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Monitoring of noninvasive ventilation: 
comparative analysis of different strategies
Marjolaine Georges1,2,3,7* , Claudio Rabec1, Elise Monin1, Serge Aho2,4, Guillaume Beltramo1, 
Jean‑Paul Janssens5† and Philippe Bonniaud1,2,6†

Abstract 

Background: Noninvasive ventilation (NIV) represents an effective treatment for chronic respiratory failure. However, 
empirically determined NIV settings may not achieve optimal ventilatory support. Therefore, the efficacy of NIV should 
be systematically monitored. The minimal recommended monitoring strategy includes clinical assessment, arterial 
blood gases (ABG) and nocturnal transcutaneous pulsed oxygen saturation  (SpO2). Polysomnography is a theoreti‑
cal gold standard but is not routinely available in many centers. Simple tools such as transcutaneous capnography 
 (TcPCO2) or ventilator built‑in software provide reliable informations but their role in NIV monitoring has yet to be 
defined. The aim of our work was to compare the accuracy of different combinations of tests to assess NIV efficacy.

Methods: This retrospective comparative study evaluated the efficacy of NIV in consecutive patients through four 
strategies (A, B, C and D) using four different tools in various combinations. These tools included morning ABG, 
nocturnal  SpO2,  TcPCO2 and data provided by built‑in software via a dedicated module. Strategy A (ABG + nocturnal 
 SpO2), B (nocturnal  SpO2 + TcPCO2) and C  (TcPCO2 + builtin software) were compared to strategy D, which combined 
all four tools (NIV was appropriate if all four tools were normal).

Results: NIV was appropriate in only 29 of the 100 included patients. Strategy A considered 53 patients as appropri‑
ately ventilated. Strategy B considered 48 patients as appropriately ventilated. Strategy C misclassified only 6 patients 
with daytime hypercapnia.

Conclusion: Monitoring ABG and nocturnal  SpO2 is not enough to assess NIV efficacy. Combining data from ventila‑
tor built‑in software and  TcPCO2 seems to represent the best strategy to detect poor NIV efficacy.
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Background
Non-invasive ventilation (NIV) is recognized as an effec-
tive treatment of chronic hypercapnic respiratory failure 
(CHRF) [1]. Due to growing evidence of NIV efficacy in a 

broad range of indications as well as increasing availabil-
ity of high performance and user-friendly home ventila-
tors, the number of patients receiving NIV at home has 
been regularly increasing over the past 30  years [2–4]. 
When NIV is initiated to treat CHRF, ventilator settings 
are empirically determined based on the underlying dis-
ease, patient tolerance and diurnal changes in arterial 
blood gases (ABG) [5]. However, NIV is usually applied 
during the night. As a result, daytime adjustment of ven-
tilator settings may not achieve optimal nocturnal ven-
tilatory support. This can be explained by sleep-related 
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changes in breathing. Sleep induces modifications in 
ventilatory control, respiratory muscle recruitment and 
upper airway patency, which may all affect ventilatory 
function especially in patients with CHRF [6]. Moreover, 
applying intermittent positive pressure may by itself trig-
ger abnormal respiratory events [7]. For instance, reduc-
tion of ventilatory drive with or without glottic closure, 
residual upper airway obstruction and patient-ventilator 
asynchrony can all compromise the efficacy of NIV [7]. 
Furthermore, as NIV uses a non-airtight system, unin-
tentional leaks are frequent [8]. Leaks during NIV can 
interfere with patient-ventilator interaction [9]. These 
respiratory events are frequent under NIV [8, 10–13] and 
may have an impact on prognosis [14–16].

Therefore, NIV should be systematically monitored. 
However, optimal modalities for monitoring of long-term 
ventilated patients remain a matter of debate. Hence, 
physicians may adopt different approaches to assess NIV 
performance. Some authors suggest that complete poly-
somnography (PSG) under NIV should be performed 
for each patient under NIV to verify its efficacy [7, 17]. 
This technique is not feasible in many centres on a rou-
tine basis. In contrast, the 2010 American Academy 
Sleep Medicine (AASM) recommendations for best clini-
cal practices state that patients on long term NIV should 
be assessed regularly with measures of oxygenation and 
ventilation (i.e.: ABG, nocturnal pulse oximetry, end tidal 
 CO2 or transcutaneous capnography) [18, 19]. Over the 
past years, the use of  TcPCO2 has been simplified. Home 
ventilators have built-in software that provide detailed 
information on relevant ventilator parameters to assess 
the efficacy of NIV. A step-by-step strategy starting by 
ABG and nocturnal  SpO2 has been proposed by the Som-
noNIV group [19]. However, few studies have evaluated 
these proposed monitoring strategies in clinical practice 
[20].

This study aimed to compare the accuracy of four dif-
ferent strategies using four easily available assessment 
tools in different combinations to determine NIV efficacy 
during elective evaluations of patients on long-term NIV.

Methods
All patients under long-term home NIV followed by the 
Pulmonary Department of Dijon University Hospital are 
hospitalized electively for one night on a regular basis to 
assess efficacy of their NIV. These admissions are sched-
uled by the attending specialist every 3 to 12  months: 
intervals depend on the underlying respiratory disease 
and its progression rate, prior assessment of NIV efficacy 
or tolerance and intercurrent medical events.

In this retrospective comparative study, we included 
consecutive patients treated with long term NIV and 
hospitalized in our unit for an elective follow-up visit 

over a 1  year period. Inclusion criteria were: use of a 
home bi-level pressure support ventilator (VPAP™, Res-
Med, North Ryde, Australia) and being in a stable clinical 
condition for at least 3 months prior to inclusion.

Exclusion criteria included: age below 18 years, oxygen 
supplementation, use of a ventilator from other manu-
facturers, mean daily NIV use of less than 4 h per night, 
inability to cooperate and change in NIV treatment in the 
preceding 3 months.

NIV was evaluated with usual ventilator settings and 
interface. We simultaneously recorded overnight for each 
patient four monitoring tools: (1) morning ABG meas-
ured during spontaneous breathing by puncture of the 
radial artery during the first hour after disconnection 
from the ventilator, (2) nocturnal pulsed oxygen satura-
tion  (SpO2; Nonin model 8500 oximeter, Nonin Medical, 
Plymouth, MN, USA), (3) transcutaneous capnography 
 (TcPCO2:  Tosca®, Radiometer, Copenhagen, Denmark) 
and (4) data from a simplified monitoring module cou-
pled to their portable ventilator (Reslink™, ResMed). 
Data from the ventilator software were collected on a 
Smart Media card (Scandisk, Milpita, CA, USA) then 
downloaded with Rescan™ software (ResMed, North 
Ryde, Australia). The software provided an accurate esti-
mation of non-intentional air leaks (i.e. leaks exceed-
ing what was expected from the exhalation valve of the 
interface used) [8]. The additional connection of a pulse 
oximeter allowed simultaneous recording of nocturnal 
 SpO2.

Thresholds used to interpret results of the four 
monitoring tools were the following: (1) ABG: 
 PaCO2 ≥ 45 mmHg; (2) nocturnal  SpO2: time spent with 
 SpO2 < 90% for ≥ 30% of the total recording time [21]; (3) 
transcutaneous capnography: mean  TcPCO2 ≥ 50 mmHg 
[22, 23] and (4) data from built-in ventilator software: 
leaks (> 24  l/min for > 20% of total recording time), con-
tinuous desaturation  (SpO2 < 90% for > 30% of the record-
ing) and cumulated desaturation dips (> 3% during > 10% 
of the trace) [8].

We evaluated the efficacy of NIV through four strat-
egies (A, B, C and D) using the results of four different 
tools, in different combinations: strategy A combined 
ABG and nocturnal  SpO2, the minimal recommended 
monitoring combination [19]; strategy B combined noc-
turnal  SpO2 and  TcPCO2: since transcutaneous capnog-
raphy provides  SpO2 and  TcPCO2 simultaneously, both 
parameters could be analyzed concurrently; strategy C 
combined  TcPCO2 and data from built-in ventilator soft-
ware and strategy D associated all the available tools (i.e. 
ABG, nocturnal  SpO2,  TcPCO2 and data from ventilator 
software). Strategy D is used to classify patients as appro-
priately ventilated or not. If none of the above-mentioned 
criteria were fulfilled, NIV was considered effective.
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The St. Mary’s Hospital questionnaire was completed 
in the morning after the overnight assessment to evaluate 
subjective sleep quality on a 12 point scale [24]. Another 
questionnaire assessed the self-perceived quality of venti-
lation using an eight-item visual analogic scale (10 points 
per item) covering three domains: patient-ventilator syn-
chronisation, efficacy and leaks [25]. Higher values indi-
cated better treatment comfort, with a maximum score 
of 80.

The study was approved by the Institutional Review 
Board of the Société de Pneumologie de Langue 
Française.

Statistical analysis
Statistical analyses were performed using SigmaPlot 13 
software (Systat Software, San Jose, CA, USA). The nor-
mality of the distribution of the variables analysed was 
assessed using the Kolmogorov–Smirnov test. As most 
data were not normally distributed, we reported results 
as median and quartiles and used non-parametric tests. 
We used the Mann Whitney’s U test to compare “appro-
priately” and “inappropriately” ventilated patients for 
continuous variables. Categorial variables (gender, 
interfaces) were compared using a χ2 test. For compari-
sons between three or more groups (classification of 
patients according to the aetiology of chronic respira-
tory failure), we used the Kruskal–Wallis test; subsequent 
paired comparisons were made using a post-hoc Dunn’s 
analysis. Statistical significance was set at p < 0.05 or 
p < 1 − (1 − α)1/k for multiple comparisons where α = 0.05 
and k denotes the number of comparisons.

The agreement between different methods of NIV 
monitoring and the strategy D was evaluated with 
Cohen’s kappa coefficient [26].

We used receiver operating characteristic (ROC) 
curves to evaluate the performance of nocturnal  SpO2 
and ABG to identify patients classified as adequately ven-
tilated according to strategy D. We considered agreement 
to be sufficient if the lower bound of 95% confidence 
interval for the area under the ROC curve was > 0.7. ROC 
curve analyses were also used to determine the most suit-
able threshold values of mean nocturnal  SpO2 and morn-
ing  PaCO2 for assessing NIV efficacy.

Results
One hundred and thirty-four patients were screened. 
Two subjects were excluded due to corruption of raw data 
from the ventilator software. Thirty-two patients under 
oxygen therapy were also excluded from further analyses. 
These subjects suffered more often from obstructive lung 
diseases (OLD) and presented more severe diurnal and 
nocturnal hypercapnia (p < 0.001).

Study population
The remaining 100 patients were treated with NIV for 
OLD (n = 25), chest wall diseases (CWD, n = 29) and 
neuromuscular diseases (NMD, n = 46) according to the 
Eurovent diagnostic groups [2] (Table  1). Demographic 
characteristics, ABG,  TcPCO2 and ventilator settings are 
summarized in Table 2. As expected, NMD patients were 
younger, had a lower BMI and required lower levels of 
pressure support to reach more effective control of diur-
nal and nocturnal hypercapnia. Nasal masks were used 
more frequently in this group than in OLD or CWD sub-
jects (p < 0.05).

Assessment of NIV efficacy
TcPCO2 revealed significant nocturnal hypoventilation in 
27% of the patients. Among them, 6% had normal ABG 
and 12% had normal nocturnal  SpO2. Data from built-in 
ventilator software were abnormal in 57% of the patients. 
Leaks represented the most common abnormality (28%).

Table  3 compares the performances of different strat-
egies. NIV was appropriate in only 29% of patients. No 
significant differences were found regarding ventilator 
settings or interfaces between appropriately and inap-
propriately ventilated patients. NIV compliance did not 
differ significantly between appropriately and inappro-
priately ventilated patients (8.5 [6.9–10] vs. 7.5 [6.1–9.9] 
hours per night, respectively).

With strategy A, 53% of patients were considered 
appropriately ventilated. Among 48% of patients with 
normal results using strategy B, data from built-in ven-
tilator software identified major leaks in 18% and sig-
nificant drops in  SpO2 associated with decreases in flow 
despite effective ventilator pressure in 10% of patients.

Table 1 Characteristics of  the  studied population: 
indications for  noninvasive ventilation according 
to Eurovent categories

Data are presented as number of subjects

Aetiologic group Subjects

Obstructive lung diseases (OLD) 25

 Chronic obstructive pulmonary disease 12

 Overlap syndrome 10

 Other 3

Chest wall diseases (CWD) 29

 Obesity hypoventilation syndrome 21

 Tuberculosis sequelae 3

 Kyphoscoliosis 5

Neuromuscular diseases (NMD) 46

 Myopathy 25

 Amyotrophic lateral sclerosis 13

 Neuropathy 8
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Table 2 Characteristics of  the  studied population: demographic data, diurnal and  nocturnal gas exchanges 
and ventilator settings

Data are presented as median [first and third quartiles] or number of subjects

BMI body mass index, CWD chest wall diseases, NIV noninvasive ventilation, NMD neuromuscular diseases, OLD obstructive lung diseases, PaCO2 arterial carbon 
dioxide partial pressure, PaO2 arterial dioxygen partial pressure SpO2 transcutaneous pulsed oxygen saturation, TcPCO2 transcutaneous carbon dioxide partial pressure
*  p < 0.05 for comparisons to OLD group
¶  p < 0.05 for comparisons to CWD group (Kruskall–Wallis test then Dunn’s post-hoc analysis or χ2)

Variables OLD CWD NMD Global population

Effective 25 29 46 100

 Anthropometric data

  Age (years) 70 [61–77] 71 [60–75] 50 [22–62]*¶ 62 [47–71]

  Gender (male/female) 16/9 12/17 31/15 59/41

  BMI (kg/m2) 39 [32.2–41.5] 40 [27.2–47.7] 22 [18.4–30.5]* 31.0 [21.6–40.4]

 Daytime arterial blood gases

  Daytime  PaO2 (mmHg) 66.5 [61.1–79.3] 65 [60.7–73] 78 [71–93]*¶ 71.3 [62.4–84]

  Daytime  PaCO2 (mmHg) 45 [41.9–49] 42 [39.3–47.8] 41 [38.5–44.2]* 41.9 [39.4–47]

 Nocturnal transcutaneous capnography

  Median  SpO2 (%) 90 [89–92.4] 92 [89.8–93.3] 95 [93.8–96]* 93 [90–95]

  Median  TcPCO2 (mmHg) 49 [44.2–53.2] 48 [43–52.4] 43 [40–47.3]*¶ 45.8 [41.9–50.1]

  Maximal  TcPCO2 (mmHg) 55 [49.5–64] 56 [52.5–59] 48 [44–53.5]* 52 [46–57]

  Recording time spent with 
 TcPCO2 > 50 mmHg

58 [1.96–89.9] 28 [3.3–81.5] 0 [0–28.2]* 6.7 [0–72.1]

 Ventilator settings

  Inspiratory pressure  (cmH2O) 19 [18–21] 18 [16–19] 16 [14–17]*¶ 17.5 [16–19]

  Expiratory pressure  (cmH2O) 8 [6–9] 9 [5–10] 6 [4–8]*¶ 6 [4–10]

  Interface: nasal/oronasal mask 12/13 13/16 28/18*¶ 53/47

  Compliance (h/day) 8.5 [7.5–10] 7.2 [5.8–9.7] 8 [6–9.4] 7.9 [6.1–9]

Table 3 Proportion of  patients considered as  appropriately ventilated according to  tests used alone or  in  various 
strategies

Data are presented as n (%)

Abnormal arterial blood gases defined as:  PaCO2 ≥ 45 mmHg

Abnormal nocturnal  SpO2 defined as: time spent with  SpO2 < 90% for ≥ 30% of total recording time [21]

Abnormal nocturnal  TcPCO2 defined as: mean  TcPCO2 ≥ 50 mmHg [22, 23]

Abnormal data from built-in ventilator software polygraphy defined as abnormal if: 1/leaks (> 24 l/min for > 20% of total recording time); 2/continuous desaturation 
 (SpO2 < 90% for > 30% of recording) or 3/cumulated desaturations (> 3% during > 10% of recording) [8]

ABG arterial blood gases; SpO2 transcutaneous pulsed oxygen saturation, TcPCO2 transcutaneous carbon dioxide partial pressure
a  The capacity of different methods of NIV monitoring was evaluated with Cohen’s к coefficient in comparison to strategy D

Evaluation criteria Patients fulfilling criteria for appropriate ventilation 
according to tests performed alone or in combination

Cohen’s к  coefficienta

Assessment tools used alone

 Data from Bbuilt‑in ventilator software polygraphy 43 (43%) 0.685 [0.545–0.825]

 TcPCO2 73 (73%) 0.332 [0.201–0.465]

Assessment tools used in combination

 ABG + nocturnal  SpO2 (strategy A) 53 (53%) 0.557 [0.406–0.707]

 Nocturnal  SpO2 + TcPCO2 (strategy B) 48 (48%) 0.601 [0.436–0.755]

 Data from Bbuilt‑in ventilator software polygra‑
phy + TcPCO2 (strategy C)

35 (35%) 0.943 [0.876–1]

 ABG + nocturnal  SpO2 + ventilator softwareBuilt‑in 
polygraphy + TcPCO2 (strategy D)

29 (29%)
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When using strategy C, NIV was considered appro-
priate in 35% of patients. Among them, only 6% had 
abnormal ABG and were misclassified. Strategy C 
performed better than strategies A or B for classifying 
appropriately vs. inappropriately ventilated patients 
(Cohen’s kappa coefficient, к for strategy A vs. D: 0.56 
[0.41–0.71]; strategy B vs. D: 0.601 [0.436–0.755]; 
strategy C vs. D: 0.94 [0.86–1]).

Optimal threshold values for PaCO2 and SpO2 for identifying 
suboptimal NIV according to strategy D
Table 4 presents ROC curve analysis of optimal threshold 
value of ABG and nocturnal  SpO2 for identifying appro-
priately ventilated patients (defined by strategy D).

A morning  PaCO2 value of 42  mmHg was the best 
threshold for identifying appropriate NIV (Fig. 1a): 69% 
of the patients were correctly classified using this value.

The best threshold for time spent with  SpO2 below 90% 
was 5% (Fig. 1b): 63% of the patients were correctly clas-
sified using this value. Higher values for time spent with 
 SpO2 below 90% had a lower sensitivity with a similar 
specificity.

Subjective assessment of quality of sleep and comfort 
of ventilation
Perceive quality of sleep (Fig.  2a) and comfort of ven-
tilation (Fig.  2b) did not differ significantly between 
appropriately and inappropriately ventilated patients. 

Table 4 Results of receiver operating characteristic curve analyses for mean nocturnal  SpO2, time spent with  SpO2 < 90% 
and morning  PaCO2 for the detection of inappropriate NIV (according to strategy D)

PaCO2 arterial carbon dioxide partial pressure, SpO2 transcutaneous pulsed oxygen saturation

Threshold Sensitivity (%) Specificity (%) Positive likelihood 
ratio

Negative 
likelihood 
ratio

Mean nocturnal  SpO2 (%) 88 7.1 100 1.08 1

90 32.4 100 4.38 0.69

92 45.9 91.7 5.51 0.59

94 71.6 70.8 2.46 0.40

96 90.5 29.2 1.28 0.32

Time spent with  SpO2 < 90% (% of 
total recording time)

5 63.5 95.8 15.24 0.38

20 43.2 95.8 10.38 0.59

30 43.2 100 0.57

Morning  PaCO2 (mmHg) 42 69.9 90.9 7.68 0.33

45 50.7 95.4 14.16 0.37

48 36.2 100 0.64

Fig. 1 ROC curve of morning  PaCO2 (a) and time spent with  SpO2 below 90% (b) predicting NIV efficacy established by strategy D
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Neuromuscular patients reported a worse quality of 
sleep and increased fragmentation (see Additional file 1 

for perceived sleep quality and comfort of ventilation 
according to Eurovent categories).

Fig. 2 Patient’s rating of quality of sleep and ventilation assessed by St. Mary’s Hospital Questionnaire (a) and eight visual analogic scales (b) 
according to objective efficacy of NIV
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Discussion
In this real-life study, we compared different strategies 
to assess the efficacy of NIV. Our results suggest that 
using a combination of daytime ABG and nocturnal 
 SpO2 (referred to as strategy A, proposed by the group 
of experts [19]) was not sensitive enough to assess NIV 
efficacy. A significant part of this group had residual 
nocturnal abnormalities under NIV (hypoventilation, 
unintentional leaks or abnormal events). In this group, 
withholding from performing further NIV testing could 
be deleterious. A combination of  TcPCO2 and data from 
ventilator software, referred to as strategy C, was the 
most accurate non-invasive strategy for assessing NIV 
efficacy.

Improving NIV efficacy is an important issue in 
patients with long-term NIV: residual respiratory events 
under NIV may have a negative impact on patient-related 
outcomes such as symptoms, health-related quality of 
life and survival. Nocturnal hypoventilation is associated 
with a decreased survival rate, especially in neuromuscu-
lar diseases [14, 16], as well as adverse neuro-cognitive 
and cardiovascular consequences in chronic respiratory 
failure [27]. Leaks above 0.4 l/s [28] may induce patient-
ventilator asynchrony [12, 29], alter quality of sleep [30–
33] and potentially decrease health-related quality of life. 
Abnormal respiratory events under NIV (upper airway 
obstructive events with or without nocturnal desatura-
tions or residual hypoventilation or symptoms) are asso-
ciated with a decreased survival rate in patients suffering 
from amyotrophic lateral sclerosis (ALS) [15].

To detect residual nocturnal hypoventilation, we sug-
gest using  TcPCO2 instead of morning ABG. In ventilated 
patients,  PaCO2 measured by arterial puncture may not 
provide an accurate picture of the overnight time course 
of  PaCO2 [19, 22]. Several studies have shown that con-
tinuous  TcPCO2 recording is well correlated with arterial 
measurements in chronic respiratory failure under NIV 
[10, 34, 35].

Experts propose different thresholds to assess the 
efficacy of NIV but little evidence substantiates the rel-
evance of these values. Regarding  TcPCO2, several 
thresholds have been suggested to define significant 
nocturnal hypercapnia: maximal  TcPCO2 > 49  mmHg 
[36, 37];  TcPCO2 > 49 mmHg for > 10% of recording time 
[22];  TcPCO2 > 55  mmHg for ≥ 10  min or an increase 
in  TcPCO2 ≥ 10  mmHg above awake supine value to a 
value exceeding 50  mmHg for ≥ 10  min [18]. Clinically 
relevant threshold values may differ according to 1/the 
method and device used, 2/the etiology of chronic res-
piratory failure, 3/the goal of  TcPCO2 recording (i.e. to 
decide when NIV should be initiated or to monitor NIV 
efficacy) and 4/PCO2 levels when NIV is started. For 

example, prognosis is improved in COPD if NIV effec-
tively reduces  PaCO2 by more than 20% [38]. The thresh-
olds used may also depend on the type of capnograph as 
bias between arterial and transcutaneous values changes 
according to the device used [39]. The device used in our 
study slightly overestimated  PaCO2. The maximal bias 
published with this device was 5.6 ± 3  mmHg [40]. We 
therefore considered residual nocturnal hypoventilation 
as significant when mean  TcPCO2 was ≥ 50 mmHg [41].

The clinical contribution of nocturnal transcutaneous 
capnography can be improved by simultaneously record-
ing  SpO2 [19]. Sampling rate and averaging of  SpO2 and 
 TcPCO2 recordings are different:  SpO2 can detect short 
desaturations linked to short ventilatory events while 
 TcPCO2 has a longer lag time but is an accurate tool to 
evaluate overnight trends in ventilation. Hence, both 
tools are complementary and devices used in clinical 
practice combine  TcPCO2 and  SpO2 sensors. However, 
capnography does not provide information about the 
underlying pathophysiological mechanisms. Further-
more, in a quarter of patients with normal  TcPCO2 and 
 SpO2 (strategy B), we found significant leaks or abnormal 
residual respiratory events (ie, flow reduction or patient-
ventilator asynchronies). Our study confirms the addi-
tional contribution of data from ventilator software for 
the detection of these events. The accuracy of the ResS-
can™ system used to assess leaks has been confirmed in a 
bench model by our group and others [8, 42].

Our results suggest that using more severe thresholds 
for  PaCO2 and NPO may compensate their lack of sen-
sitivity. For instance, using a  PaCO2 threshold value of 
42  mmHg could increase the accuracy of ABG for the 
detection of nocturnal hypoventilation.

Time spent with a  SpO2 below 90% is the most fre-
quently used parameter to interpret nocturnal pulse oxi-
metry, but threshold values vary considerably between 
authors and aetiologies. In non-ventilated patients suffer-
ing from chronic obstructive pulmonary disease (COPD), 
Levi Valensi et  al. [43] documented a shorter survival 
in patients spending more than 30% of total sleep time 
with an  SpO2 below 90%. More recently, Gonzalez-Ber-
mejo et al. [14] showed that ALS patients under NIV had 
a better survival if less than 5% of NPO time was spent 
with an  SpO2 < 90%. In our study, using a threshold of 5% 
increased the accuracy of NPO in detecting residual noc-
turnal hypoventilation.

An analysis combining the signals provided by  TcPCO2 
and data from ventilator software may be an interesting 
option for monitoring NIV, offering a noninvasive global 
estimation of NIV efficacy without requiring ABG. More-
over, this approach enables unattended assessment both 
at the hospital and at home without complex logistics. 
Failure to retrieve data is rare [44] and instrumental drift 
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of  TcPCO2 is a minor problem when used by an experi-
enced team [20, 39, 45, 46]. Interpretation of the results 
is simple and further analysis of detailed raw data pro-
vided by ventilator software can help clarify the under-
lying mechanism implicated in NIV inefficacy. This may 
allow optimization of ventilator settings limiting PSG to 
more complex cases. Unfortunately, use of  TcPCO2 is at 
present still limited by the cost of the devices.

We acknowledge a few limitations to our study. Firstly, 
we did not perform full PSG under NIV. Even if PSG 
allows the evaluation of patient-ventilator interactions 
and characterization of abnormal respiratory events 
occurring under NIV [7], the impact of these events on 
morbidity and related therapeutic end points remains 
speculative [47]. Furthermore, it does not provide an 
accurate estimation of alveolar ventilation per se, which 
is the main goal of ventilator assistance. It is also prob-
able that leaks could be underscored by PSG.

Secondly, we excluded 32 patients with nocturnal NIV 
and oxygen therapy. Supplemental oxygen impacts on 
 SpO2 values and reduces the amplitude of desaturations, 
decreasing the reliability of NPO to assess NIV efficacy. It 
must be noted that the majority of excluded patients suf-
fered from chronic obstructive pulmonary disease.

Thirdly, NIV is considered beneficial if used more than 
4 h per night (for ALS [48]; for COPD [49]; for obesity-
hypoventilation syndrome [50]). We also excluded 
patients using NIV for less than 4 h per night. Poor com-
pliance to NIV may result from discomfort related to 
leaks or a low perceived benefit of treatment. This could 
have underestimated the proportion of inadequately ven-
tilated patients even if leaks represent the most frequent 
abnormality in our study.

Fourthly, we failed to show an impact of NIV effi-
cacy on sleep quality or patient symptoms. Both scores 
employed for assessing comfort and quality of sleep 
have been previously used to assess subjective impact 
of changes in ventilator modes (volume-targeted ver-
sus conventional bi-level pressure support) [25]. Our 
results suggest that subjective assessment does not suf-
fice for the detection of inappropriate ventilation. The 
poor correlation between residual respiratory events 
and patients’ perception has been previously reported 
[9, 10]. Finally, the impact of NIV efficacy on survival 
could not be assessed due to the heterogeneity of our 
population consisting of subgroups (OLD, CWD, 
NMD) with different prognoses. Further investiga-
tions are needed to identify which of the selected tools 
included significantly impacts on patient-related out-
comes such as symptoms, health-related quality of life 
or survival.

In summary, this study shows that combining morn-
ing ABG and nocturnal  SpO2 is not sufficient to 

accurately assess NIV efficacy. An alternative strategy 
combining data from ventilator software and  TcPCO2 
performed better for detecting inappropriate NIV 
without requiring ABG. Models of care for chroni-
cally ill patients living at home are evolving with tele-
monitoring.  TcPCO2 and ventilator software data 
are increasingly available at home. Moreover, their 
easy interpretation makes it feasible in real life and 
in a variety of clinical settings. This combination may 
be very useful in future strategies for long-term NIV 
monitoring.
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