1 case, remote sensing data was only used at
the initial stage for mapping the land use, allowing rice to be
distinguished from the other crops. The yields estimated over
the entire Camargue area ranged between 4 and 9.10 t·ha−1 in
2016 and between 2.20 and 8.20 t·ha−1 for 2017. Globally, the
simulations overestimated the yields for the two years (mean
value 6.91 t·ha−1 in 2016 and 6.10 t·ha−1 in 2017), probably
because of the systematic nitrogen applications. Values for
actual yields provided by the farmers were lower due to var-
ious factors that the model does not yet take into consider-
ation, such as some pests, diseases, and saline issues.

In the strategy 2 case, the introduction of the LAI variabil-
ity as input in STICS significantly improved the yield estima-
tion for the two years, compared to the previous strategy over
the Camargue region. In 2016, the determination coefficient is
higher 0.56 compared to 0.13 (Table 2). The bias was
corrected, and the root mean square error was reduced to
1.29 t·ha−1. At farm scale, the range of yield variation is the
same as that at the regional level (Camargue area), between
3.10 and 5.71 t·ha−1 with an RMSE of 1.26 t·ha−1. However,
the bias was higher. This farm was located in the south of
Camargue, close to the sea, where the soils tend to be shallow.
Some of the fields had salinity issues, resulting in lower yields
(salinity is not simulated by the model).

Strategy 3 involved more information from remote sensing
and used the sowing date computed for each field. At the farm

scale, the results improved for R2 and advanced from 0.24 to
0.53, but the bias increased. At the regional scale, the efficien-
cy decreased from strategy 2 to 3. The introduction of SD did
not seem to improve model performances. Surveys from the
various farmers were heterogeneous, with certainly higher un-
certainty on the sowing date; this could explain such results. A
larger sample of farmers, and more accurate information,
would be necessary to better understand the simulation
uncertainties.

Strategy 4 based on an optimization method (simplex) to
retrieve the initial soil nitrogen parameters using LAI obser-
vations produced the best results at the farm scale (Fig. 6b).
The values of Nmin obtained after optimization varied from 0
to 120 kgN·ha−1, and those for Norg were between 0.05 and
0.09% (Fig. 6a). These values were coherent and compared
well to the few measurements available in this area (Ruget
et al. 2016; Irfan 2013). The model performance of yield es-
timation at the farm scale showed an RMSE of 0.53 t·ha−1.
The fields that appeared the most scattered corresponded to
fields with salinity issues. Fields with high salinity content are
generally located in the southern part of the Camargue area, on
deep soil, and at a topography sometimes below the sea level.

For the regional level, even if a significant increase of the
determination coefficient is observed when remote sensing
data are included in the simulations (strategies 2-3-4), the
standard error still remained higher than at the farm level
(RMSE = 1.59). At Camargue level, the lower score can be
explained by the variabilities in observations given by
farmers. As already mentioned, some farmers gave average
values of yields for the same rice variety, others clustered
several fields according to their water management, while
others gave values for each rice field (this last case also ex-
plains why the results were higher at farm level than at region-
al level). In spite of this, the variation interval obtained at
regional level gave relevant values compared to those given
by the CFR.

Figure 7a shows an example of yield map obtained for the
whole Camargue in 2016. The distribution of values for the
two studied year is displayed below (Fig. 7b). The two years
have globally similar distribution with majority of values be-
tween 5 and 6 t·ha−1. Significant differences between the maps
obtained for the two years are due to crop rotations. Wheat or
sunflower have replaced rice fields for many farms (37% of
the total of rice fields were changed).When rice is kept for two
successive years (for more than 62% of fields), the highest
yields were often observed at the same locations, this being
certainly due to better soil nutrient status. Zooms can be done
on specific areas such as the farm illustrated for the 2016 and
2017. The observed variations can be related to the soil type or
technical practices (including cultivar variations). In the
Southeastern Camargue, most of the time, the fields having
the lowest yields were those having soil with a high salinity
content. Numerous papers in the literature have confirmed that
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salinity has significant negative effects on rice yield without
impacting LAI evolution (Gay et al. 2010; Fabre et al. 2005;
Marcos et al. 2018). High salinity levels were often associated
with reduced grain dimension and weight. Indeed,
Radanielson et al. (2018a) and Radanielson et al. (2018b)
noted an increase in the growth of some plant varieties in the
presence of salt, but with less grain development. Therefore, it
is possible for yield to be low even if LAI values are high. This
phenomenon is explained by increased absorption of nutrients
by the roots, due to the difference in osmotic potential be-
tween the plant and the soil solution.

No specific measurements were made to quantify soil sa-
linity during our study period. We considered the qualitative
information provided by the surveyed farmers who have a

good level of knowledge about their fields. In the past, the
farmers have measured salinity on some of their fields, and
frequently the same fields have had the same issues. However,
no statistical analysis can be performed from these past mea-
surements because they were neither made at the same period
nor with the same protocol. More investigations must be done
in the future on this point to better consider this effect.

3.3 Discussion

These first simulations done with the STICS crop model and
Sentinel-2 data on Camargue area have shown that Sentinel-2
data represent an important contribution for crop monitoring,
as already noted by different authors (e.g., Veloso et al. 2017;

Fig. 6 aMineral and organic nitrogen values obtained after optimization
using observed LAI (leaf area index) from Sentinel-2 (frequency
corresponds to the number of simulated fields; b comparisons between

observed and simulated yields (given in tons per hectare) for strategy 4 at
the farm level (the simulated farm comprised 50 fields).

Fig. 7 Production map simulated from STICS combined with Sentinel-2
data for 2016 at a Camargue and b farm scale (same colors for the
different maps and the two years) with c the distribution of yield values

obtained for the two studied years for the whole Camargue area (the
vertical red line corresponds to the mean value).
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Battude et al., 2016), but most of these last studies were more
focused on cereals such as corn or wheat and not yet on rice.
Up to now, there have been no accurate maps of yearly rice
production for the entire Camargue region. The only available
information comes from farmer declarations in the form of
RPG maps (parcels registered each year to receive aid from
the Common Agricultural Policy http://professionnels.ign.fr/
rpg), which are only available the following year and do not
represent all fields (due to variations in crop planning). These
maps provide information on the area of rice cultivated but
nothing on the technical practices, yield, or the quality of
production in the fields.

The high spatial resolution of Sentinel-2 data represents a
very useful information for crop monitoring through the anal-
ysis of LAI temporal profiles. Delmotte et al. (2011) noted that
the Camargue rice agrosystems present a high yield variability
due to various factors that are difficult to assess at the regional
scale. The rice variety can be a criterion, among others, to
categorize yield variability. Each year, the French Rice
Center (CFR) provides reports of their experiments conducted
across the Camargue area, where several cultivars are moni-
tored on around 37 farms in Camargue area and characterized
by various indicators, including yield (see http://www.
centrefrancaisduriz.fr/publications-20.html). In 2016, for
example, the highest yields were observed for the following
varieties: Manobi, Gines, and Gageron. Opale and Mambo
varieties presented the lowest yields. Sentinel-2 data can pro-
vide useful information on the varieties’ precocity from the
analysis of the temporal variation of LAI profiles for the
whole territory of Camargue.

The combined use of the STICS crop model with LAI
derived from Sentinel-2 data allowed the quantification of
the crop development variability’s impact on yield estimation.
Various statistical analyses have been performed to evaluate
the relationships between LAI and yield during different pe-
riods in the crop cycle. The highest determination coefficient
(0.58 in 2016, RMSE = 1.46, 0.73 in 2017, RMSE =0.96) was
found for LAI max (see SupplementaryMaterial part 7, where
a graph shows the relationship observed between LAI and
observed yield).

In the standard version of STICS (without the use of remote
sensing data), phenology was calibrated by adjusting the ther-
mal time requirements (°C day−1) between several factors: (i)
emergence and maximum leaf area increase, (ii) beginning of
stem elongation and maximum LAI, (iii) emergence and be-
ginning of grain filling, (iv) flowering and maturity, and the
leaf life duration (°C day−1). Each parameter, depending on
rice variety, is difficult to inform spatially. The introduction of
Sentinel-2 LAI values as forcing inputs allowed to estimate
yield values similar to those declared by the farmers in our
surveys and in their reports for the IGP at regional level for
strategy 2. However, some fields were always poorly estimat-
ed due to salinity problems, not considered by the model.

Another source of error can be due to the presence of weeds
in certain fields.Weeds have a strong negative impact on yield
(Audebert et al. 2013; Delmotte et al. 2011), but not necessar-
ily on LAI estimations. The majority of farms use chemical
treatments (herbicides) to control weeds (only approximately
10% use organic management practices). According to the
weed species (mainly Echinochloa and Cyperaceae) and the
period of their apparition, it is often difficult to distinguish rice
from other plants in temporal LAI profiles. However, we no-
ticed in summer that the fields that appeared darker in the
colored composite image (Fig. 8a) generally corresponded to
fields with many weeds. The weeds appear to infiltrate fields
from the boundaries and with time, gradually cover the entire
field. We noticed that fields with Cyperaceae weeds usually
presented higher values of the NDVI standard deviation, par-
ticularly in summer when these weeds are yellow and can be
distinguished from the green rice plants (Fig. 8b). However,
we did not have enough observations of weeds in the rice
fields at the Camargue scale to be able to propose a weed
contamination map. Deeper investigation of this issue should
be conducted to develop an operational method based on a
common spectral index such as NDVI which is easy to
compute.

Pernollet et al. (2017) analyzed the impact on weed emer-
gence from certain agricultural practices such as post-harvest
stubble management, rice density, and soil preparation before
sowing. They found that rice density significantly impacts
weed emergence. Niang et al. (2016) analyzed six scenarios
for the rice intercrop period, affirming that post-harvest
flooding of rice fields facilitates straw and weed seed
decomposition and is more economical. Delmotte et al.
(2011) reported that the yield gap due to weeds ranged from
2.8 to 7.8 t·ha−1 depending on other environmental factors.
Fogliatto et al. (2010) and Vidotto et al. (2007) suggest that
weeds are the worst noxious organism for rice crops and esti-
mated that without weed control, 90% of yield could be lost.
Our first observations show that during some periods (mainly
in summer), and for some species (Cyperaceae), analysis of
the temporal and spatial variability of NDVI at the field scale
can enable the identification of certain weed-invaded fields.
For future simulations, we can imagine weighting the yields
by considering the contaminated surfaces. This will be the
next step following the current study.

Sometimes yield values underestimated by the STICS
model can be explained by the field’s crop history (i.e., the
previous crops during the months before rice implantation).
For example, some farmers plant green manure such as alfalfa
or ray grass and open the fields for grazing by cattle. This
generally implies higher nitrogen content in the soil, which
leads to better conditions for rice growth. We did not consider
the field history in the various simulation strategies (except for
strategy 4 through the estimation of Norg). The fields whose
yields were underestimated by STICS for simulations without
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optimization (in Fig. 7) were the fields on which the previous
crop was either soybean or sunflower. These two crops have a
beneficial effect on the following crop rotation. As a legume,
soybean helps to fix nitrogen and leaves a nitrogen residue
that is reusable by the next crop, and sunflower enables im-
proved rooting (which has a role in soil structuring) and a rise
in mineral components (oral communication from P.
Debaeke, INRA Toulouse).

Jin et al. (2018) have discussed the different sources of
errors in crop modeling combined with remote sensing data
and concluded that the trend is to use different models to
obtain an estimation of errors. Li et al. (2015) have tested
the hypothesis that an ensemble of models reduces uncertain-
ty. Indeed, the assessment of rice yield is not easy and can be
quite complex, since many factors are involved, and uncer-
tainties appear at different levels. Accuracy of weather and
soil data can also affect the accuracy of the yield model. All
factors cannot be assessed from remote sensing, but some
related to the phenology and certain agricultural practices are
nowmore accessible with clear optical images, as shownwith,
e.g., sowing date in our study. If clouds are frequent on spe-
cific areas, microwave data can possibly complete the data-
base. Indeed, radar and optical data can be complementary to
each other because they offer different perspectives of
agroecosystems, providing different information according
to their specificity (Nasrallah et al. 2019; Bouvet and Thuy
Le 2011; Ndikumana et al. 2018a). Both types of data can be

merged and provide useful information for decision-making
and the analysis of various scenarios related to global change
(Zhou et al. 2019).

4 Conclusion

This study aimed to evaluate the contribution of Sentinel-2
data for monitoring the phenological rice calendar in the
Mediterranean climate and to assess the spatial variability of
production. The high frequency of the revisit time of Sentinel-2
(A and B) satellites over the same area made it possible to
obtain many cloudless images of the Camargue region and to
apply a phenological model assessing the main stages of rice
growth. It is the first time that temporal profiles of LAI obtain-
ed from Sentinel-2 data with the BVNET tool are analyzed for
all the rice plots in the Camargue region. Analysis of the dis-
tributions of some key phenological parameters describing the
rice cycle, derived from the PHENOTB tool, allowed to char-
acterize spatial variability of agricultural choices. This study
has shown that these tools and these new free data acquired at
fine resolution are well suitable for rice monitoring and oper-
ational to be applied in various environmental contexts. The
derived LAI maps have shown great spatial variability at both
farm and Camargue levels. Earlier and later rice varieties with
different sowing dates could be distinguished. The introduction
of such data in a crop model allowed to assess to the spatial

NDVI

NDVI

Fig. 8 Colored composite (in red,
band 8; in green, band 4; in blue,
band 3) of Sentinel-2 image
acquired on July 11, 2016, over
rice fields. The dark color
indicates weed presence
(Cyperaceae species). Mean
values of NDVI (normalized
difference of vegetation index)
computed for two rice fields, the
standard deviation of NDVI was
higher for the field with weeds.
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variability of the rice production for the whole studied area and
improved the estimations, particularly using a strategy with
optimization of initial nitrogen values in the soil.

This proposed method based on the combined use of
these recent remote sensing data acquired at high reso-
lution with a crop model is a promising method to im-
prove rice yield estimation and assess the spatial vari-
ability of agricultural practices performed at the regional
level. All the data, tools, and models used in this study
are in free access. This method can be reproducible in
other regions where rice plays an important economic
and environmental role. The availability of cost-free da-
ta provided by the THEIA pole is an advantage for
operational applications. The fusion of multispectral data
acquired in visible and radar ranges should also provide
more accuracy in the future, without the constraints due
to weather variations. This spatial information should
play an increasingly important role in the development
of useful tools for sustainable agriculture.

Glossary
BVNET: Biophysical variables, neural network (tool de-

veloped at INRAE EMMAH to estimate biophysical variables
such as LAI)

Can-eye: Software to estimate LAI from hemispherical
photographs developed by INRAE EMMAH https://www6.
paca.inrae.fr/can-eye

CFR: Centre Français du Riz, French Rice Center
DSSAT: Decision Support System for Agrotechnology

Transfer
ESA: European Space Agency
IGN: French National Geographic Institute
IGP: Indication Géographique Protégée, label indicating

production from a specific geographical area
LAI: Leaf area index
MAJA MACCS ATCOR Joint Algorithm: is a processor

for cloud detection and atmospheric correction developed by
CNES-CESBIO teams in Toulouse, France

PhenOTB Orfeo: toolbox to estimate phenology
parameters

RF: Random forest method
RPG: Registre Parcellaire Graphique, corresponds to the

plots declared by the farmer each year in order to receive state
subsidies

STICS: Simulateur mulTI-disciplinaire pour les Cultures
Standard, or multidisciplinary simulator for standard crops

SVM: Support vector machine (classification method)
THEIA: French Data Center, platform delivering remote

sensing products, https://www.theia-land.fr/pole-theia-2/
Valeri: Validation of Land European Remote sensing

Instrument
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