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Abstract: A multivariable adaptive feedback control for highly uncertain continuous anaerobic
digestion processes is proposed to regulate the volatile fatty acids (VFA) concentration, the strong
ions concentrations, and the total and intermediate alkalinities. The multivariable control scheme
includes a Luenberger observer to estimate both the unmeasured variables (i.e., VFA) and unknown
microbial growth kinetics. The control approach is designed using an exponential Lyapunov function
to resemble the typical exponential biological growth of the involved microbial consortia. Taking into
account physicochemical equilibrium, alkalinities are represented as a function of the state variables.
As a result, the control problem becomes a regulation problem on alkalinities, and in turn, a tracking
control problem on the state variables, with two manipulated variables—the dilution rate and the
feed rate of a strong alkali solution—while the state variables’ set-points are given as a function of pH.
The implementation of this multivariable control scheme was experimentally tested and validated in
a 0.982 m3 pilot plant treating agro-industrial wastewater, and demonstrated to be robust in the face
of unknown microbial growth kinetics. Results showed the potential for practical application and
optimization of industrial digesters.

Keywords: anaerobic digestion; alkalinity; control; multivariable; uncertainties; robustness; wastew-
ater treatment

1. Introduction

Anaerobic digestion (AD) is a very complex biological process used for treating agro-
industrial wastewaters with a high variety of organic long-chain compounds, such as
carbohydrates, lipids, and proteins. Expressed as the chemical oxygen demand (COD),
these compounds represent the substrate for a consortium composed of a large variety of
microorganisms that decomposes the organic matter in the absence of oxygen into microbial
biomass, residual organic matter, and biogas (mainly composed of methane and carbon
dioxide). AD is one of the most widely used bioprocesses for treating agro-industrial efflu-
ents [1–4], capable of directly treating high organic load wastewater (10–80 gCOD L−1) [5–8].
It is relatively easy to implement in practice [9], reaches high removal yields (between 90
and 98% COD) [4,10], and produces an added-value byproduct—biogas—which is rich
in methane (60–70% content) [10] and may be used as fuel or recycled in the grid [7,11].
In contrast, AD processes may present some operating difficulties since the excessive
accumulation of volatile fatty acids (VFA) may lead the process to a breakdown. Moreover,
it is well known that AD exhibits a highly nonlinear behavior [12,13], which makes any
control scheme more difficult to design and develop. Furthermore, it has one of the most
diverse ecosystems in nature [14,15], and their growth kinetics are difficult to model [16,17].
Furthermore, even when AD withstands high organic loads, drastic process input step
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changes may result in a partial or even complete loss of operational stability (OS) [18,19].
Particularly, regarding this last issue, alkalinity is recognized among the most important
variables for preserving the OS in AD processes [20,21]. On the other hand, it has been
reported that a relatively high presence of strong ions provokes unbalancing of the physic-
ochemical equilibrium and may result in inhibition that directly affects the methanogenic
archaea population [22,23] and eventually the bioprocess acidification [24–27]. When this
takes place, the system is wrapped in a vicious circle: higher acidification, greater inhi-
bition, and greater inhibition, greater acidification; thus, the system collapses. Thereby,
the main inhibition indicator, and thus also of OS, is alkalinity, because it involves all the
physicochemical system equilibria [28–30].

Only a few studies have been developed for controlling alkalinity in the past. For in-
stance, Wang et al. [31] developed an artificial neural network to monitor alkalinity whereas
Barampouti et al. [32] used a lagged regression model to describe the VFA/bicarbonate ra-
tio’s alkalinity behavior in AD processes. These studies focused on predicting the operating
conditions to indirectly prevent the process breakdown. On the other hand, other control
approaches also have been conducted to guarantee the operational stability by regulating
the pH or by controlling both the VFA concentration and pH [19,33,34]. However, to the
knowledge of the authors, regulating the alkalinity directly has not been fully addressed.
The reason for this is simple: only a few dynamical AD models describe alkalinity as
a state variable because it is a function of pH. Thus, its derivative with respect to time,
though possible, would result in expressions difficult to handle and allocate in control
law calculations. In order to facilitate the understanding of the AD process, the Interna-
tional Water Association (IWA) [35] has developed an AD model, the so-called ADM1,
which has been extensively used for simulation purposes, state variables monitoring and
estimation [36], experimental validation and optimization [37], and even for validating
simpler models [38]. The well-known ADM1 model takes into account the cations and
anions activities that resulted either in differential equations (DE) or differential algebraic
equations (DAE) sets [35,39]; nevertheless, its pH functionality is not explicit. Recent
efforts have been addressed to deal with this important operating variable. For instance,
Zhang et al. [40] modified the ADM1 model by integrating a more detailed physicochemical
framework and by introducing inorganic carbon and nitrogen balance terms to resolve the
discrepancies between the carbon and nitrogen contents, while Shi et al. [41] improved
the ADM1 model using a variable stoichiometric approach based on the high hydrogen
partial pressures and pH. Although these improvements provide useful information, the
high dimension of the modified ADM1 makes it very difficult to implement in process
control structures [42]. In this sense, efforts have been made to reduce the ADM1 complex-
ity, which under certain practical and theoretical considerations yields more manageable
AD models for control purposes [42–44]. One of these reduced models was developed
almost at the same time than the ADM1 model; it is the so-called AM2 model [45], whose
structure does not explicitly contain the alkalinity as a function of pH, but does include
a state variable named Z, which takes into account the concentration of all the strong
ions (cations and anions) in the bulk phase, and considers that, at a pH close to 7, it is
proportional to total alkalinity [43]. By performing the corresponding mass balances, Z, the
VFA concentration, and the total inorganic carbon concentration become state variables in
the AM2 model. It has been successfully experimentally validated on a 0.982 m3 fixed-bed
bioreactor pilot plant used for the treatment of red wine vinasses [5]; in fact, the same pilot
plant is used in the present work. Indeed, this model has been very useful for describing
AD processes, treating mainly soluble, carbohydrate-based organic matter and where
degradation of complex and proteinaceous substrates, such as waste-activated sludge, is
negligible [43]. In addition, it has been largely used in optimization, parameter and state
estimation, and process control approaches in AD (for instance, see [46–49]), as well as in
actual instrumentation and control applications [50–53]. This model also has been used for
monitoring the ratio VFA/Z related to the OS in AD, taking into account alkalinity [54] in
continuous AD reactors, and for modeling the alkalinity spatial distribution in an up-flow
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fixed-bed anaerobic digester [55]. The ratio VFA/Z also has been regulated by using a
model predictive control (MPC) approach in order to achieve an optimal OS on the basis of
a modified AM2 model [56].

The aim in this contribution is to design, develop, and implement a multivariable
adaptive feedback controller to regulate the VFA concentration and total and intermedi-
ate alkalinities to guarantee the operational stability of the AD process. The controller
is a robust multiple-input, multiple-output (MIMO) control, which has been previously
described and demonstrated in [57] by using a modified AM2 model and an interval
observer for handling process inputs uncertainties. As in [57], alkalinity references are
translated into state variable references, taking into account pH variations. The pro-
posed control scheme is experimentally tested and validated in a pilot plant anaerobic
digester, consisting of a 0.982 m3 up-flow fixed-bed bioreactor, located at LBE-INRAE,
Narbonne, France. The structure of the control schemes takes into account the high non-
linearity of the AD process, the unknown microbial growth kinetics, and its parameter
uncertainty [57,58]. A Luenberger observer [59] is used in the control scheme to estimate
the biomass concentrations (which cannot be measured), together with the kinetics and
yield coefficients. It is shown that the proposed robust MIMO control scheme is robust
in the face of parameter uncertainty, unknown kinetics, and pH variations, as well as in
measuring disturbances.

2. Materials and Methods
2.1. Anaerobic Digestion Model

In this work, we used a modified AM2 model, called the AM2a model [57] in which a
second input flow, consisting of concentrated NaOH, is added and is the second manipu-
lated variable. This model is given by:

.
X1 = (µ1 − αD(t))X1.
X2 = (µ2 − αD(t))X2.
S1 =

(
Sin

1 − S1
)

D(t)− k1µ1X1.
S2 =

(
Sin

2 − S2
)

D(t) + k2µ1X1 − k3µ2X2.
Z =

(
Zin

1 − Z
)

D1(t) +
(
Zin

2 − Z
)

D2(t)

(1)

with µ1 = µmax1S1
kS1+S1

µ2 =
µmax2S2

kS2 + S2 + (S2/kI)
2 , and D(t) = D1(t) + D2(t) ≈ D1(t) (2)

where X1 and X2 represent the acidogenic and methanogenic biomass concentrations,
respectively, S1 (g L−1) is the organic matter concentration expressed as chemical oxygen
demand (COD), and S2 (mmol L−1) is the VFA concentration. D1(t) (d−1) is the main
dilution rate and D2(t) (d−1) corresponds to the concentrated alkali solution dilution rate
(here, it is assumed that D2(t) <<< D1(t). Z (mEq L−1) is the strong ions concentration,
where Zin

1 (mEq L−1) and Zin
2 (mEq L−1) are the strong ion concentrations in the main

and second input flows, respectively. µ1 (d−1) (Monod type) and µ2 (d−1) (Haldane type)
are the microbial specific growth rates for acidogenic bacteria and methanogenic archaea,
respectively, where µmax1 and µmax2 (d−1) are the maximum growth rates kS1 (g L−1), and
kS2 (mmol L−1) represent the half saturation constants while kI ((mmol L−1))1/2 represents
the inhibition constant. Parameters k1 to k3 are yield coefficients in the corresponding
units. Parameter α (dimensionless) denotes the biomass fraction that is retained for the
bioreactor bed; i.e., α = 0 stands for an ideal fixed-bed reactor, while α =1 stands for an
ideal continuous stirred reactor tank [45].
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2.2. Control Objectives

According to [20,33,57,60,61], operational stability can be held by keeping the follow-
ing alkalinity criteria:

TA ≥ 3 gCaCO3 L−1
(

i.e., 60 mEq L−1
)

(3)

IA/TA ≤ 0.3 (4)

where IA represents the intermediate alkalinity, and TA represents the total alkalinity.
Both IA and TA can be measured by simple titration using the method proposed by
Ripley et al. [20], which consists of bringing the pH in a solution from the initial pH0
to pH1 = 5.75 (first point of titration) and then to pH2 = 4.3 (second point of titration).
However, as it was stated above, and as it can be seen in Model (1), neither TA nor IA are
state variables. Then, the reference inequalities (3–4) have been translated into true state
variables, according to [57,60], as follows:

TA ≡ fTcZ(t) + Fa( fTa − fTc)S2(t) (5)

IA
TA
≡ f IcZ(t) + Fa( f Ia − f Ic)S2(t)

fTcZ(t) + Fa( fTa − fTc)S2(t)
(6)

with

fTc =
(

1− 10−pH(t)+Kc
10−4.3+Kc

)
fPc =

(
1− 10−pH(t)+Kc

10−5.75+Kc

)
fTa =

(
1− 10−pH(t)+Ka

10−4.3+Ka

)
fPa =

(
1− 10−pH(t)+Ka

10−5.75+Ka

)
Fa =

(
Ka

10−pH(t)+Ka

) f Ic = fTc − fPc
f Ia = fTa − f Pa

(7)

Using Equations (5)–(7), the reference for the true state variables S2 and Z that guar-
antee the digester operational stability can be obtained as follows:

Sr
2 =

TAr( f Ic − (IA/TA)r fTc
)

Fa(F1 + F2)
(8)

Zr =
TAr − Fa( fTa − fTc)Sr

2
f Tc

(9)

with
F1 = fTc

(
(IA/TA)r( fTa − fTc)− ( f Ia − f Ic)

)
F2 = ( fTa − fTc)

(
fTc − (IA/TA)r fTc

)
where Sr

2 and Zr are the set-point values for the VFA and strong ions concentrations,
respectively, for TAr and (IA/TA)r fulfilling inequalities (3–4). Figures 1 and 2 show the
explicit pH dependence of Sr

2 and Zr, respectively.



Processes 2021, 9, 1153 5 of 16

Processes 2021, 9, x FOR PEER REVIEW 6 of 19 
 

 

pH < 7. Actually, the lower the pH, the reference that should be set for 𝑆𝑆2 
is more restrictive. For instance, for 𝑇𝑇𝑇𝑇𝑟𝑟 = 60 mEq L−1, (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3, 
and the pH = 6.68,  𝑆𝑆2𝑟𝑟 is set at zero, as shown in Figure 2, but for a pH = 
6.8, and at the same (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3 , 𝑆𝑆2𝑟𝑟 is set at 𝑆𝑆2𝑟𝑟 ≈ 2   mmol L−1. 
Nevertheless, the minimal possible value for criterion (4) is the ratio 
𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ 𝑚𝑚𝑖𝑖𝑖𝑖 = 0.22, which is attainable only in the interval of pH  7.57 <
pH < 8, because below these conditions Equation (8) predicts negative 𝑆𝑆2𝑟𝑟 
values. Thus, an important result in this analysis is the fact that for any pair 
of values for the alkalinity criteria 𝑇𝑇𝑇𝑇𝑟𝑟 , an (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟  below 𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖

𝑟𝑟 =60 
mEq L−1, and (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑚𝑚𝑖𝑖𝑖𝑖

𝑟𝑟 = 0.22, the AD process must operate at a pH > 8 
to satisfy 𝑆𝑆2𝑟𝑟 > 0. However, such a pH is off of the operational pH interval 
used in AD. In any case, it is clear that while 𝑇𝑇𝑇𝑇𝑟𝑟 and (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 are fixed 
set-points, 𝑆𝑆2𝑟𝑟 and 𝑍𝑍𝑟𝑟 are not, but these are considered as a function of pH.  

 
Figure 1. Different values for 𝑍𝑍𝑟𝑟 with (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3. 

 
Figure 2. Different values for 𝑆𝑆2

𝑟𝑟  with 𝑇𝑇𝑇𝑇𝑟𝑟 = 60 mmol L−1. 

  

Figure 1. Different values for Zr with (IA/TA)r = 0.3.

Processes 2021, 9, x FOR PEER REVIEW 6 of 19 
 

 

pH < 7. Actually, the lower the pH, the reference that should be set for 𝑆𝑆2 
is more restrictive. For instance, for 𝑇𝑇𝑇𝑇𝑟𝑟 = 60 mEq L−1, (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3, 
and the pH = 6.68,  𝑆𝑆2𝑟𝑟 is set at zero, as shown in Figure 2, but for a pH = 
6.8, and at the same (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3 , 𝑆𝑆2𝑟𝑟 is set at 𝑆𝑆2𝑟𝑟 ≈ 2   mmol L−1. 
Nevertheless, the minimal possible value for criterion (4) is the ratio 
𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ 𝑚𝑚𝑖𝑖𝑖𝑖 = 0.22, which is attainable only in the interval of pH  7.57 <
pH < 8, because below these conditions Equation (8) predicts negative 𝑆𝑆2𝑟𝑟 
values. Thus, an important result in this analysis is the fact that for any pair 
of values for the alkalinity criteria 𝑇𝑇𝑇𝑇𝑟𝑟 , an (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟  below 𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖

𝑟𝑟 =60 
mEq L−1, and (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑚𝑚𝑖𝑖𝑖𝑖

𝑟𝑟 = 0.22, the AD process must operate at a pH > 8 
to satisfy 𝑆𝑆2𝑟𝑟 > 0. However, such a pH is off of the operational pH interval 
used in AD. In any case, it is clear that while 𝑇𝑇𝑇𝑇𝑟𝑟 and (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 are fixed 
set-points, 𝑆𝑆2𝑟𝑟 and 𝑍𝑍𝑟𝑟 are not, but these are considered as a function of pH.  

 
Figure 1. Different values for 𝑍𝑍𝑟𝑟 with (𝐼𝐼𝑇𝑇 𝑇𝑇𝑇𝑇⁄ )𝑟𝑟 = 0.3. 

 
Figure 2. Different values for 𝑆𝑆2

𝑟𝑟  with 𝑇𝑇𝑇𝑇𝑟𝑟 = 60 mmol L−1. 

  

Figure 2. Different values for Sr
2 with TAr = 60 mmol L−1.

Figure 1 also shows that TA is effectively close to Z (for a pH close to 7), while
Figure 2 shows how the alkalinity criterion (4) regarding the ratio IA/TA implies a more
careful and restrictive choice of Sr

2, mainly for pH < 7. Actually, the lower the pH, the
reference that should be set for S2 is more restrictive. For instance, for TAr = 60 mEq L−1,
(IA/TA)r = 0.3, and the pH = 6.68, Sr

2 is set at zero, as shown in Figure 2, but for a
pH = 6.8, and at the same (IA/TA)r = 0.3, Sr

2 is set at Sr
2 ≈ 2 mmol L−1. Nevertheless, the

minimal possible value for criterion (4) is the ratio IA/TAmin = 0.22, which is attainable
only in the interval of pH 7.57 < pH < 8, because below these conditions Equation (8)
predicts negative Sr

2 values. Thus, an important result in this analysis is the fact that for any
pair of values for the alkalinity criteria TAr, an (IA/TA)r below TAr

min= 60 mEq L−1, and
(IA/TA)r

min = 0.22, the AD process must operate at a pH > 8 to satisfy Sr
2 > 0. However,

such a pH is off of the operational pH interval used in AD. In any case, it is clear that while
TAr and (IA/TA)r are fixed set-points, Sr

2 and Zr are not, but these are considered as a
function of pH.

2.3. Control Approach

Once the set-points are established in terms of the true state variables in Model (1),
they can be included in the MIMO control laws given by Equations (10)–(12). They have
the same mathematical structure as the control laws used in the numerical simulations
in [57]. It is worth mentioning that in this work, the control laws were constructed by
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combining exponential Lyapunov functions and a Luenberger observer to estimate the
uncertain kinetics. The resulting MIMO control laws are:

D1 =
−η̂ − λ1υ1

Sin
2 − S2

(10)

D2 =
−D1

(
Zin

1 − Z
)
− λ2υ2

Zin
2 − Z

(11)

with

υ1 =
1− e−

1
2 (S2−Sr

2)
2∣∣S2 − Sr

2

∣∣ ,υ2 =
1− e−

1
2 (Z−Zr)2

|Z− Zr| (12)

and λ1 and λ2 being the adaptive parameters that satisfy the inequalities:

0 < λ1 < max υ1, 0 < λ2 < max υ2 (13)

Notice that υ1, i = {1, 2}, are υ1 = f (pH). Hence, λi, i = {1, 2} are actually adaptive
parameters that can be suitably chosen by the user, provided that the inequalities (13) are
fulfilled. η = k2µ1X1 − k3µ2X2 in Model (1) represents the uncertain kinetic terms that can
be estimated using the following Luenberger observer:

.
Ŝ2 = η̂ + D

(
Sin

2 − Ŝ2
)
+ Γg1

(
S2 − Ŝ2

)
η̂ = Γ2g2

(
S2 − Ŝ2

) (14)

where g1 y g2 are chosen in such a way that the polynomial s2 + g2s + g1 = 0 is Hurwitz,
and Γ is the observer gain. In this way the Luenberger observer (14) guarantees that the state
vector

[
S2 − Ŝ2, η − η̂

]T → ε for t→ ε , where ε is a vector of arbitrarily small values
around the origin [62]. More details about the general control structure design can be found
in [57]. The stability proof for the proposed MIMO control approach (10)–(11), for which
V(t) = e

1
2 (y(t)−yr(t))2

− 1, with y = {S2, Z}, are Lyapunov functions, also can be found
in [57]. Figure 3 is a schematic representation of the proposed MIMO control approach.
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2.4. Experimental Setup

Experimental validation was carried out over 12 days on a pilot plant at the French
Research Institute for Agriculture, Food and Environment—Laboratory of Environmental
Biotechnology (LBE-INRAE) facilities, located in Narbonne, France. The experimental
AD process is an up-flow fixed-bed bioreactor for the treatment of red wine vinasses,
with a useful volume of 0.982 m3 [5] (see Figure 4). It is fully instrumented with on-line
measurements every half hour of the VFA and bicarbonate (Bic) concentrations, as well
as TA and IA using a titrimetric sensor, [63]. Using these measurements, it was also
possible to measure Z as Z = VFA + Bic. However, it is important to notice that some
technical problems required sensor maintenance in the time periods 5.95 d < t < 6.5 d
and 8.9 d < t < 9.6 d. As a consequence, measurements on S2 and Z as well as TA
and IA were not available in these time periods in a proper form (these readings were
excessive noise), and as a consequence, they were not used in the calculations and thus
excluded in Figures 5–8. Another drawback with the NaOH dosage pump, in the time
period 9.5 d < t < 10.5 d, prevented Qin2 to follow its respective control law. During this
time period, a default Qin2 = 0.028 L h−1 was used with no important consequences in
the MIMO controller performance (as we will discuss later in the paper). The average
operating temperature was 35 ◦C and it could change ±1 ◦C around 35 ◦C.
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The COD concentration was measured using a mid-infrared spectrometer (Avatar
380TM FT-IR from Nicolet company modified to remove temperature effects) [64]. With
the exception of the titrimetric measurements, which were taken every half hour, the rest
of the measurements, such as the recirculation liquid flow rate, reactor temperature, and
output biogas composition, were available every 2 min, but not all these measurements
are shown in this work. Although measurements on the COD and gas flow rate are not
involved in the control approach, they are shown and discussed later together with the
overall performance of the system. For a complete description of the anaerobic digester
process used in this work as well as its instrumentation, the reader is invited to refer to [5],
whose information may be also in complemented by [52]. With respect to titrimetric and
COD measurements, the reader may obtain supplementary information in [63] and [64],
respectively. The experimental run began operating the AD process in open-loop for 12 h
to adjust the Luenberger observer parameters, which remained without changes for the
whole experimental run. According to the alkalinity criteria (3–4), Table 1 shows the
values used as alkalinity references through time, while Table 2 shows the parameter
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used for the Luenberger observer (14). All sensor noisy readings were filtered for better
plotting purposes. However, it should be noticed that the whole experiment in the 12 days
of duration was carried out entirely online, and calculations for both the Luenberger
estimates and control inputs were performed using raw online data.
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Table 1. Values used as alkalinity references.

Interval Time (d) 0.5 < t < 3.8 3.8 < t < 6 6 < t < 8.7 8.7 < t < 12

Period T (d) 3.3 2.2 2.7 3.3
TAr(mEq L−1) 90 90 85 75
(IA/TA)r 0.30 0.28 0.27 0.30

Table 2. Values used in the Luenberger observer (14).

Γ g1 g2

0.7 2 1

Process input concentrations used in the experimental run are shown in Table 3. Notice
that the measured Sin

2 was held constant at Sin
2 = 84.17 mmol L−1 (5050 mg L−1), while

Zin
1 experienced time variations, as reported in Table 3. Moreover, Zin

2 , the corresponding
concentrated NaOH solution, had a concentration of 18,870 mEq L−1. Notice that since
the main control objective was alkalinity and, eventually, the VFA concentration, only the
influent composition related to these variables was included in Table 3. Moreover, as the
VFA chemical equilibrium constants (and thus pKs) are very close, the AM2 dynamic model
only takes into account the more representative of them as the model VFA molecule; i.e.,
acetic acid, whose chemical and physicochemical properties may represent all of the VFA
ones. No other compounds, (i.e., weak acids or bases other than VFA and bicarbonates)
affecting alkalinity were found in the red wine vinasses used in this work.
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Table 3. Values used as the process input concentrations.

Interval Time (d) 0.5 < t < 6 6 < t < 8.7 8.7 < t < 12

Sin
2 (mmol L−1) 84.17 84.17 84.17

Zin
1 (mEq L−1) 90 80 75

Zin
2 (mEq L−1) 18,870 18,870 18,870

3. Results and Discussion

The design of the MIMO controller is based on adaptive robust exponential ap-
proaches [57] in order to provide synergy with the microbial growth and activity that
have an exponential behavior. Thus, in the same way, the control law also provides synergy
to S2 production–consumption, and biogas production (mainly CO2), with the VFA and
bicarbonates being the main factors responsible of buffer system capacity, i.e., alkalinities.

As previously described, the control objectives, i.e., the set-points, were first estab-
lished based on normal operational conditions stated by the alkalinity criteria (3–4), and
then formally expressed in the form of state variables based on a physicochemical analysis
as in Equations (8) and (9). Since these are functions of pH, which varies with time, then
the classical regulation control problem, with constant set-points, shifted into a tracking
control problem, with variable set-points instead, which added robustness against pH
variations. Figures 5 and 6 show the behavior of S2 and Z around their variable set-point
calculated by using Equations (8) and (9) and pH measurements (Figure 9). Clearly, the
MIMO control satisfactorily tracked the S2 and Z set-point trajectories while satisfying
the theoretical alkalinity criteria and preventing VFA accumulation. Thus, even when the
alkalinity criteria (3–4) are not involved explicitly or directly in the calculation of the MIMO
control law given by Equations (10) and (11), this control law was able to satisfy indirectly
the demanded constant reference inequalities of the alkalinities (3–4) in the system.
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This can be seen in Figures 7 and 8, which complete the picture of the implementation
of the MIMO controller on the alkalinity variables, IA/TA and TA, whose responses,
although stable, did not meet the predetermined bounds. The behavior of both these
variables under closed-loop operation may be improved by changing the bounds on the
operational stability criteria. Another possible explanation will be given later in this section.

On the other hand, uncertainties given for the lack of knowledge on microbial growth
kinetic is aggravated in AD systems by the impossibility of measuring biomass concentra-
tions. However, these uncertainties were well addressed with the use of the Luenberger
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observer (14), which estimated η and S2. Figure 5 shows only the measurement of S2. and
its reference given by Equation (8). This estimate is not shown here as a 99% precision
was practically obtained. Besides, what it was actually used in Equation (3) was the direct
measurements of S2 instead of their estimates.

Figure 10 depicts the estimation of η, which was held below zero for most of the
experimental run except in very brief time periods at t = 0.5 d, when both the Luenberger
observer and the control algorithm were applied, and at t = 5.9 d and t = 8.9 d, when
technical problems of the sensors and actuators occurred. It is important to remark that
estimates of η < 0 means that the S2 consumption rate is faster than its production, and so,
substrate inhibition is unlikely to occur.
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Actuator control efforts for both control inputs, i.e., process input flow according to
Equation (10) and additional input of concentrated alkali flow given by the supplementary
NaOH supply according to Equation (11), are shown in Figures 11 and 12, respectively.
Moreover, it can be seen that the bioreactor was stopped for sensor maintenance several
times for less than one day at these short time periods (see Figures 1, 2, 5 and 6). Even in
this extra-uncertain scenario, once the system was reestablished, the Luenberger observer
as well as the proposed MIMO robust adaptive control approach recovered almost im-
mediately their high performance, as seen in Figures 10–12, demonstrating its robustness
against sensors faults.
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However, there were differences between the values calculated by the MIMO control
law and the actual flows given by the respective pumps. These differences appear to
be more significant in the case of process input flow and less significant in the case of
NaOH supply. Nevertheless, since the alkali solution was concentrated, the difference
in this flow rate also has special relevance. Such differences may explain why TAr and
(IA/TA)r were not strictly satisfied. Indeed, with such a high actuator sensitivity, it was
not possible to achieve the flows demanded with the due accuracy. This fact inferred and
led the system under conditions slightly different from what was expected, as shown in
Figures 5–8. Another possible factor, which in fact is in turn derived from the former,
is that because of these technical difficulties, and because it was an online experimental
validation (with all that this entails), the regulation on Z and S2 could be achieved only
in a neighborhood around their respective set-points. This regulation was relatively very
close to the desired one, especially in S2. If it is taken into account that IA is mainly due
to VFA by 80% (at pH = 7) [20], this would help to explain how the regulation on IA/TA
was relatively more performing than on TA. Furthermore, TAr was established above
60 mEq L−1, and TA was effectively held in the whole experiment above this value. This
feature together with the relatively good IA/TA regulation may explain the overall good
performance of the system during this experimental run. Besides, in Figures 13 and 14, the
system behavior of the other variables, such as COD and gaseous flow rate Qgas, can be
seen. Even though these variables were not expressly regulated, they remained in values
both appropriate and suitable as COD < 3 g L−1, and Qgas around 50 L h−1 on average.
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Furthermore, notice that the bioreactor reaches four stable regions induced by the
four references stated in Table 1. It is pointed out that the proposed MIMO controller was
implemented to drive the operating conditions to satisfy certain bounds on TA and the ratio
IA/TA, and the involved state variables S2 and Z. The behavior of other variables, such
as COD and Qgas, remained within reasonable operation bounds. The actual manipulated
variables Qin1 and Qin2 (proportional to D1 and D2, respectively) showed no saturation
during the whole experimental run.

Another aspect that can be discussed, is the hydraulic retention time (HRT) observed
along the experiment and its relationship with OS issues. Notice that, with a 15 L h−1

average flow rate (see Figure 11) and a volume V = 0.982 m3, the average HRT = 2.72 d.
Moreover, notice that, in this work, we have carried out four set-point changes (see Table 1),
and each one had a time duration T ≤ HRT, except in the time interval 3.8 < t < 6, but in all
cases just in time for achieving a steady state on the controlled variables, and to switch to
the following one. In this way, the proposed MIMO control approach proved robustness
and usefulness in real experimental implementation on an anaerobic digestion process
used for the treatment of agro-industrial wastewater.

Finally, it should be noticed that a wholly operationally stable, steady-state operation
could be widely desirable. Such an objective is possible, provided that the MIMO control
objectives are extended properly. On one hand, reference values (8) and (9), i.e., Sr

2 and Zr,
are functions of the constant alkalinity references, but in turn, they are also functions of
pH, which can vary in time as a function of environmental factors, such as temperature,
and other ones. As a consequence, Sr

2 and Zr are varying. Notice, however, that the true
control objectives are TA and the ratio IA/TA. In this sense, by fulfilling these control
objectives, OS is achieved, which was the global objective of the present work. Nevertheless,
if a more ambitious objective is intended, i.e., to keep the system under OS, and at the
same time to regulate other variables such as COD, gas production, or the same VFA
concentration, the MIMO strategy should be adapted as a consequence. For instance, using
the same bioreactor and similar control approaches, VFA regulation only [33] or COD
regulation only [50] already have been studied. In addition, in this work, the simultaneous
regulation of alkalinities and VFA was addressed. Thus, the simultaneous regulation
of alkalinities, VFA, and COD should be the next step in order to achieve both effective
organic decontamination and efficient OS conditions.

4. Conclusions and Future Work

A multivariable control approach was proposed to regulate the alkalinities in anaerobic
digestion processes and successfully implemented on an anaerobic 0.982 m3 up-flow fixed-
bed bioreactor for the treatment of agro-industrial wastewater located in Narbonne, France,
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over 12 days in which several alkalinity set-points were tested. It was shown that such
a control scheme satisfactorily tracks the set-point trajectories of the alkalinities in the
face of time-varying pH, parameter uncertainties, and unknown microbial kinetics, while
preventing the AD process to breakdown due to excessive accumulation of VFAs. The
results also showed that this control scheme may be easily scaled-up and applied in actual
wastewater treatment plants. Simultaneous automatic control of alkalinities, VFA, and
COD in a wholly MIMO control approach is currently investigated as future work.
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