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Gut microbiota and the central nervous system have parallel developmental windows
during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in
preterm infants predisposes the neonate to adverse neurological outcomes later in life.
Understanding the link between gut microbiota colonization and brain development to
tailor therapies aimed at optimizing initial colonization and microbiota development are
promising strategies to warrant adequate brain development and enhance neurological
outcomes in preterm infants. Breast-feeding has been associated with both adequate
cognitive development and healthy microbiota in preterms. Infant formula are industrially
produced substitutes for infant nutrition that do not completely recapitulate breast-
feeding benefices and could be largely improved by the understanding of the role
of breast milk components upon gut microbiota. In this review, we will first discuss
the nutritional and bioactive component information on breast milk composition and
its contribution to the assembly of the neonatal gut microbiota in preterms. We
will then discuss the emerging pathways connecting the gut microbiota and brain
development. Finally, we will discuss the promising microbiota modulation-based
nutritional interventions (including probiotic and prebiotic supplementation of infant
formula and maternal nutrition) for improving neurodevelopmental outcomes.

Keywords: microbiota, preterm, breast-feeding, infant formula, maternal nutrition in pregnancy

INTRODUCTION

The impact of the microbiota on mammalian development has been well documented with
scientific evidence highlighting an association between gut microbiota and brain functions through
the humoral and neural pathways of the gut-brain axis (Burokas et al., 2015; Cryan and Dinan,
2015). The intestinal microbiota is critical in the functional development of microglia, a key element
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in the prevention of neurodevelopmental and neurodegenerative
diseases (Hazlett et al., 2005; Harry, 2013; Erny et al.,
2015). As an example, modified levels of Firmicutes and
Bacteroidetes were reported in the gut microbiota of children
with autism (Finegold et al., 2010; Tomova et al., 2015). In
addition, schizophrenia and attention-deficit hyperactivity
disorders are associated with intestinal dysbiosis (Dinan
et al., 2014; Cenit et al., 2017). The intestinal microbiota
could affect brain physiology by modification of epigenetic
modulation-based gene expression of genes associated with
neuronal plasticity, learning, memory, and neurogenesis,
as well as with behavioral disorders (Stilling et al., 2014;
Majnik and Lane, 2015). Corroborating clinical research,
animal studies have shown that germ-free mice exhibit
disturbed social behavior and that brain morphological
organization and development rely on gut microbiota
composition (Diaz Heijtz et al., 2011; Desbonnet et al., 2014;
Lu et al., 2018).

Survival of preterm babies has increased worldwide, with a
concomitant reduction in severe neonatal morbidity. However,
a recent evaluation of developmental and behavioral outcomes
in a large French cohort of preterm infants, EPIPAGE,
clearly highlighted that 40–50% (at 2 years of corrected
age) and 19–28% (at 5 years of corrected age) of neonates
born at less than 32 weeks of gestational age displayed
neurodevelopmental delays (Pierrat et al., 2017, 2020). This
study corroborates other works reporting language difficulties
up to 13 ears of age in children born preterm, with no
evidence of developmental “catch-up” (Diaz Heijtz et al.,
2011; van Noort-van der Spek et al., 2012; Nguyen et al.,
2018) and disabilities such as school difficulties and behavioral
problems that emerged into adolescence (Saigal and Doyle,
2008). Children with such delays may represent a group at
risk for future academic difficulties and with poorer social-
emotional competence although most of them recover well
during their transition into adulthood (Saigal and Doyle, 2008).
Moreover, an immature microbiota was associated with 2-
year non-optimal neurodevelopmental outcomes in preterm
infants (Rozé et al., 2020). The goal of early perinatal
intervention is therefore to reduce or prevent abnormal brain
development. Recent studies revealed how maternal nutrition
during pregnancy and nursing and infant formula feeding
influenced both offspring microbiota and brain neurogenesis,
and later cognitive and behavior (eating, social, locomotor, and
exploratory) abilities (Ehrenkranz et al., 2006; Van Lieshout,
2013). Targeting the critical window of both gut microbiota and
brain early development with personalized nutrition to apply
potential neuroprotective strategies has potential therapeutic
significance for preterm infants (Diaz Heijtz et al., 2011;
Borre et al., 2014a,b).

In this review, we will describe the composition of
preterm breast milk and infant formula for preterm
infants, the development of the gut microbiota, and the
neurodevelopment deficits associated with altered gut
microbiota, and discuss potential new therapeutic strategies
to restore microbiota and optimize neurodevelopment in
preterm infants.

COMPOSITION OF PRETERM INFANT
FEEDING: BREAST MILK AND INFANT
FORMULA

Human Milk Macronutrient Composition:
Preterm vs. Term
Adequate nutritional supply during the first weeks of life is
critical for neurodevelopment and growth of preterm infants
(Coviello et al., 2018). Breast milk is the optimal diet for term
infants as well as for premature infants as early as their digestive
system is mature for macronutrient digestion. Benefits of human
milk (HM) to preterm neonates include improvements in host
defense, digestion and absorption of nutrients, gut function and
neurodevelopment, short-term protection against necrotizing
enterocolitis (NEC) and better long term health outcomes
(Bauer and Gerss, 2011). However, suboptimal weight gain and
nutritional deficits may be observed in premature babies born
at a gestational age below 28 weeks, due to their requirements
for large amounts of protein and energy to achieve appropriate
growth (European Society of Paediatric Gastroenterology and
Nutrition Committee on Nutrition of the Preterm Infant, 1987;
Agostoni et al., 2010; Joosten et al., 2018). HM fortification
in energy, proteins and minerals is therefore recommended in
routine nutritional neonatal care of preterm infants.

The average macronutrient composition of mature (>4 weeks
of lactation), term milk ranges approximately from 0.9 to 1.2 g
protein/100 mL, 3.4 to 4.1 g fat/100 mL, and 6.2 to 7.4 g
lactose/100 mL (Ballard and Morrow, 2013; Le Huërou-Luron
et al., 2018). That of preterm milk after the 5th week of lactation
ranges from 1.0 to 2.0 g protein/100 mL, 3.7 to 4.5 g fat/100 mL,
and 7.5 g lactose/100 mL (Bauer and Gerss, 2011; Gidrewicz
and Fenton, 2014). It is noteworthy that recent metabolomic
analyses of milk revealed that lactose and HM oligosaccharide
(HMO) levels were significantly greater in preterm than in
term milk collected 1–3 weeks postpartum (Sundekilde et al.,
2016; Perrone et al., 2019). The metabolizable energy content
of term and preterm milk ranges from 61 to 92 and 48 to
85 kcal/100 mL, respectively, one-half provided by fat (Gidrewicz
and Fenton, 2014). The macronutrient content of breast milk
changes throughout the course of lactation. Both preterm and
term colostrum has higher content of protein, but lower contents
of energy, fat and lactose than mature milk (Bauer and Gerss,
2011; Gidrewicz and Fenton, 2014; Bulut et al., 2019). HM
contains hundreds of bioactive molecules that considerably
contribute to overall health benefits for neonates (Carr et al.,
2021). Its composition in bioactive molecules changes between
mothers in relation with the degree of prematurity, genetic and
dietary factors.

Protein Content in Preterm and Term Breast Milk
(Figure 1)
It is noticeable that milk produced by mothers who deliver
prematurely has higher protein concentration during the first
weeks of lactation than the milk of mother who delivered
at term. A meta-analysis including forty-one studies on the
nutrient content of preterm (<37 weeks of gestation) and
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term (37–42 weeks of gestation) 24-h collected HM reported
up to 35% (0.7 g/100 mL) higher true protein content in
preterm colostrum than term colostrum (Gidrewicz and Fenton,
2014). Also of importance, the inter-individual variability of
the protein content in preterm milk in the first postnatal
days is higher than in term milk (Gidrewicz and Fenton,
2014; Fischer Fumeaux et al., 2019). Thereafter, most of the
differences in true protein between preterm and term milks
were within 0.2 g/100 mL with average protein concentration
of 1.4 g/100 mL and 1.2 g/100 mL at 3–4 weeks of
lactation, respectively. No more differences occurred beyond
postnatal weeks 10–12. However, the previous longitudinal
analysis of Bauer and Gerss (2011) reported substantially higher
protein content values (Figure 1). More precisely, protein
concentration differed by 0.19 g/100 mL (average value on
the first 8 weeks of gestation) in extremely preterm milk
(<28 weeks of gestation) vs. severely preterm milk (28–31 weeks
of gestation), by 0.45 g/100 mL in extremely preterm milk
vs. moderately preterm milk (32–33 weeks of gestation), and
by 0.73 g/100 mL in extremely preterm milk vs. term milk
(Bauer and Gerss, 2011).

Besides their critical importance in terms of nutrition and
source of amino acids, proteins have potential effects on the
developing microbiota of neonates. Although milk protein
digestibility is very high, undigested dietary protein or fractions
of these proteins, associated with endogenous proteins may
be fermented by preterm gut microbiota (Boudry et al., 2016;
Beverly et al., 2019). Indeed, for low birth weight piglets
characterized with intestinal immaturity, the quantity of protein
intake, specifically when fed formula with high protein level,
induced sustained modifications of gut microbiota composition
in the first and 5 months of age (Chatelais et al., 2011; Boudry
et al., 2013).

Colostrum is rich in immunologic and developmental factors
such as immunoglobulins (Igs), predominantly IgA, epidermal
growth factor (EGF), TGFβ1, TGFβ2 and cytokines (IL-6, IL-
8, IL-10, IL-13, and TNFα), supporting the maturation of
the neonatal intestine and its immune system. The decrease
in immunologic component concentration observed during
lactation was described to be dependent on gestational length
(Castellote et al., 2011). The colostrum of preterm women
(delivery between weeks 30 and 37 of gestation) was equal to
or richer than that of term women (delivery between weeks
38 and 42 of gestation) for the above-mentioned immunologic
factors. Conversely, the colostrum of very preterm women
(delivery before week 30 of gestation) had lower contents in
most of the immunologic factors than that of term women
(Figure 1). HM is the main source of IgA for neonates
as they produce very low amounts of IgA during the first
2 weeks of life. Therefore, after birth, HM composition
doesn’t allow effective immune defense for women with very
preterm babies as opposed to women with preterm babies. At
the end of the first month of lactation, immunologic factor
concentrations were similar in the mature milk of women,
whatever their gestational length, suggesting that only the
colostral immunologic supply is dependent of childbirth date
(Castellote et al., 2011).

Among proteins present in breast milk, some have anti-
microbial properties including IgA, lactoferrin and lysozyme. IgA
plays an essential role in defense against pathogenic bacteria
but also in controlling gut microbiota composition. Indeed,
selective IgA-deficiency in adult humans induced an altered
gut microbiota composition (decreased bacterial diversity and
changes in abundances of specific bacterial groups such as
increased relative abundances of Proteobacteria, notably of the
inflammatory facultative anaerobes Enterobacteriaceae, and of
some taxa of the Ruminococcaceae family) as compared to adult
healthy controls (Catanzaro et al., 2019). In healthy condition,
a great proportion (24–74%) of live bacterial cells is bound
by IgA, reflecting a stable IgA response to commensal bacteria
(Mantis et al., 2011). With the human commensal Bacteroides
fragilis, it was demonstrated that IgA-bacteria interaction
facilitated bacterial adherence to the gut mucosal surface and
stable colonization of the gut through exclusion of exogenous
competitors (Donaldson et al., 2018). The abundance of IgA-
bound bacteria was greater in fecal samples from breast-milk-fed
infants compared to formula-fed infants (Gopalakrishna et al.,
2019). Moreover, the importance of the maternal IgA-bacteria
interaction in the protection against NEC in preterms was
recently confirmed (Gopalakrishna et al., 2019). Indeed, a relative
decrease in IgA-bound bacteria and an increasing dominance
held by Enterobacteriaceae in the IgA-unbound fraction of the
microbiota was associated with the development of NEC in
preterm neonates. In addition, Igs which are N-glycosylated
proteins may be a carbon source for gut bacteria such as
Bacteroides that express carbohydrate-active enzymes involved in
the degradation of glycans (Briliute et al., 2019).

Lactoferrin is another HM component that favors gut infant
colonization with beneficial bacteria (Mastromarino et al., 2014).
The amount of lactoferrin in feces in 1-month old infants
was positively associated with the amount of lactoferrin in
mature HM, confirming that HM represents the main source of
lactoferrin in infant gut. A bifidogenic effect of lactoferrin was
reported in vitro and in vivo in both neonatal pigs and human
infant microbiota-associated mice fed bovine lactoferrin-fortified
milk (Hentges et al., 1992; Hu et al., 2012) as well as in human
infants after 3 months feeding with a lactoferrin enriched formula
(Roberts et al., 1992). Lactoferrin concentration decreased during
the first month of lactation in both full-term (36–41 weeks
of gestation) and pre-term (26–36 weeks of gestation) milks
with no significant differences between full-term and pre-
term milks (Mastromarino et al., 2014) (Figure 1). However,
positive correlations between lactoferrin concentration and fecal
Bifidobacterium and Lactobacillus were demonstrated at birth in
preterm, but not term, neonates (Mastromarino et al., 2014).
Therefore, lactoferrin may represent an important factor driving
the composition of the neonatal gut microbiota particularly
in preterm infants although its benefit in reducing mortality
or significant neonatal morbidities in very low birth weight
infants was not clearly demonstrated using bovine lactoferrin
supplementation (Asztalos et al., 2020).

Lysozyme is present in breast milk at relatively high
concentrations and degrades the outer cell walls of Gram-
negative bacteria. Lysozyme content decreased progressively

Frontiers in Microbiology | www.frontiersin.org 3 June 2021 | Volume 12 | Article 676622

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-676622 June 8, 2021 Time: 16:16 # 4

Buffet-Bataillon et al. Preterm Nutrition and Gut-Brain Axis

FIGURE 1 | Mean concentration (±SD) of protein (Bauer and Gerss, 2011), IgA (Castellote et al., 2011), lactoferrin (Mastromarino et al., 2014), EGF (Castellote et al.,
2011), lysozyme (Hsu et al., 2014), and nine prevalent forms of HMOs (Austin et al., 2019) in the colostrum (<7 days of lactation) and mature milk (1 month of
lactation) of mothers that gave birth to extremely preterm (below 29 weeks of gestation), severely preterm (28–32 weeks, excepted for lactoferrin 26–36 weeks),
moderately preterm (30–37 weeks) or full term (36–42 weeks) babies. nd, not determined.

during the first 2 weeks of lactation, without any major
differences in relation to the gestational age at delivery
(Montagne et al., 1999; Hsu et al., 2014).

Lipid Content in Preterm and Term Breast Milk
Dietary lipids are crucial for neonates to meet their high energy
requirements but also numerous physiological functions critical
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to their growth and health. The anatomical and functional
development of the brain depends particularly on the supply
of long-chain polyunsaturated fatty acids (LC-PUFAs). Human
milk fat provided in the form of globules consists mainly
of 97% triglycerides (TAG), small amounts of mono- and
diacylglycerides (MAG and DAG), around 1% of phospholipids
and 0.5% of sterols, mostly cholesterol (Bourlieu et al., 2015).
HM lipid specificity consists of over 400 fatty acids (FAs) with
variable chain lengths and unsaturations, an esterification of
palmitic acid primarily at the sn-2 position (∼70%), unsaturated
FAs mainly at the sn-1,3 positions and the high proportion of
LC-PUFAs [n−6 (such as arachidonic acid, AA) and n−3 (such
as eicosapentaenoic, EPA and docosahexaenoic acids, DHA),
which are derived from the essential PUFAs linoleic acid (LA)
and alpha-linolenic acid (ALA), respectively] (Le Huërou-Luron
et al., 2018). The content in LA and ALA ranges from 10 to 24%
of FAs and from 0.6 to 1.9% of FAs, respectively (Delplanque
et al., 2015). Total milk fat and the essential PUFAs contents
increase with milk maturation whereas the proportion of n−6
and n−3 LC-PUFAs decreases markedly by about 38% for AA
and about 50% for DHA during the course of the first month
of lactation (Koletzko et al., 2001). During the last trimester of
gestation the supply of LC-PUFAs from maternal plasma to the
fetus is actively provided by transfer across the placenta. Thus,
in premature birth, the maternal FAs supply stops early and
the preterm infant receives less amount of LC-PUFAs prior to
birth than the full-term infant (Mazzocchi et al., 2018). Some
studies reported slightly higher proportions of DHA and AA in
preterm than term milk, but also of medium- and intermediate-
chain length FAs, which could support the higher LC-PUFAs
requirement of preterms at birth (Lapillonne et al., 2013), but
others reported lower levels of EPA and DHA in preterm milk
(Berenhauser et al., 2012), while others did not find any difference
between preterm and term milk (Granot et al., 2016). Short-
and medium-chain FAs (butyrate, caprylate and caprate) were
found in lower concentrations in preterm milk compared with
term milk (Sundekilde et al., 2016). HM of women who gave
birth prematurely displayed a deficiency in vitamins A and E
(Sámano et al., 2017).

Very little is known about the influence of milk FAs on
the gut microbiota. In vitro, medium-chain FAs and digestion
products of sphingolipids demonstrated bactericidal activities
against pathogens, suggesting a potential protection against food-
borne gastroenteritis (Sprong et al., 2001). Moreover, medium-
chain FAs were shown to modify gut microbiota in vitro (Nejrup
et al., 2015), in piglets (Zentek et al., 2012) and germ-free mice
(Nejrup et al., 2017). In infant formula, increasing the proportion
of palmitate esterified in the sn-2 position resulted in higher
Lactobacillus and Bifidobacterium counts in fecal stools of term
formula-fed infants to a level similar to that of breast-fed infants
(Yaron et al., 2013). A significant association between sn-2 FAs
in milk and infant gut microbiota was confirmed in a Chinese
human cohort, particularly between C10:0 to C18:0 FAs, LC-
PUFAs (AA and DHA) with Bacteroides, Enterobacteriaceae,
Veillonella, Streptococcus, and Clostridium (Jiang et al., 2018).
To our knowledge, such correlations in preterm milk have
not been studied.

Beyond FA composition, the lipid matrix structure is also
of great importance. HM fat is organized in its native form in
dispersed globules enveloped by a tri-layer biological membrane
called milk fat globule membrane (MFGM) which has been
reported to provide a beneficial impact on human brain
development, gut immunity and barrier functions in neonates
when supplemented in infant formula (Timby et al., 2017b;
Lemaire et al., 2018). MFGM composition is influenced by
maternal factors and by the changing needs of the infant over the
period of lactation (Lee et al., 2018), leading to the speculation
that its composition may also change in preterm milk, although
no data are currently available. Lipids, proteins and surface
carbohydrate moieties in the MFGM might have an important
role in profiling gut microbiota as thoroughly reviewed (Lee et al.,
2018), although moderate effects have recently been observed
on the oral microbiota of 4 month-old infants fed formula
supplemented with a bovine MFGM concentrate compared to
a standard formula (Timby et al., 2017a). Moreover, MFGM
may influence protein digestion and consequently the protein
digestion products that enter the colon, and by this way indirectly
influence microbiota composition in the infant gut (Le Huerou-
Luron et al., 2018). Data on the impact of prematurity on
MGFM composition are scarce. Levels of total phospholipids and
gangliosides in HM appeared to be highest in colostrum. Higher
sphingomyelin and lower or similar phospholipid compositions
have been reported in preterm milk compared to term milk
(Bitman et al., 1984; Shoji et al., 2006), but Maas et al. (2017)
recently reported that HM concentration of choline-containing
compounds, including phosphatidylcholine and sphingomyelin,
were lower after preterm compared to term delivery. Intriguingly,
phosphatidylcholine precursors, choline and phosphocholine,
were found in higher levels in preterm milk than in full term milk
(Sundekilde et al., 2016).

Lactose and Human Milk Oligosaccharides (HMO)
Content in Preterm and Term Breast Milk
Human milk oligosaccharides include more than 200 different
compounds and form the third-largest solid component in HM
after lipids and lactose (5.5–7.0 g/100 mL). Their concentration
range from 2.5 g/100 mL in colostrum and between 1.0 and
1.5 g/00 mL in mature term milk (Kunz and Rudloff, 1993; Kunz
et al., 1999). HMOs are complex glycans, non-hydrolyzed by
gut digestive enzymes but a substrate for infant gut microbiota.
HMOs prevent attachment of pathogens to the mucosa, as
soluble decoy receptors for pathogens, and may reduce the
presence of glycans expressed at the epithelial surface of the
intestine (Kunz et al., 2000). HMOs also play roles in prevention
of gut dysfunction. Specifically, lower breast milk content of
disialyllacto-N-tetraose (DSLNT) which is linked with NEC
prevention in neonatal rats, was associated with high NEC
prevalence for human, as shown in a study of 200 American
mothers with very low birth weight infants (birth weight under
1,500 g) (Autran et al., 2018). It is noticeable that the pattern
of oligosaccharides in HM is highly variable between mothers.
The presence or absence of functional fucosyltransferase-2
(FUT2) and fucosyltransferase-3 (FUT3) enzymes depending
on maternal genetic factors is known to significantly influence

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 676622

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-676622 June 8, 2021 Time: 16:16 # 6

Buffet-Bataillon et al. Preterm Nutrition and Gut-Brain Axis

the HMO profile. The mother’s Secretor and Lewis blood
groups define four phenotypes: Lewis positive Secretors (FUT2
active, FUT3 active; Le+Se+), Lewis negative Secretors (FUT2
active, FUT3 inactive; Le−Se+), Lewis positive Non-secretors
(FUT2 inactive, FUT3 active; Le+Se−) and Lewis negative Non-
secretors (FUT2 inactive, FUT3 inactive; Le−Se−), characterized
by different levels of HMOs. Infants of secretor mothers (Le+Se+
or Le−Se+) may be protected by fucosylated HMOs that
decrease the levels of pathogens associated with NEC and sepsis
(Bering, 2018). In addition, higher levels of Proteobacteria and
lower levels of Firmicutes were observed in preterm infants of
non-secretor mothers (Underwood et al., 2015). Other factors
including lactation stage, parity, mode of delivery, pre-pregnancy
maternal body mass index may also play a significant role in
HMO composition (Azad et al., 2018; Samuel et al., 2019).

Discrepancies exist in the literature related to the prematurity
effect on HMO content, i.e., no change in HMO composition
(Kunz and Rudloff, 1993; Nakhla et al., 1999; Gabrielli et al.,
2011; Kunz et al., 2017; Autran et al., 2018), higher HMO
content in preterm milk vs. term milk (Coppa et al., 1997;
Sundekilde et al., 2016), especially the fucosylated ones (fucose,
N-acetyl-neuraminic and N-acetyl-glucosamine) (Perrone et al.,
2019), and more highly variable HMO composition in preterm
milk (Nakhla et al., 1999; De Leoz et al., 2012). However,
fucosylation of HMOs may not be as well-regulated in preterm
milk as in term milk (De Leoz et al., 2012). A recent study
described the dynamical evolution of HMO content of preterm
and term milks in 53 mothers over the first four and the
first two postnatal months of lactation, respectively (Austin
et al., 2019) (Figure 1). Although the concentration of most
HMOs was comparable at equivalent postpartum age, that
of 3-sialyllactose (3′SL), DSLNT and Siallylacto-N-neo-tetraose
b (LSTb) was higher and that of 6-sialyllactose (6′SL) and
Siallylacto-N-neo-tetraose c (LSTc) was lower in preterm than
term milk. Furthermore, lacto-N-neotetraose concentration was
shown to significantly decrease in term milk over time but
did not significantly change in preterm milk (Spevacek et al.,
2015). Interestingly, however, a study documenting the changes
in metabolomic profile of preterm and term milks highlighted
that the preterm milk metabolome changed within 5–7 weeks
postpartum to resemble that of full-term milk (Sundekilde et al.,
2016). The effect of HMO content on neonatal microbiota
agrees with a highly selective prebiotic effect of HMOs that
shape the gut microbiota in the first weeks of life (Spevacek
et al., 2015). Indeed, the primo-colonization of the intestine
with bacterial populations composed primarily of non-HMO-
consuming Enterobacteriaceae and Staphylococcaceae resulted in
an increase of fecal HMOs when the further higher proportion
of HMO-consuming Bacteroidaceae and Bifidobacteriaceae was
associated with a reduction in fecal HMOs (De Leoz et al., 2015).

Bacteria and Fungi Content in Preterm and Term
Breast Milk
The discovery of a HM microbiota, from the 2000s, has led
many teams to question its origin and its relative role, compared
to other microbiota (particularly maternal fecal microbiota),
in the gut colonization of the newborn. HM guarantees a

constant supply of bacteria throughout the lactation period,
values ranging from 102 to 104 bacterial cells/mL with a
culture-dependent analysis and around 106 bacterial cells/mL
with a qPCR-based analysis (Jost et al., 2013; Boix-Amorós
et al., 2019). As reported in extensive reviews (Fitzstevens
et al., 2017; Oikonomou et al., 2020), HM microbiota is
a diverse and complex community with Streptococcus and
Staphylococcus as the dominant genera in most of the
studies using either culture-independent or culture-dependent
approaches. Propionibacterium, Bifidobacterium, Bacteroides,
Enterococcus, Lactobacillus, Acinetobacter, and Veillonella are,
among others, the most cited dominant taxa in HM. Strong inter-
individual variations exist that may be explained by several host
and environmental factors including maternal body mass index,
diet, time of lactation, ethnicity as well as geographical location
(Gomez-Gallego et al., 2016; Kumar et al., 2016). Only one study
investigated the effects of stages of gestation on milk microbiota
from 39 Caucasian Canadian women (Urbaniak et al., 2016). No
significant difference in the microbial profiles of milk between
preterm and term births was observed. More studies are still
needed with larger samples sizes to better assess whether stages
of gestation impact milk microbiota composition.

Only limited data are available on the quantitative and
qualitative fungal load of human breast milk compared to
animal milks. Using multiple approaches, from culture to
molecular techniques, Boix-Amorós et al. (2017) showed
that 89% of samples had detectable levels of fungal DNA
(median load of 3.5 × 105 cells/ml). The three more
abundant yeast genera found were Malassezia, Candida, and
Saccharomyces. At the species level, yeast species detected by
pyrosequencing and/or culture were both typical yeasts from the
skin and/or oral cavity, such as Malassezia globosa, Malassezia
restricta, Candida parapsilosis, Candida albicans, Yarrowia
lipolytica, Saccharomyces cerevisiae, or Rhodotorula mucilaginosa.
Filamentous fungi were also detected, and the most prevalent
were Alternaria and Cladosporium species. More recently, a
high-throughput approach using next generation sequencing
allowed to characterize the human milk mycobiome from
various countries and continents (Boix-Amorós et al., 2019).
Basidiomycota (58.65%) and Ascomycota (41.03%) account for
the most important phyla. Malassezia, Davidiella, Sistotrema, and
Penicillium were the four more abundant genera detected.

Pasteurized Human Donor Milk
The World Health Organization recommends pasteurized
human donor milk for preterm infants when the mother’s
own milk is unavailable (World Health Organization, 2011). In
preterm and low birth weight infants, evidences may indicate
that feeding with human donor milk, either as a supplement to
maternal expressed breast milk or as a sole diet resulted in a lower
risk of developing NEC compared with formula (Quigley et al.,
2019). Although human donor milk feeding was associated with
lower rates of weight gain, growth, and head growth, no effect of
milk feeding types on all-cause mortality, long-term growth and
neurodevelopment has been observed. The inactivation of milk
bacteria and the significant reduction of bioactive proteins and
enzymes resulting from the pasteurization process of the human
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donor milk may limit some of its health benefit compared to a
mother’s own milk. Indeed, bioactive components such as Igs,
lactoferrin, enzymes (lipase), HMOs and vitamins are reduced
or inactivated after pasteurization. In addition, pasteurization
associated to freeze-thaw cycles may modify the kinetics of
digestion of proteins and lipids by selectively modulating the
intestinal release of amino acids and decreasing that of some
fatty acids as demonstrated using an in vitro dynamic digestion
system (de Oliveira et al., 2016). However, it is noticeable that
pasteurized HM favored an intestinal microbiome in infants
more similar to mother’s own milk than formula despite the
differences in bacterial content between raw and pasteurized
breast milks (Parra-Llorca et al., 2018). All these data suggests
that the pasteurization of HM preserves most of functionalities
of breast milk in terms of influence on the intestinal microbiota
profile and health outcomes in preterm infants.

Fortified Milk for Preterms
Evidence indicates that HM is the best nutritional standard for
infants that suits not only to term but also to preterm infants,
especially those born with a very low birth weight (VLBW),
conferring both short and long-term health benefits (Tudehope,
2013). However, HM does not meet the higher nutritional
requirements of preterm and VLBW infants compared to those
of term infants (Ballard and Morrow, 2013; Simpson et al., 2016)
when fed at the usual feeding volumes during the first weeks
of life. This may lead to postnatal growth restriction with the
associated risk of impaired neurodevelopment and other poor
health outcomes (Chan et al., 2016; Guellec et al., 2016; Coviello
et al., 2018). Nutrient requirement of preterm infants is defined
as intakes that enable the neonate to grow at the same rate as a
fetus (Ziegler, 2014). Any shortfall in protein supply affects early
growth of preterm infants and increases the risk for inadequate
growth during later childhood and adulthood (van Beek et al.,
2020). Thus, protein supply needs special attention in early life
with the aim to meet the protein requirement of growing preterm
infants ranging between 3.5 and 4.5 g/kg/day (Agostoni et al.,
2010; Ziegler, 2014). However, feeding with 150 mL/kg/day of
unfortified HM (often considered full enteral feeding) provides
only about 1.8 g/kg/day of protein. Optimal early nutrition
of preterm infants is thus facilitated by using multi-nutrients
human milk fortifier (MF) that increases the concentration of
nutrients to their requirement levels at the recommended feeding
volumes (135–200 ml/kg/d) (Ziegler, 2011). HM fortification is
now commonly recommended in neonatal intensive care units
(NICU) of very preterm infants with a birthweight <1,800 g
(Moro et al., 2015). HM should be fortified with the nutrients
in short supply, particularly with proteins, minerals such as
calcium and phosphate, as well as micronutrients such as iron,
zinc, copper, selenium and iodine (Arslanoglu et al., 2019). MF
can be used safely as soon as the milk volume reaches 50–
80 ml/kg/d. In contrast, no strong evidence supports the use of
hydrolyzed protein source in MF (Arslanoglu et al., 2019). MF
are commonly derived from bovine milk. In fact, fortification
of breast milk feeds with human MF in comparison with
bovine MF did not reduce the risk of necrotizing enterocolitis
in preterm infants (Premkumar et al., 2019). Moreover, current

data do not provide guidance on the optimal time to start
fortification (Alyahya et al., 2020). Among the different
fortification approaches, while “Standard fortification” falls short
in supplying sufficient proteins, current recent data encouraged
the use of “Individualized Fortification” (adjustable and targeted
fortification) to optimize nutrient intake (Arslanoglu et al., 2019).

Impact of Maternal Nutrition on Human
Milk Quality
Maternal nutrition may influence breast milk composition in
mothers who delivered prematurely (Hascoët et al., 2019).
However, only overall maternal carbohydrate intake was
positively correlated with milk protein, fat and caloric density
as observed in a French cohort of 81 mothers who delivered
prematurely (between 24 and 34 weeks’ gestational age),
regardless of the kind of carbohydrate: sugar, fibers, or overall
carbohydrates (Hascoët et al., 2019). The absence of effects of
overall protein intake on the milk composition corroborated
findings in mothers who delivered at term, such as the study
by Zhao et al. (1989) in two Chinese cohorts from 2 areas of
China differing in the mothers’ overall protein intake, where no
differences in 18 studied amino-acids could be find in breast
milks. However, in a recent study with 220 Chinese lactating
women who delivered at term, dietary patterns with high intake
of red meat, cereals and eggs was associated with higher protein,
total dry matter and energy content in HM (Huang and Hu,
2020). Regarding lipids, supplementation of maternal diet with
the n−3 PUFA precursor ALA did not modify the milk overall
lipid concentration but qualitatively increased the proportion of
ALA, still in mothers who delivered at term (Mazurier et al.,
2017). Similarly, Chilean women who had a low intake of foods
that are natural sources of n−3 PUFAs (vegetable oils, fish, and
seafood) and a high intake of n−6 PUFAs (LA and AA) during
lactation displayed a significant reduction of DHA levels in breast
milk (Barrera et al., 2018). Interestingly, the concentration of
n−3 PUFAs in HM would be related to the mothers’ habitual
but not current intake (Bzikowska-Jura et al., 2019), suggesting
that current post-partum n−3 PUFA intake does not translate
directly into their concentration in HM but is rather influenced
by the maternal body stocks of FA. Pre-pregnancy obesity was
associated with increased fat and energy content in HM 6 weeks
after preterm delivery, which may be due to higher blood
triglycerides in the obese or to oxidative stress and inflammation
caused by obesity, with consequences for HM metabolomic
profile (Burianova et al., 2019). A negative correlation between
mother’s weight and cholesterol concentration in HM has
been described (Kamelska et al., 2012). The dietary intake
of polyamines was significantly associated with the polyamine
content of transitional HM collected in mothers who delivered
prematurely, especially for spermidine and putrescine (Atiya Ali
et al., 2014). Furthermore, total polyamine level was higher in
preterm milk, with the levels of putrescine and spermidine being
50 and 25% higher, than in term milk (Plaza-Zamora et al., 2013;
Atiya Ali et al., 2014). The impact of maternal diet on HMO
content has not been clearly addressed so far. Azad et al. (2018)
found no association between overall diet quality and HMO
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concentration. However, maternal probiotic supplementation
during late stages of pregnancy was recently associated with
change in breast milk HMO composition (Seppo et al., 2019).
Moreover HMO diversity and the concentration of LNnT were
negatively correlated to prepregnancy body mass index, whereas
2′FL was positively associated to prepregnancy body mass index
in secretor mothers, in a Finish cohort including both term
and preterm-delivered women (Lagström et al., 2020). HM from
obese women displayed increased levels of monosaccharides and
sugar alcohols including mannose, ribose, lyxose, lyxitol (Saben
et al., 2020) and Berger et al. (2018) revealed that mothers who
consumed a beverage sweetened with high-fructose corn syrup
had increased fructose in HM.

In a recent study, which specifically addressed the effect of
maternal nutrition on HM microbiome, Babakobi et al. (2020)
found a significant negative correlation between Streptococcus
relative abundance in HM and maternal intake of PUFAs and
folic acid, as well as with HM oleic acid content. Additional
correlations were detected between Staphylococcus hominis and
two MCFAs (C8:0 and C12:0) (Babakobi et al., 2020).

GUT MICROBIOTA IN PRETERM
INFANTS AND IMPACT OF
ENVIRONMENTAL FACTORS

Initial Bacterial and Fungal Colonization:
Preterm vs. Term Infants
Recent articles showed bacterial presence in the amniotic fluid,
umbilical cord and the placenta (Wassenaar and Panigrahi, 2014).
While these observations suggest that colonization of the fetal
gut may begin in utero, several other studies have put forward
arguments against such a possibility (Salter et al., 2014; Lauder
et al., 2016; Perez-Muñoz et al., 2017). The first meconium is rich
in genera such as Escherichia-Shigella, Enterococcus, Leuconostoc,
Lactococcus, and Streptococcus (Gomez-Gallego et al., 2016).
Initial colonizing fungal species are also present in 71% of infants
and include C. albicans and C. parapsilosis (Kaufman et al.,
2006). At birth, the infant gut is an aerobic environment, which
gradually becomes anaerobic over a period of days (Johnson and
Versalovic, 2012; Jost et al., 2012). The meconium facultative
aerobic bacteria that firstly colonize the infant gut (Escherichia
and Enterococcus) eventually establish an anaerobic environment,
and promote the colonization with obligate anaerobes, including
Firmicutes such as Clostridia, Bacteroidetes, and especially the
protective Bifidobacteria (Mackie et al., 1999). Bifidobacteria
comprise the largest group within the infant microbiota (Jost
et al., 2012; Jakobsson et al., 2014). Throughout this succession
of organisms, the microbiota increases in diversity (Koenig et al.,
2011; Jakobsson et al., 2014). At the opposite, gastrointestinal
fungi are present at a significantly higher diversity during the first
3 months of life than later in life (Kaufman et al., 2006).

The microbiota development of infant gut is dependent
on gestational age at time of delivery and, for term infants,
mode of delivery (Dominguez-Bello et al., 2010; Makino
et al., 2013; La Rosa et al., 2014). Term infants born vaginally

are initially colonized by microbial communities resembling
maternal vaginal microbiota (Lactobacillus, Prevotella, Candida,
Davidiella and Cladosporium). In contrast, fecal microbiota of
term infants delivered by cesarean section more closely resembles
the skin microbiota (Staphylococcus, Propionibacterium, and
Malassezia) (Dominguez-Bello et al., 2010; Nagata et al., 2012;
Drell et al., 2013). Contrarily, the mode of delivery does not
appear to significantly affect the initial colonizing community
in preterm infants, which instead is hypothesized to be highly
influenced by the environment (Schwiertz et al., 2003; Brooks
et al., 2014). For preterm infants (gestational age <33 weeks)
the early gut microbiota composition resembles bacterial
communities colonizing hospital surfaces and feeding and
intubation tubing and are enriched in Staphylococcus epidermis,
Klebsiella pneumoniae, and Escherichia coli (Brooks et al., 2014).
Preterm infants were also shown to be colonized early with
C. albicans for a median range of 3 weeks and C. parapsilosis
for 4 weeks (Kaufman et al., 2006). The examination of the
gut-associated microbiota of 11 extremely low birth weight
preterm infants in the first postnatal month revealed that
the most prevalent and abundant fungi were Saccharomyces
(S. cerevisiae) followed by Candida (C. albicans, Candida glabrata,
C. parapsilosis, Candida tropicalis, Candida Diddensiae, and
Candida quercitrusa) (LaTuga et al., 2011). The susceptibility
to Candida invasive infection has been correlated with a naïve
immune system, a bacterial dysbiosis and use of parenteral
nutrition (Kumar et al., 2016).

Following initial colonization, gut microbiota of both term
and preterm infants increases in diversity and dynamically
changes in composition. However, specific bacterial succession
patterns are unique to these two populations (Schwiertz et al.,
2003; Yatsunenko et al., 2012; La Rosa et al., 2014). The most
notable difference concerns the enrichment in Proteobacteria
before 2 weeks of age in preterms. The developing term infant
gut microbiota is initially dominated by Firmicutes, when
Proteobacteria species are sparsely present in the first week of
life and persist as minor components (<10% relative abundance
on average) throughout the first 2.5 years of life (Koenig et al.,
2011). Thereafter there is an increase in Bifidobacterium and
Bacteroides in healthy term infants within the first 6 months of
life (Jost et al., 2012; La Rosa et al., 2014; Korpela et al., 2018).
In contrast, preterm infant gut microbiota is quickly dominated
by Proteobacteria (facultative anaerobes) species within the
first week of life, which remain at high levels (>75% relative
abundance on average) throughout the first month (Morowitz
et al., 2011; La Rosa et al., 2014). Because of a prolonged
dominance of Proteobacteria such as Enterobacteriaceae, preterm
infants have a delayed progression to a Bifidobacterium-
dominated (obligate anaerobes) microbiota compared to term
infants (Butel et al., 2007; Bäckhed et al., 2015; Korpela et al.,
2018). Overall, the intestinal microbiota from preterm infants
up to 5 weeks of age clusters distinctly from that of full-term
breastfed infants and the microbial patterns converge toward that
of full-term breastfed infants only at or after 6 weeks of age (Claud
et al., 2013). By the end of the first year of life, the infant gut
microbiota begins to resemble an adult-like microbiota, reaching
full maturity by 2–3 years of age (Palmer et al., 2007; Koenig
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et al., 2011; Yatsunenko et al., 2012). At 1 year of age, the infant
gut microbiota has a characteristic abundance of Akkermansia
muciniphila, Bacteroides, Veillonella, Clostridium coccoides, and
Clostridium botulinum (Alou et al., 2016) and is dominated
by three bacterial phyla: Firmicutes (Lachnospiraceae and
Ruminococcaceae), Bacteroidetes (Bacteroidaceae, Prevotellaceae,
and Rikenellaceae), and Actinobacteria (Bifidobacteriaceae and
Coriobacteriaceae). These data demonstrate that while the
succession of bacteria at the genus level is similar, dominance is
different between preterm and term infants in the early period of
life (Figure 2).

It is noteworthy that the severity of prematurity seems to
be a major driver in the development of the microbiota for
preterm infants, specifically the slowest rate of assembly was
found in the most premature infants (between 25 and 30 weeks
of gestational age) (La Rosa et al., 2014; Dahl et al., 2018;
Korpela et al., 2018). The preterm infant microbiota may follow
an age-dependent maturation which may be slightly dependent
on a specific gestational age (Claud et al., 2013). The microbial
community differences between preterm and term infants are
due to differences in the environment of NICU as above-
mentioned, but also to an immaturity in the intestinal epithelium
(Claud et al., 2013).

Bacterial and Fungal Profiles of Preterm
Infant Feces Associated With Breast Milk
and Formula Feeding
Whether the term infants are breastfed or formula-fed affects
their gut microbiota (O’Sullivan et al., 2015; Boudry et al.,
2021). Breast-fed term infants generally become colonized
in the first weeks after birth with the protective bacterial
Bifidobacterium and Lactobacillus that are able to consume
HMOs whereas formula-fed infants have a higher diversity and
levels of Enterobacteria, Clostridia, Bacteroides, Enterococcus,
and Streptococcus (Favier et al., 2002; Penders et al., 2006;
Bezirtzoglou et al., 2011; Azad et al., 2013; Bäckhed et al., 2015).
Even if formula-fed infant harbor Bifidobacterium in their gut
microbiota, breastfed infant gut is generally colonized with a
more complex and diverse Bifidobacterium ecosystem and a
twofold higher number of Bifidobacterium cells compared to
formula-fed infants (Roger et al., 2010; Bezirtzoglou et al., 2011).
In preterm infants, the impact of HM feeding on infant gut
microbiota is not clearly assess due to the low numbers of preterm
infants exclusively breastfed and the various timings in which
formula feeding is introduced exclusively or in supplementation
observed in clinical studies (Dahl et al., 2018). Indeed, preterm
infant gut microbiota is enriched in microbes that commonly
dominate in the presence of antibiotics (Wandro et al., 2018).
However, vaginally born, exclusively breastfed preterm infants
not exposed to antibiotics had fewer Firmicutes and more
Proteobacteria than children born at term (Dahl et al., 2018).
Preterm infants fed infant formula had a lower initial bacterial
diversity and a less gradual increase in diversity compared
to preterm infants who were fed HM (Gregory et al., 2016).
Furthermore, the microbiota of preterm infants fed HM clusters
regardless of birth weight, when that of preterm infants fed infant

formula clustered differently based on birth weight (Gregory
et al., 2016). The ordered succession of microbial taxa observed
in HM-fed preterm infants was disrupted in those fed infant
formula (Gregory et al., 2016). Fecal microbiota of preterm
infants fed with exclusive own mother’s HM presented increased
richness compared to those fed with different proportions of
formula. In addition differences in microbiota composition were
reported: the mean proportion of Escherichia and Clostridium
was always greater in preterm infants who received diets
containing formula than in preterm infants fed with HM only
(Zanella et al., 2019). It was also shown in a cohort of 3,161
preterm infants that a slow rate of progression of enteral feeding
and a less favorable direct-breastfeeding policy was associated
with colonization by Clostridium neonatale and/or Staphylococcus
aureus and most likely with the increased risk of developing NEC
(Rozé et al., 2017). The type of diet of the infant (formula-fed or
breast-fed) does not seem to impact oral fungal profile, although
fungi are present in HM (Boix-Amorós et al., 2019).

Antibiotic, Antifungal, and Disinfectant
Exposure (Environmental Factors) and
Microbial Profiles
Antibiotics
The composition of gut microbiota can be affected by the timing,
duration, and type of antibiotic exposure (class, dose, period of
exposure, pharmacological action, and targeted bacteria) in both
preterm and term infants (Fouhy et al., 2012; Gasparrini et al.,
2016; Gibson et al., 2016; Yassour et al., 2016; Iizumi et al., 2017).
Specific properties of antibiotics such as antimicrobial effects
or mode of action select intestinal bacteria and induce shifts
in bacterial composition during antibiotic therapy (Pérez-Cobas
et al., 2013). Intrapartum antibiotic prophylaxis induced lower
gut diversity and abundance of Lactobacillus and Bifidobacterium
in neonates (Mueller et al., 2015).

In preterm infants, meropenem, cefotaxime, and ticarcillin–
clavulanate are associated with significantly reduced species
richness. In contrast, vancomycin and gentamicin, the antibiotics
most commonly administered to preterm infants, have non-
uniform effects on species richness (Gibson et al., 2016). In term
infants, parenteral ampicillin and gentamicin administration
(within 48 h of birth) resulted in a significantly increased
abundance of Proteobacteria and decreased abundance of
Actinobacteria (particularly Bifidobacterium) and Lactobacillus
4 weeks after the treatment compared to the untreated controls
(Fouhy et al., 2012).

Antifungals
Preterm or VLBW infants have been identified as a high risk
group of patients to be colonized with fungi and further to
develop invasive fungal infections (Manzoni et al., 2015). The
high mortality of these infections mainly due to Candida sp.
conducted to the implementation of a randomized clinical trial
to evaluate the performance of prophylactic administration of
fluconazole during the first 6 weeks of life (Kaufman et al., 2001).
Results showed that prophylaxis with fluconazole was effective
in decreasing fungal colonization and preventing invasive fungal
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FIGURE 2 | Key bacterial and fungal colonization of the term and preterm infant gut microbiota from birth through 1 year of life. The composition of the gut
microbiota in term and preterm infants varies differently from birth before reaching an identical composition at the first year of life. During the first year of life,
pro-inflammatory colonizers are more present in preterm infants than in term infants. The developing term infant gut microbiota is initially dominated by Firmicutes,
with low levels of Proteobacteria species, following by an increase in Bifidobacterium and Bacteroides within the first 6 months of life. In contrast, preterm infant gut
microbiota is quickly dominated by Proteobacteria species within the first week of life, which remain at high levels throughout the first month and thus induce a
delayed progression to a Bifidobacterium-dominated community compared to term infants. In the case of a vaginal delivery, early colonizers originate from the
mother’s vaginal and fecal microbiota whereas for C-sections, early colonizers belong to the environment of birth and the mother’s skin microbiota. The gut
microbiota differences between vaginally and caesarean delivery disappear after the first year of life.

infection in VLBW infants. It is noticeable that fluconazole
prophylaxis did not induced non-albicans species selection nor
emergence of fluconazole -resistant strains in a wide Italian
study in preterm neonates in NICU over a 16-year surveillance
period (Luparia et al., 2019) compared to hematological patients.
However, despite the administration of antifungals, fungal
colonization still occurred in 7 out of 11 extremely low birth
weight infants (LaTuga et al., 2011). Although antibiotics do
not directly act on fungi, anti-bacterial antibiotic exposure is
associated with an increased rate of fungal colonization (Dollive
et al., 2013). In preterm infants, exposure to cephalosporins
is associated with an increased risk for invasive candidiasis
(Kelly et al., 2015). The aerobic growth of C. albicans has
been studied extensively. Interestingly the facultative anaerobic
growth has been showed in vitro (Dumitru et al., 2004). This
anaerobic growth of C. albicans may contribute to the resistance
of C. albicans biofilms to antifungal drugs.

Disinfectant
A strong link has been shown between NICU-specific taxa and
their presence in the gut microbiota of preterm infants, mostly
mediated by healthcare providers and cleaning protocols (Brooks

et al., 2018). Therefore, approaches that aim to change NICU
microbiota may be an effective way to manipulate the early
microbiota of preterm infants.

To summarize, the early window for gut microbiota
establishment is critical. Gestational age, mode of delivery as well
as environmental factors (antibiotic, antifungal, and disinfectant)
largely affect gut microbiota establishment. However, nutrition
also shapes the assembly of infant gut microbiota with significant
functional implications (Fragkou et al., 2021).

DYSBIOSIS, BRAIN DEVELOPMENT AND
NEURODEVELOPMENTAL OUTCOMES

Post-natal Development of the Brain
The brain undergoes a rapid trajectory of growth during the third
trimester of gestation, with a 140% volume increase from the
30th to the 40th week of gestation, resulting in a neonatal brain
representing about 36% of the adult volume at full-term birth.
Brain structure and function continue to mature during the early
post-natal life to reach 80–90% of the adult brain volume by the
age of 2 (Knickmeyer et al., 2008). During this period, dendrites,

Frontiers in Microbiology | www.frontiersin.org 10 June 2021 | Volume 12 | Article 676622

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-676622 June 8, 2021 Time: 16:16 # 11

Buffet-Bataillon et al. Preterm Nutrition and Gut-Brain Axis

axons, new synapses and glia cells expand, and myelination
occurs. During the first two postnatal years, synapse production
occurs with a peak between 3 and 24 months depending on the
cortical region (Huttenlocher and Dabholkar, 1997). Synaptic
refinement and elimination as well as myelination continue in
late childhood and beyond adolescence (Petanjek et al., 2008).
Prefrontal regions are among the last brain areas to reach mature
levels (Giedd, 2004). Interestingly, magnetic resonance imaging
(MRI) studies reveal that despite normal head circumference
at birth, autistic children display abnormal regulation of brain
growth resulting from early overgrowth followed by abnormally
slowed growth (Courchesne et al., 2001; Hazlett et al., 2005)
highlighting that adequate, i.e., not too slow but not too rapid,
growth is a key parameter for later brain health.

In preterm infants, brain growth is a major matter of concern.
Larger total brain tissue, white matter, and cerebellar volumes at
term-equivalent age are associated with better neurodevelopment
in very, moderate or late preterm children (Cheong et al.,
2016; Schneider et al., 2018). Impaired neuronal connectivity,
likely associated with impaired dendritic growth and synapse
formation, was also observed in preterm infants during infancy
and beyond, correlating with lower neurodevelopmental scores
in adolescence (Constable et al., 2008; Dean et al., 2014). Despite
intensive research and refinement of methods, the mechanisms
leading to normal brain growth and maturation during the post-
natal life are still not fully understood, especially in preterm
infants. The role of environmental factors such as nutrition has
been described (Schneider and Garcia-Rodenas, 2017). However,
microbiota is another potentially key actor that starts to emerge.

Evidences for a Role of the Microbiota in
Neonatal Brain Development
Evidences From Preclinical Models
The germ-free (GF) mouse model has been widely used as a
first approach to demonstrate the role of microbiota on brain
development and function. These mice display decreased anxiety-
like behavior compared to conventional mice at adulthood
and numerous alterations at the brain level (Luczynski et al.,
2016). Indeed, compared to conventional mice, GF mice exhibit
many brain alterations: higher expression of synaptic-related
proteins (synaptophysin and PSD-95) in the striatum (Diaz
Heijtz et al., 2011), increased levels of key myelin-associated
genes and hypermyelination in the prefrontal cortex (Hoban
et al., 2016), increased hippocampal cell survival (Ogbonnaya
et al., 2015), reduced subventricular zone cell proliferation
(Sawada et al., 2018), increased blood–brain-barrier permeability
(Braniste et al., 2014), impaired microglia immune response and
immature morphology (Erny et al., 2015), altered hippocampal
microRNA and mRNA expression (Zhou et al., 2019), increased
expression of splicing factors upon stimulation in the amygdala
(Sawada et al., 2018; Stilling et al., 2018), decreased expression
of the total brain-derived neurotrophic factor (BDNF) in the
amygdala (Arentsen et al., 2015), and numerous alterations
in neurotransmitter and receptor expression (Luczynski et al.,
2016). Collectively, these data indicate a role of the microbiota
on brain function, and especially on processes that are activated

during brain post-natal maturation. Interestingly, most, but not
all, of these alterations can be corrected upon colonization of
GF mice at weaning. This both-ways reversible effect suggests
that it may be possible to counterbalance such effects in
certain conditions.

Beside GF models, early life intervention on gut microbiota
in preclinical models also demonstrated long-term effect of
neonatal dysbiosis on behavior. Indeed, oral administration of
antibiotics (ampicillin or a cocktail of neomycin, bacitracin,
and pirimacin) to pregnant mice leads to modification in
motor activity of their offspring and altered social behavior, but
only in the male offspring (Arentsen et al., 2017). Low-dose
penicillin from late pregnancy until weaning decreased anxiety-
like behavior in young adult male mice (Leclercq et al., 2017).
Interestingly, concurrent supplementation with a probiotic
strain (Lactobacillus rhamnosus JB-1) prevented some of these
alterations (Leclercq et al., 2017). Moreover, neonatal antibiotic
treatment (vancomycin) affected visceral pain in adulthood, but
did not impact cognitive or anxiety-related behaviors in male rats
(O’Mahony et al., 2014).

Overall, the impact of antibiotics on brain development and
behavior seems to be highly dependent upon factors such as the
type and the dose used and the developmental time window when
such exposure(s) occurred.

Evidences From Human Data
Impact of factors affecting the natural microbiota assembly
on neurodevelopment
The first evidences of the role of early microbiota composition
or metabolic capacity and activity on neurodevelopment arise
from studies linking factors that affect the natural assembly
of the neonatal gut microbiota (mode of delivery, use of
antibiotic, nutrition, etc.) and neurodevelopment. These studies
should, however, be considered with caution, since these factors
do not only affect gut colonization but also other pathways
potentially affecting brain development. Nonetheless, these
studies give a first idea of the link between microbiota and brain
maturation in infancy.

Mode of delivery
C-section was associated with a delay in personal social skills
and gross motor function at 9 months but not 3 years of age
in a cohort of 11,000 infants (Al Khalaf et al., 2015). Likewise,
a retrospective study with a lower number of infants (n = 104)
but followed until 10 years of age indicated that C-section
born infants have later attainment of developmental milestones
compared to vaginally-born infants (Chojnacki et al., 2019).
However, when studying brain health (attention deficit disorders
and autism spectrum disorders), studies are very inconsistent and
meta-analysis or large cohort studies could not conclude to any
association (Curran et al., 2015, 2016).

Use of antibiotics
As antibiotics have long been considered safe, there is a paucity
of studies evaluating the consequences of antibiotic treatment
on brain development and subsequent function and behavior.
A recent study on 342 children reported that antibiotic treatment
in the first 6 months of life may trigger behavioral changes in
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children at 11 years of age, such as lower overall cognitive and
verbal comprehension abilities, increased risk of problems with
metacognition, executive function, impulsivity, attention-deficit
hyperactivity, anxiety and emotion (Slykerman et al., 2019). This
confirms a first study from the same research group in another
cohort indicating that children that had received antibiotics in the
first year of life had more behavioral difficulties and symptoms of
depression at 11 years of age (Slykerman et al., 2017; Lavebratt
et al., 2019). Moreover, it is noteworthy that drugs over than
antibiotics can also have anti-microbial properties. The impact
of early-life administration of these drugs on brain development
warrants further investigations.

Nutrition
It has long been established that breast-feeding was associated
with better neurodevelopment (Kramer et al., 2008; Quigley
et al., 2012). Importantly, the effect is particularly noteworthy
for preterm infants, who have an increased risk for behavioral
problems and cognitive impairments later in life (Quigley
et al., 2012). Recent data indicated that breast-feeding more
than 1 month was associated with higher IQ compared
to breast-feeding less than 1 month (Strøm et al., 2019).
However, even though breast-feeding impacts gut microbiota
composition, increasing for instance Bifidobacterium abundance,
it is difficult to link these results to microbiota composition
only as breast-milk provides specific nutrients known for their
beneficial effects on brain development (LC-PUFAs, HMOs,
etc.). However, Bifidobacterium species are responsible for the
fermentation of HMOs to produce SCFAs (Marcobal et al.,
2011). SCFAs improve the gut health by promoting intestinal
barrier integrity maintenance, mucus production and intestinal
hormone secretion (Gaudier et al., 2009; Peng et al., 2009;
Tolhurst et al., 2012). In addition to exerting local effects
in the colon, SCFAs play a pivotal role in microbiota-gut-
brain crosstalk. Accumulating evidence suggests that SCFAs
that cross the blood-brain barrier into the central nervous
system have neuroactive properties. A multitude of animal
studies have shown that SCFAs widespreadly may be involved
in critical phases of neurodevelopmental and neurodegenerative
disorders (Sharon et al., 2016; Dinan and Cryan, 2017; Fung
et al., 2017; Kelly et al., 2017; Dalile et al., 2019). MFGM
or some specific MFGM components such as sphingomyelin
(phospholipids) have been reported to have positive association
with the neurobehavioural development of infants born at term
(Tanaka et al., 2013; Timby et al., 2014) and to change, though
moderately, oral microbiome (lower level of Moraxella catarrhalis
with MFGM supplementation compared to standard formula
feeding) (Timby et al., 2017a). A recent systematic review
on the effects of different nutritional interventions, including
supplementation with amino acids and protein, lipids, probiotics,
prebiotics, vitamins, and minerals, to reduce brain injury and/or
improve neurodevelopmental outcomes in preterm infants (24
randomized controlled clinical trials included) concluded that
positive effects of nutritional interventions have not been
evidently demonstrated in these trials even though promising
effects have been demonstrated in many pre-clinical studies
(Hortensius et al., 2019). Concerning probiotics, Lactobacillus

acidophilus and Bifidobacterium infantis (Chou et al., 2010),
a combination of B. infantis, Streptococcus thermophilus, and
Bifidobacterium lactis (Jacobs et al., 2017) or Lactobacillus
Sporogenu (Sari et al., 2012), were administered the first
week after birth until discharge and no significant effect of
supplementation on neurodevelopmental outcome assessed
between 2 and 5 years was found. It is noticeable that single,
but not multiple, nutritional interventions were included in
these studies. In addition, several relevant factors such as
the type of infant nutrition (i.e., breast milk vs. formula
or donor milk), the timing and the dose of the nutritional
supplementation hampered the conclusions in preterm infant
studies (Schneider and Garcia-Rodenas, 2017).

Observational Prospective Studies
Behavior and temperament
Few clinical studies evaluated the association between microbiota
composition and later child behavior and temperament. A first
exploratory investigation evaluated fecal microbiota composition
(through 16S sequencing) and concomitant temperament,
rated by maternal questionnaires, in full-term healthy toddlers
aged 18–27 months. Phylogenic diversity was associated
with higher surgency/extraversion scores in both boys and
girls (Christian et al., 2015). However, this study did not
evaluate microbiota during infancy, which is the most rapid
period of neurodevelopment. A second prospective study
evaluated the link between microbiota composition (also
through 16S sequencing) at 2.5 months of age, i.e., during
infancy, and temperament at 6 months in 300 full-term infants.
Using a clustering strategy, they identified three distinct
groups (discriminated by Bacteroidetes, Veillonella dispar
and Bifidobacterium/Enterobacteriaceae, respectively). The
Bacteroidetes cluster was associated with lower self-regulation
capacity (a dimension that includes cuddliness, soothability, and
orienting), compared to the Bifidobacterium/Enterobacteriaceae
cluster. Moreover, negative emotionality and fear reactivity
that may predict development of anxiety later in life, was
associated with reduced diversity at the age of 6 months
(Aatsinki et al., 2019). Finally, Loughman et al. (2020) used a
different strategy to evaluate the link between infant behavior
and microbiota: they looked for difference in microbiota
composition at 1, 6, and 12 months of age (16S sequencing)
of infants separated in behavior vs. non-behavior cases, based
upon parent questionnaires completed at 2 years of age. While
microbiota composition at 1 and 6 months of age was not
different between the two populations, the presence of Prevotella
at 12 months was significantly lower in the group of behavior
cases (Loughman et al., 2020).

Overall, these studies point out the existence of
correlations between microbial profiles and infant behavior
but the identification of causal relationships warrants
further investigations.

Cognitive development
Recently, two prospective observational studies linked early-
life microbiota composition to cognitive neurodevelopmental
scores in full-term infants. Carlson et al. (2018) analyzed fecal
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microbiota composition through 16S sequencing at 1 year of age
in 89 full-term healthy infants and correlated them to the Mullen
Scale of Early Learning (MSEL) scores and brain anatomy (MRI)
at 1 and 2 years of age. Using a clustering strategy, they identified
three groups of infants differing by their bacterial composition at
1 year of age [discriminated by Faecalibacterium, Bacteroidetes
(and low Lachnospiraceae), and Ruminococcaceae, respectively].
These groups differed in term of MSEL cognitive score at 2, but
not 1, years of age. Indeed, infants in the Bacteroidetes cluster
performed better, especially in the receptive and expressive
language dimensions, than those in the Faecalibacterium and
Ruminococcaceae clusters. Interestingly, predictor covariate of
this better-performing group was breast-feeding and vaginal
birth. Unrelatedly to this clustering approach, the authors also
observed negative correlation between alpha-diversity at 1 year
(number of observed species, Chao1 index, Faith’s phylogenetic
diversity) and MSEL cognitive score at 2 years. This would
suggest that, counterintuitively, a too great microbiota diversity at
this period of life might be detrimental to neurodevelopment that
would need confirmation in other studies. Association between
microbiota composition or alpha-diversity and neuroimaging
data indicated minimal effects of microbiota at 1 year on brain
volume at 2 years of age.

A more recent study, enrolling 309 full-term healthy
infants, evaluated the relationships between fecal microbiota
composition, also estimated through 16S sequencing, at 3–
6 months of age and score of the Age and Stage Questionnaire
(ASQ) at 3 years of age (Sordillo et al., 2019). The authors used
a co-abundance factor approach, which allowed assigning four
scores to each individual based on the co-abundance of the
25 most abundant bacterial taxa. They then mathematically
correlated these microbiota scores to the ASQ scores.
Interestingly, scores in communication and personal social
skills were negatively associated with the microbiota factor
comprising relative high abundance of Lachnospiraceae and
Clostridiales and low abundance of Bacteroidetes, while fine
motor skills scores were negatively correlated with the factor
comprising relative high abundance of Bacteroidetes and low
abundance of E. coli and Bifidobacterium, two early colonizers.
A tendency for increased Shannon diversity index with lower
personal and social skills was also noticed.

These two prospective observational studies both pointed
early relative abundance of Bacteroidetes and Lachnospiraceae
as phylum/family correlating to later cognitive scores: high
Bacteroidetes and low Lachnospiraceae relative abundances
correlated with better receptive and expressive language scores
and communication and personal and social skills, but lower
fine motor scores for Bacteroidetes abundance. Both studies
also pointed out the importance of low diversity for adequate
neurodevelopment. However, these recent exciting data need
to be confirmed by other studies focusing on microbiota
composition during the early weeks postnatally.

A paradigm shift in the concept of the origin of human
neurodevelopmental and psychiatric disorders has emerged
since the discovery of the link between gut microbiota and
brain function and behavior (Mayer et al., 2014). This link
between early life gut colonization and later neurodevelopmental
outcomes is starting to arise, demonstrated by pre-clinical

interventional studies but also rare clinical studies, focusing
on normal-weight healthy term babies. However, the role of
gut colonization in preterm neonates, who constitute a high-
risk population in term of neurodevelopment has been poorly
explored so far. Moreover, assessment of fecal microbiota
composition at a single time does not fully capture the early
life dynamical changes in the microbiota, which may also be
important to neurocognitive outcomes. Bioinformatical tools
and models aimed at linking microbiota composition and
neurodevelopmental questionnaires or behavioral traits are also
needed to step forward in the understanding of the microbiota-
brain axis. Finally, although in the aforementioned clinical
studies, the effects are often small at individual levels and
do not demonstrate an increased risk of clinically significant
behavioral or cognitive problems. At a population level, these
effects could have a more substantial impact on the prevalence
of abnormality, particularly for the more high-risk population in
term of neurodevelopment.

PROMISING
MICROBIOTA-MODULATION-BASED
INTERVENTIONS FOR
NEURODEVELOPMENTAL OUTCOMES

Early body weight gain and macronutrient intake are
positively related to brain volume and maturation and to
neurodevelopmental outcomes in late infancy in very preterm
infants (Coviello et al., 2018). As above reviewed several
nutritional components of HM and infant formulas may
influence gut microbiota which may have an impact on brain
development and plasticity. Gut microbiota is capable to
communicate with the central nervous system via the vagal
nerve as well as microbiota-regulated intestinal production
of cytokines, neurotransmitters, hormones and metabolites.
Therefore, the development of microbiota modulation-based
nutritional interventions may represent a novel strategy favoring
gut colonization by beneficial bacteria and healthy microbiota
with the aim of improving neurodevelopmental outcomes in
preterm infants.

Probiotics/Prebiotics
It is well established that there is a relationship between the
bacterial communities in HM and those of the recipient infant’s
feces (Lackey et al., 2019). Promoting breastfeeding is therefore
an optimal way to ensure beneficial HM bacteria supply to the
infant. However, when it is not wanted or possible, probiotic or
prebiotic strategies may help to improve infant gut microbiota.

Prebiotics and probiotics are the most common ways to
positively influence gut microbiota development in the early
life. Prebiotics are defined as compounds that result in the
‘selective stimulation of growth and activity of one or more
microbial genus or species in the gut microbiota that confer
health benefits to the host’ (Roberfroid et al., 2010). The World
Health Organization defines probiotics as ‘live microorganisms
which when administered in adequate amounts confer a health
benefit on the host’ (Food and Agriculture Organization of the
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United Nations and World Health Organization, 2001). Without
probiotic and prebiotic supplementation, the gut microbiota
of formula-fed infants is generally not dominated by the
Bifidobacterium species (Bezirtzoglou et al., 2011; Oozeer et al.,
2013; Musilova et al., 2014).

Among Lactobacillus and Bifidobacterium species isolated
from human milk, many of them (Lactobacillus salivarius,
Lactobacillus gasseri, Lactobacillus reuteri, Lactobacillus
plantarum, Lactobacillus rhamnosus, Lactobacillus fermentum,
Bifidobacterium breve, Bifidobacterium longum, and
Bifidobacterium bifidum) were included among the potentially
probiotic ones and enjoyed the GRAS (Generally Recognized As
Safe; FDA, United States) and the QPS (Qualified Presumption
of Safety; EFSA, EU) status (Koutsoumanis et al., 2020).

Probiotic Therapy During Pregnancy or for Infant
Nutrition
The first bacteria that colonize the infant gut at birth may
originate from the maternal fecal, vaginal and breast milk
microbiota, suggesting that the development of strategies
to modulate maternal microbiota during pregnancy may be
beneficial for neonates. In this context, L. rhamnosus, supplied
to women during and after pregnancy, was correlated with an
increase in the abundance of Bifidobacterium and Lactobacillus
in the infant microbiota gut (Gueimonde et al., 2006; Lahtinen
et al., 2009). In preterm infants, Saccharomyces boulardii
can be used to regulate the growth of Candida. The enteral
administration of bacterial and fungal probiotics, such as
L. reuteri, Lactobacillus casei, L. rhamnosus, L. acidophilus,
S. thermophilus, Bifidobacterium longum, Bifidobacterium
bifidum, Bifidobacterium lactis and S. boulardii has also been
used to reduce invasive candidiasis (Kaufman et al., 2006;
Manzoni et al., 2015). In very preterm infants oral administration
of either L. rhamnosus ATCC 53103 or L. reuteri ATCC 55730
was effective in the prevention of gastrointestinal colonization
by Candida and may help to prevent suboptimal neurological
outcomes (Romeo et al., 2011).

Several evidences from pre-clinical models clearly
demonstrated the early interaction between microbiota and
the brain and how probiotic supplementation may favor brain
restoration, even though it was not clearly evidenced in human
studies. The term ‘psychobiotics to describe an emerging class
of probiotics of relevance to psychiatry’ has even been proposed
(Dinan et al., 2013). Psychobiotics are probiotic strains that
have shown behavioral effects in preclinical models, are able
to promote the production of neuroactive substances such
as gamma-aminobutyric acid and serotonin involved in the
gut-brain axis, and have a capacity to decrease proinflammatory
cytokines and reduce the hypothalamic–pituitary–adrenal
(HPA) activity. Further research is warranted to expand the
investigation of the benefits of psychobiotics within human
preterm population as having a significant impact on cognition
(Lv et al., 2021).

Microbiota Regulation Through Prebiotics
In pregnant women, galacto-oligosaccharides (GOS)/fructo-
oligosaccharides (FOS) supplementation significantly increased
fecal bifidobacterial levels, with potential benefits for the

transmission of beneficial bacteria to their infant during the
birth process (Firmansyah et al., 2016; Lv et al., 2021). The
main prebiotics used in infant formula are short-chain GOS,
long-chain FOS and polydextrose (PDX). Addition of GOS, a
GOS/FOS mixture or PDX to infant formula has been shown
to be effective in increasing lactobacilli and on bifidobacteria
abundance (Knol et al., 2005; Rinne et al., 2005; Ben et al.,
2008; Scalabrin et al., 2012; Sierra et al., 2015; Vandenplas
et al., 2015). Finally, preterm infants given FOS-supplemented
formula displayed an increased count of bifidobacteria and a
corresponding significant reduction of E. coli and enterococci in
fecal samples (Kapiki et al., 2007).

The use of prebiotics in infant formula is already a common
practice to reduce digestive discomfort in term infants, even
though scientific-based evidences are still too weak to state
with certainty. In preterms, effects of GOS/FOS/pectin-derived
acidic oligosaccharides on neurodevelopmental outcomes were
measured by Bayley Scales of Infant and Toddler Development
at 2 years (van den Berg et al., 2016). No significant improvement
of neurodevelopmental outcomes was observed. However, lower
bifidobacteria counts and higher serum cytokine levels during the
neonatal period were associated with lower neurodevelopmental
outcomes at 24 months of age, suggesting that an opportunity
to influence neurodevelopment of these preterm infants via
cytokine and microbiome modulation may exist (van den Berg
et al., 2016). Future research is needed to provide more insights
into the mechanisms of prebiotics and of combination of
probiotics and prebiotics called ‘synbiotics,’ and their further use
in preterm infants.

Maternal Nutrition
As seen above, maternal nutrition is able to modulate, yet
modestly, HM composition. One exciting strategy would be
to try to modulate HM components known to drive infant
gut microbiota, such as HM microbiota or HMOs or specific
lipids content, through maternal nutrition but this remains
very hypothetical to date. Indeed, the effects of maternal
nutrition on infant microbiota have been poorly explored and
deserve more studies. A recent study suggested that maternal
diet does influence the infant gut microbiota and that these
effects differ by delivery mode (Lundgren et al., 2018). Some
effects of maternal diet were more apparent in exclusively
breastfed infants, suggesting a role of HM in the effects observed
on gut microbiota (Lundgren et al., 2018). Increased fruit
intake by mothers was associated with increased belonging
to the high Streptococcus/Clostridium group among infants
born vaginally and maternal dairy intake was associated with
increased belonging to the high Clostridium cluster in infant
born by cesarean section (Lundgren et al., 2018). Some consistent
associations between maternal DHA and EPA intake (through
fish and seafood consumption) and infant gut microbiota profiles
were also observed: maternal fish and seafood consumption
was positively related to Streptococcus in the infant gut, and
associated to a decrease in Clostridium neonatale in infants born
by cesarean section (Lundgren et al., 2018). More indirectly,
maternal gestational weight gain was associated with the infant
fecal microbiota profiles (Robinson et al., 2017). Infant whose
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mothers had higher gestational gain weight were less
likely to have a Bacteroides-dominant profile, had a lower
bacterial community richness and Shannon diversity index
(Robinson et al., 2017).

CONCLUSION

Initial colonization and microbiota development in preterm
infants differ from that in term infants. Increasing evidences
suggest that intestinal dysbiosis in preterm infants predisposes
the neonate to adverse neurological outcomes later in life. The
increase in brain growth occurring in parallel with the infant
microbiota complexification during the early period of life is a
period of opportunity in which nutritional interventions (e.g.,
probiotics, psychobiotics, prebiotics, synbiotics, and maternal
nutrition) may have their maximal effects on the gut-brain
communication and provide benefits to enhance maturation and
shape brain development. Consequently, it is essential to develop

novel microbiota modulation-based nutritional interventions for
infants and young children at high-risk for neurodevelopmental
disorders. With the key characters of immaturity of preterm
infants, we propose the possibility to manipulate the microbiota
in early life as a preventive strategy to neurodevelopmental
disorders. Identified critical windows may concern maternal
nutrition through pregnancy and lactation and the infant
nutrition during the early postnatal period (0–6 weeks of
life). Translational research in this field is limited and further
investigation of the efficacy of nutritional strategies in early
life is warranted.
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