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A B S T R A C T

Background: Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascu-
lar diseases, is a public health concern because of its growing prevalence. Considering the combination of
concomitant components, their development and severity, MetS phenotypes are largely heterogeneous,
inducing disparity in diagnosis.
Methods: A case/control study was designed within the NuAge longitudinal cohort on aging. From a 3-year
follow-up of 123 stable individuals, we present a deep phenotyping approach based on a multiplatform
metabolomics and lipidomics untargeted strategy to better characterize metabolic perturbations in MetS and
define a comprehensive MetS signature stable over time in older men.
Findings: We characterize significant changes associated with MetS, involving modulations of 476 metabo-
lites and lipids, and representing 16% of the detected serum metabolome/lipidome. These results revealed a
systemic alteration of metabolism, involving various metabolic pathways (urea cycle, amino-acid, sphingo-
and glycerophospholipid, and sugar metabolisms. . .) not only intrinsically interrelated, but also reflecting
environmental factors (nutrition, microbiota, physical activity. . .).
Interpretation: These findings allowed identifying a comprehensive MetS signature, reduced to 26 metabo-
lites for future translation into clinical applications for better diagnosing MetS.
Funding: The NuAge Study was supported by a research grant from the Canadian Institutes of Health Research
(CIHR; MOP-62842). The actual NuAge Database and Biobank, containing data and biologic samples of 1,753
NuAge participants (from the initial 1,793 participants), are supported by the Fonds de recherche du Qu�ebec
(FRQ; 2020-VICO-279753), the Quebec Network for Research on Aging, a thematic network funded by the
Fonds de Recherche du Qu�ebec - Sant�e (FRQS) and by the Merck-Frost Chair funded by La Fondation de
l’Universit�e de Sherbrooke. All metabolomics and lipidomics analyses were funded and performed within
the metaboHUB French infrastructure (ANR-INBS-0010).
All authors had full access to the full data in the study and accept responsibility to submit for publication.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The metabolic syndrome (MetS), defined as a cluster of risk factors
for cardiovascular disease (CVD), has been recognized for decades
with a rising prevalence worldwide [1]. The main culprits of this rise
are the aging of the population and the complex interactions between
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Research in context

Evidence before this study

Prior association studies linking metabolites and lipids with
MetS (i) have been limited in terms of molecular species pro-
filed, (ii) lacked of considering the interaction between metabo-
lisms as well as with extrinsic factors, and (iii) were very rarely
issued from longitudinal studies.

Added value of this study

Our deep phenotyping approach, along with a 3-year follow-up
design, provides robust and integrated insights into MetS
mechanisms and proposes new candidate biomarkers within
an optimized statistically, analytically and biologically refined
associated molecular signature.

Implications of all the available evidence

These findings highlight the interest of a comprehensive molec-
ular signature as marker of MetS, that should be validated for
future translation into clinical applications for better diagnos-
ing MetS.
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lifestyle factors such as unhealthy dietary habits and sedentarity, lead-
ing to overweight and obesity [2�4]. Because several clinical defini-
tions co-exist [5] among health organizations (e.g. National Cholesterol
Education Program (NCEP), International Diabetes Federation (IDF),
World Health Organization (WHO)), the true prevalence of MetS is dif-
ficult to reliably establish. However, MetS comprises elevated blood
pressure, dyslipidemia, including hypertriglyceridemia and reduced
blood levels of high-density lipoprotein cholesterol (HDL-C), fasting
hyperglycemia, and central adiposity. It is now accepted that it repre-
sents a global public health concern with a worldwide prevalence
reaching one third of US adults having MetS and over 45% by the age
of 60 [1,6]. There is also a consensus regarding the presence of multiple
metabolic risk factors for CVD and type 2 diabetes (T2D) [7,8]. More-
over, considering the combination of concomitant components, and
their development and severity profile, patients identified with MetS
are largely heterogeneous, inducing a disparity in the diagnosis and
therapeutic approach [9]. A better characterization of pathophysiologi-
cal alterations associated with MetS could therefore contribute to
improve diagnosis and better syndrome delineation.

In this context, metabolomics and lipidomics have emerged over
the last decade as powerful tools for the analysis of phenotypes, pro-
viding key insights into modified metabolic pathways and better
understanding of pathophysiological processes [10,11]. Indeed, meta-
bolic profiles allow getting an integrated view of metabolism because
of a sensitive detection of molecular changes over time, resulting
from the interaction between intrinsic and extrinsic factors. Metabo-
lites, used as single targets or in combination within a comprehensive
signature, are thus promising biomarkers to reveal metabolic dys-
functions. Metabolomics has therefore been widely applied for meta-
bolic disease phenotyping and candidate biomarker discovery as well
as pathophysiological exploration of underlying mechanisms [12,13].
However, even if studies on T2D have been among the main drivers
in this chronic metabolic disease research field using these global
approaches for biomarker research, few studies focussed on MetS
and often consisted in targeted approaches with a restricted number
of detected metabolites [14]. Consequently, an integrated vision of
metabolic derangements is lacking along with a limited capacity of
study comparisons [15].

In the present study, a 3-year follow-up design of stable subjects
within an observational longitudinal cohort, as well as a deep
phenotyping approach based on a multiplatform strategy involving
metabolomics and lipidomics untargeted methods, were set up, with
the objective to better characterize metabolic perturbations in MetS
and define a comprehensive MetS signature stable over time in older
men.

2. Materials

2.1. The NuAge cohort and subject selection

The present study was designed within the 5-year observational
Quebec Longitudinal Study on Nutrition and Successful Aging
(NuAge). The cohort was constituted of 1793 men and women in
good general health, selected from three age groups (68�72, 73�77,
78�82) at recruitment. French or English-speaking community-
dwelling participants were committed to give fasting blood, undergo
several direct measures annually, and to answer questionnaires
related to food and health biannually. The NuAge database comprises
large qualitative and quantitative data related to anthropometry/
body composition, nutrition/dietary intakes, numerous markers of
physical, clinical and cognitive status, physical activity, functional
autonomy and social functioning. Methodological description of
measures, questionnaires and blood test, processing and storing have
been described in Gaudreau et al. [16].

2.1.1. Ethical approval
All procedures performed in the study involving human partici-

pants were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964
Helsinki declaration and its later amendments or comparable ethical
standards. Informed consent was obtained from all individual partici-
pants included in the NuAge study. The NuAge Study has been
approved by the Research Ethics Board (REB) of both the Geriatric
University Institutes of Montreal and Sherbrooke Research Centers.
The management framework of the actual NuAge Database and Bio-
bank has been approved by the REB of the CIUSSS-de-l’Estrie-CHUS
(protocol #2019-2832).

2.1.2. Subject selection
A case/control study on MetS was designed within the NuAge

cohort, with serum samples collected at two time points (recruitment
2003�2005 (T1) and 3 years later (T4)), with the objective to identify
a metabolic signature of MetS, stable over time using a multiplatform
lipidomic/metabolomics approach. In this context, an optimized sub-
ject selection strategy was developed. Briefly, the selection was based
on the presence and number of MetS criteria, and their stability over
the three years. It was performed among the 853 males as it has been
recognized that in the province of Quebec, men have more risk fac-
tors of MetS than women [17�20]. MetS was defined using the fol-
lowing criteria - thresholds defined for men [5,21]: elevated waist
circumference (� 102 cm, WC); high blood pressure (systolic >

130 mmHg and/or diastolic > 85 mmHg) or antihypertensive drug
treatment with history of hypertension, elevated fasting blood glu-
cose (� 5.7 mM) or drug treatment for hyperglycemia (oral hypogly-
cemic, insulin); high circulating triglyceride levels (� 1.7 mM) or
drug treatment (fibrates, nicotinic acid); and reduced-HDL-choles-
terol (< 1.0 mM) or drug treatment (fibrates, nicotinic acid). Regard-
ing the study objectives, only stable subjects over time were
included. Using these five criteria, subjects with unstable (changing
status) or uncertain MetS status (due to missing values) over time
were then excluded. Cases were defined as having three or more of
the MetS criteria, while controls were defined as having less than
three MetS criteria at each time point. It resulted in identifying 61
incident cases and 88 controls. Concerning control individuals, it was
important to exclude extreme subjects that could generate false neg-
ative results. Therefore, in agreement with clinicians, controls with
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seven or more drug treatments were excluded [22]. Moreover, value
outliers were analyzed. Because no time effect was observed for the
quantitative variables defining MetS, individuals with mean extreme
values for MetS biological variables over time, outside the range
defined by the mean (T1 to T4) § 1.5 interquartile range (IQR) were
excluded. Finally, this strategy ended up selecting 61 cases and 62
controls. Because it is known that metabolomic profiles are modified
by age, it was checked that there was no significant age difference
between cases and controls to avoid a potential bias. To do so, three
experimental classes were defined according to the age distribution
(67�72 years old (n = 25 vs 22), 73�77 years old (n = 22 vs 24),
78�84 years old (n = 15 vs 15)), and the size balance between age
class in both groups was checked using Fisher’s Exact Test.

2.1.3. Epidemiological data
Fifty-eight quantitative variables evaluated at T1 and T4 were

considered to precisely describe the selected population: 23 bio-
chemical parameters, 8 clinical variables, 25 nutritional data and
finally 2 scores related to physical activity (Physical Activity Scale for
the Elderly (PASE) questionnaire; [23]) and health-related quality of
life (using physical (PCS) component summary score derived from
the Medical Outcome Study 36-item Short Form Health Survey [SF-
36] questionnaire; [24,25]). In particular, nutritional data consisted in
intake data obtained from the mean of two to three non-consecutive
24 h dietary recalls (24-HR) [26], as well as in a validated Canadian
global dietary quality index, the Canadian Healthy Eating Index (C-
HEI) [27]. This index is based on intake of four food groups: grain
products, fruits and vegetables, milk products, meat and alternatives,
and five other items: % of energy as total fat intake and saturated fat
intake, cholesterol, salt and diet variety. The total score ranges from 0
to 100, with higher scores indicating whether the nutritional quality
of the diet is closer to the Canadian guidelines for healthy eating.

2.2. Randomization of biological samples

Following sample selection and in perspective of multiplatform
analyses, sample preparation and analytical sequence had to be care-
fully built. In metabolomics, analytical sequences are usually ran-
domized using a Williams-Latin-Square strategy defined according to
the main factors of the study, as well as potential confounding factors
linked to sampling conditions. In the present work, samples were
randomized using this strategy, defined first according to the main
factor of the study (MetS), considering the sum of the annual number
of MetS criteria between the two time points (T1 to T4), (divided in 4
groups: 0�3; 3�7; 11�14; 15�20; 0 being no positive criteria over
the 3 years and 20 for 5 positive criteria over this period). This ran-
domization was used both for sample preparations and analyses.

3. Methods

Seven complementary untargeted metabolomics methods based
on 3 different analytical platforms, Ultra High-Performance Liquid
Chromatography coupled to High-Resolution Mass Spectrometry (LC-
MS), Gas Chromatography coupled to High-Resolution Mass Spec-
trometry (GC-MS), and Nuclear Magnetic Resonance spectroscopy
(NMR), were used to characterize the MetS phenotypic spectrum.

Quality control samples were designed and prepared to control
for potential bias due to sample preparation or analytical drifts. Since
in untargeted metabolomics hundreds to thousands of metabolites
are detected, the use of internal standards for each metabolite is
almost impossible and pooled quality control (QC) samples are recog-
nized to be the most appropriate approach [28]. In the present study,
these QC samples consisted in a pool of human serum samples
extracted independently and subsequently diluted 1/2, 1/4 and 1/8.
All analytical sequences were standardized: at least three blank (sol-
vent) samples and five pooled QC samples were injected for column
conditioning. Then, the stability of the analytical system was moni-
tored using these QC, injected one time at the beginning of each ana-
lytical sequence and thereafter every 10 samples.

3.1. Data production

3.1.1. Ultra high-performance liquid chromatography coupled to high-
resolution mass spectrometry (LC-MS)

Three methods were performed to maximize the serum metabo-
lome coverage: reversed phase LC-MS (C18) analysis complemented
by hydrophilic interaction chromatography (HILIC) to allow the detec-
tion of polar metabolites and an untargeted lipidomics approach using
a reverse phase LC-MS (C8) to profile a large set of lipid species.

3.2. C18-based system (C18Pos and C18Neg)

Serum samples (100 mL) were slowly thawed on ice at room tem-
perature. Proteins precipitation was performed by addition of 200 mL
of ice-cold methanol (MeOH). This mixture was vortexed and placed
at �20 °C for 30 min. After a 10 min centrifugation (4 °C, 15,493 g,
Sigma 3-16PK, Fischer Bioblock Scientific), the supernatant was
divided into three 45 mL aliquots, dried completely (EZ2.3 Genevac,
Biopharma Technologies France) and stored at �80 °C until further
analysis. Just before analysis, 150 mL of injection solvents (water and
acetonitrile 50/50 + 0.1% Formic Acid) was added to the dry fraction.
A pooled QC sample was prepared by mixing 5 mL from each
extracted sample. This sample preparation was automated on a Free-
dom EVO200 TECAN robot (Tecan Trading AG, Switzerland,), enabling
liquid handling with a high repeatability (CV�0.75%).

Metabolic profiles were determined using an U3000 liquid chro-
matography system (Thermo Fisher Scientific, San Jose, CA, USA) cou-
pled to a high-resolution Bruker Impact HDII UHR-QTOF (Bruker
Daltonics, Wissembourg, France) equipped with an electrospray
source (ESI). Chromatographic separation was performed on aWaters
HSS T3 column (150 £ 2.1 mm, 1.8 mm) at 0.4 mL/min, 30 °C and
using an injection volume of 5 mL. Mobile phases A and B were water
and acetonitrile with 0.1% formic acid, respectively. The gradient elu-
tion was 0% B (2 min), 0�100% B (13 min), 100% B (7 min), 100�0% B
(0.1 min) and 0% B (3.9 min for re-equilibration). The mass resolving
of the mass spectrometer was 50,000 full width at half maximum
(FWHM) atm/z 1222. Samples were analyzed in the positive and neg-
ative ionization modes (C18Pos, C18Neg). Capillary and end plate off-
set voltages were set at 2500 V and 500 V for the ESI source. The
drying gas temperature was 200 °C and nebulization gas flow was
10 L/min. Mass spectrum data was acquired in full-scan mode over
mass range 50�1000 mass-to-charge ratio (m/z).

3.3. HILIC-based system (HILICneg)

Metabolite extraction was performed from 50mL of serum follow-
ing methanol-assisted protein precipitation as previously described
[29]. Briefly, 200 mL of methanol containing internal standards at
3.75 mg/mL (Dimetridazole, 2-amino-3-(3-hydroxy-5-methyl-isoxa-
zol-4-yl) propanoic acid (AMPA), 2-methyl-4-chlorophenoxyacetic
acid (MCPA), Dinoseb (Sigma-Aldrich, Saint-Quentin Fallavier,
France)) were added to 50 mL of serum. The resulting samples were
then left on ice for 90 min until complete protein precipitation. After
centrifugation (20,000 g, 15 min, 4 °C), supernatants were collected
and dried under a nitrogen stream using a TurboVap instrument
(Thermo Fisher Scientific, Courtaboeuf, France) and stored at �80 °C
until analysis. Dried extracts were resuspended in 150 mL of ammo-
nium carbonate 10 mM pH10.5/acetonitrile (40:60). After reconstitu-
tion, the tubes were vortexed, incubated in an ultrasonic bath for
5 min on ice, and centrifuged (20,000 g, 15 min, 4 °C). A volume of
95 mL of the supernatant was transferred into 0.2 mL vials. External
standard solution (5 mL; mixture of 9 authentic chemical standards
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covering the mass range of interest: 13C-glucose, 15N-aspartate, eth-
ylmalonic acid, amiloride, prednisone, metformin, atropine sulfate,
colchicine, imipramine) was added to all samples in order to check
for consistency of analytical results in terms of signal and retention
time stability throughout the experiments. The QC samples were pre-
pared by mixing 20 mL of each extracted sample. QC samples were
injected every 5 samples.

Metabolic profiling experiments were performed using an U3000
liquid chromatography system coupled to an Exactive mass spec-
trometer from Thermo Fisher Scientific (Courtaboeuf, France) fitted
with an electrospray source operating in the negative ion mode.
Chromatographic separation was performed on a Sequant ZICpHILIC
column (5 mm, 2.1 £ 150 mm, Merck, Darmstadt, Germany) main-
tained at 15 °C for improved peak shape and chromatographic sepa-
ration of nucleotidic metabolites [30,31], and also equipped with an
on-line prefilter (Thermo Fisher Scientific, Courtaboeuf, France). Mobile
phases A and Bwere an aqueous buffer of 10 mM ammonium carbonate
in water adjusted to pH 10.5 with ammonium hydroxide, and 100% ace-
tonitrile, respectively. The flow rate was 200 mL/min. Chromatographic
elution was achieved under the following gradient conditions: isocratic
step of 2 min at 80% B, followed by a linear gradient from 80 to 40% of
phase B from 2 to 12 min. The chromatographic system was then rinsed
for 5 min at 0% B, and the run ended with an equilibration step of 15min
(80% B). The Exactive mass spectrometer was operated with a capillary
voltage set at�3 kV and a capillary temperature set at 280 °C. The sheath
gas pressure and the auxiliary gas pressure (nitrogen) were at 60 and 10
arbitrary units, respectively. The mass resolving power of the analyzer
was 50,000 (FWHM) at m/z 200, for singly charged ions. The detection
was achieved fromm/z 75 to 1000.

3.4. Lipidomic untargeted approach (LIPIDO)

Serum samples were extracted using an adapted method to that
previously described [32]. Briefly, 100 mL of serum was added to
490 mL of CHCl3/MeOH 1:1 (v/v) and 10 mL of internal standard mix-
ture. Samples were vortexed for 60 s, sonicated for 30 s using an ultra-
sonic probe (Bioblock Scientific Vibra Cell VC 75,185, Thermo Fisher
Scientific Inc., Waltham, MA, USA) and incubated for 2 h at 4 °C with
mixing. Seventy-five mL of H2O was then added and samples were
vortexed for 60 s before centrifugation at 15,000 g for 15 min at 4 °C.
The upper phase (aqueous phase), containing gangliosides, lysogly-
cerophospholipids, and short chain glycerophospholipids, was trans-
ferred into a glass tube and dried under a stream of nitrogen. The
protein disk interphase was discarded and the lower lipid-rich phase
(organic phase) was pooled with the dried upper phase and the mix-
ture dried under nitrogen. Samples were resuspended with 100 mL of
a solution CHCl3/MeOH 1:1 (v/v). Ten mL were 100-fold diluted in a
solution of MeOH/isopropanol/H2O 65:35:5 (v/v/v) before injection.

Lipidomic profiles were determined using an Ultimate 3000 liquid
chromatography system (Thermo Fisher Scientific, San Jose, CA, USA)
coupled to a high resolution Thermo Orbitrap Fusion (Thermo Fisher
Scientific, San Jose, CA, USA) equipped with an electrospray source
(ESI). Chromatographic separation was performed on a Phenomenex
Kinetex C8 column (150 £ 2.1 mm, 2.6 mm) at 0.4 mL/min, 60 °C and
using an injection volume of 10 mL. Mobile phases A and Bwere H2O/
MeOH 60:40 (v/v), 0.1% formic acid and isopropanol/MeOH 90:10 (v/
v), 0.1% formic acid in negative ionization mode (LIPIDOneg), respec-
tively. Ammonium formate (10 mM) was added to both mobile
phases in the positive ionization mode (LIPIDOpos) in order to detect
glycerolipids and cholesteryl-esters under [M+NH4]+ form. The gradi-
ent elution was solvent B was maintained for 2.5 min at 32%, from 2.5
to 3.5 min it was increased to 45% B, from 3.5 to 5 min to 52% B, from
5 to 7 min to 58% B, from 7 to 10 min to 66% B, from 10 to 12 min to
70% B, from 12 to 15 min to 75% B, from 15 to 19 min to 80% B, from
19 to 22 min to 85% B, and from 22 to 23 min to 95% B; from 23 to
25 min, 95% B was maintained; from 25 to 26 min solvent B was
decreased to 32% and then maintained for 4 min for column re-equili-
bration. The mass resolving power of the mass spectrometer was
240,000 (FWHM) for MS experiments. Samples were analyzed in
both positive and negative ionization modes. The ESI source parame-
ters were as follows: the spray voltage was set to 3.7 kV and �3.2 kV
in positive and negative ionization mode, respectively. The heated
capillary was kept at 360 °C and the sheath and auxiliary gas flow
were set to 50 and 15 (arbitrary units), respectively. Mass spectra
were recorded in full-scan MS mode fromm/z 50 tom/z 2000.

3.4.1. Gas chromatography coupled to high-resolution mass
spectrometry (GCMS)

Serum samples were slowly thawed at 4 °C overnight. Four hun-
dred mL of ice-cold methanol (�20 °C) were added to 100 mL serum
sample and the mixture was vortexed. After protein precipitation,
samples were kept at �20 °C for 30 min and then centrifuged (Sigma
3�16PK, Fischer Bioblock Scientific) at 20,627 g for 10 min at 4 °C.
Two hundred and fifty mL of supernatant were transferred into a
2 mL amber glass vial. After the addition of 10 mL of [13C1]-L-valine
(200 mg/mL), samples were evaporated under EZ2.3 Genevac (Bio-
pharma Technologies France). At the same time and in parallel, a con-
trol derivatization sample (serum substituted by milliQ water) was
prepared in order to remove the background noise produced during
sample pre-processing, derivatization, and GC/MS analysis. The dry
residues were dissolved with addition of 80 mL of methoxylamine
solution (15 mg/mL in pyridine) to each vial, vortexed vigorously for
1 min and incubated for 24 h at 37 °C (in order to inhibit the cycliza-
tion of reducing sugars and the decarboxylation of a-keto acids).
Then, 80 mL of N,O-bis(Trimethylsilyl)trifluoroacetamide (BSTFA)
with 1% trimethylchlorosilane (TMCS) as catalyst were added into
the mixture for derivatization (60 min, 70 °C). Before injection, 50 mL
of derivatized mixture were transferred in a glass vial containing
100 mL heptane. QC pool samples were prepared using 10 mL of each
extracted and derivatized samples.

Metabolic profiles were obtained using an Agilent 7890B Gas
Chromatograph coupled to an Agilent Accurate Mass QTOF 7200
equipped with a 7693A Injector (SSL) Auto-Sampler (Agilent Technol-
ogies, Inc). Separation was achieved on a fused silica column HP-5MS
UI 30 m x 0.25 mm i.d. chemically bonded with a 5% phenyl-95%
methylpolysiloxane cross-linked stationary phase (0.25 mm film
thickness) (Agilent J & W Scientific, Folsom, CA, USA). Helium was
used as a carrier gas at a flow rate of 1 mL/min. Two ml of derivatized
sample was injected using 1:20 split. Temperatures of injector, trans-
fer line, and electron impact (EI) ion source were set to 250 °C, 280 °C
and 230 °C, respectively. The initial oven temperature was 60 °C for
2 min, ramped to 140 °C at a rate of 10 °C/min, to 240 °C at a rate of
4 °C/min, to 300 °C at a rate of 10 °C/min and finally held at 300 °C for
8 min. Agilent ‘‘retention time locking” (RTL) was applied to control
the reproducibility of retention times. [13C1]-L-valine was used to
lock the GC method [33]. The electron energy was 70 eV and mass
data were collected in a full scan mode (m/z 55-700) using a resolving
power of 7000 (FWHM) to m/z 464 (perfluorotributylamine, PFTBA).
Acquisition rate was 5 spectra/sec with acquisition time of 200 msec/
spectrum. Four heptane blanks were injected at the beginning of
each sequence, followed by four pool samples, and then one pool
sample and one derivatization control sample after each set of 10
samples. Initially tune and calibrate the system were performed
using PFTBA with acquisition conditions 2 GHz EDR with N2 (1.5 mL/
min) and the limits for average PPM error were 3.0 and maximum
error: 8.0. Also, a calibration was made between each sample.

3.5. Nuclear magnetic resonance spectroscopy (NMR)

Serum aliquots (50 mL) were slowly thawed at room temperature
on ice. One hundred mL of phosphate buffer (0.2 M, pH 7.0) prepared
in deuterium oxide (D2O) were added to the aliquots, and each
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sample was vortexed and centrifuged for 15 min at 4500 g and
150 mL of the supernatants were transferred into the 3 mm NMR
tubes.

All 1H NMR spectra of serum samples were obtained on a Bruker
Avance III HD spectrometer (Bruker, Karlsruhe, Germany) operating
at 600.13 MHz for 1H resonance frequency and equipped with an
inverse detection 5 mm CQPCI 1H-31P-13C-15N cryoprobe connected
to a cryoplatform and a cooled SampleJet sample changer. Spectra
were acquired at 300 K using the Carr-Purcell-Meiboom-Gill (CPMG)
spin-echo pulse sequence with a total spin-echo delay of 240 msec to
attenuate broad signals from proteins and lipoprotein and a 2 s relax-
ation delay. A water suppression signal was achieved by pre-satura-
tion during the relaxation delay. The spectral width was set to
20 ppm for each spectrum, and 256 scans were collected with 32 K
points. Free induction decays were multiplied by an exponential win-
dow function before Fourier Transform. The spectra were manually
phased and calibrated to the lactate signal (d 1.33 ppm), and the base-
line was corrected using TopSpin 3.2 software (Bruker, Karlsruhe,
Germany).

3.6. Data treatment

Following metabolomic/lipidomic analyses, some samples were
identified as missing, because of problem in sample preparation or
missing data (1 for C18Pos, 6 for HILIC, 4 for Lipidomic and 1 for
GCMS). All the obtained raw data from metabolic profiles were proc-
essed to yield a data matrix containing variables and peak intensities.
All the data treatments were performed separately for each analytical
method as individual datasets, under the Galaxy web-based platform
Worflow4Metabolomics (W4M) [34] to ensure the standardization
and reproducibility of the data treatment workflows.

3.6.1. Data extraction and pre-processing for MS
First, raw data were extracted using XCMS [35], followed by quality

checks and signal drift correction according to the strategy described
by van der Kloet et al. [36] based on the use of pooled QC samples, to
yield a data matrix containing retention times, masses, and peak inten-
sities that have been corrected for batch effects. These steps include
noise filtering, automatic peak detection, and chromatographic align-
ment. In particular, all XCMS extractions used a “minfrac” parameter of
0.2 to keep variables if present in at least 20% of the samples, since a
huge variability of profiles in the selected individuals was expected.
Due to a high degree of correlations between the two lipidomic
extracted datasets, they were merged for further data processing. After
signal drift and batch effect correction within the six datasets, metabo-
lite MS signals were then filtered using the following criteria: ratio of
chromatographic peak areas of samples over blanks (above 3), correla-
tion between QC pool dilution factors and areas of chromatographic
peaks (over 0.7), repeatability of QC pool samples (CVs under 30%) and
ratio of QC pool sample CVs over biological sample CVs (below 1).

3.6.2. NMR data pre-processing
The NMR spectra were imported in the Amix software (version

3.9.15, Bruker, Rheinstetten, Germany) for data integration. A vari-
able size bucketing was performed based on graphical pattern (74
buckets) and each bucket was then integrated.

3.6.3. Filtration
During the analysis, metabolites produce several analytical fea-

tures corresponding to signals derived from different adduct ions
generated in the ESI process, signals from the presence of isotopes in
the molecule, signals from in-source fragmentation processes, and to
different peaks from the same molecule in NMR. The data extraction
step results in thousands of features present in the final datasets with
a high degree of correlation, which is a constraint for the use of vari-
ous data mining and statistical methods. For example, analytical
redundancy highly affects multiple testing correction. Indeed, having
non-independent variables (coming from the same metabolite) lead
to an over-correction of data that can hide potentially relevant infor-
mation. Therefore, the analytical redundancy inside each of the 6
datasets was reduced in the present study. In metabolomics, filtering
was technique-specific but with a common characteristic to reduce
correlation above 0.90 and to select one single representative per
group, as being the most intense signal for MS data and the purest
one for NMR. This procedure was conducted using the Analytic Corre-
lation Filtration (ACorF) tool [37] within W4M, with a manual selec-
tion of the representative feature only for NMR. In lipidomics, this
step was performed according to the workflow previously described
[32]. Briefly, a first automatic feature annotation was achieved
through using an in silico database containing the exact masses corre-
sponding to pseudo-molecular ions ([M + H]+, [M-H]� and [M-2H]2�),
adducts([M+NH4]+, [M+Na]+,[M-H+CHO2]�), and in source fragments
([M + H�H2O]+) ions along with their corresponding 13C and double
13C isotopes. Furthermore, specific retention time windows for each
lipid class were also added by examining retention times of species
containing the longest and the shortest fatty acyl chains. Then, anno-
tated lipid species were thus kept if (i) their 13C isotope was detected
and aligned in time (§ 5 s), and (ii) all related ions (i.e. pseudo-molec-
ular ions, adduct ions and/or in source fragments, either as monoiso-
topic or 13C and 2£13C isotopes) had the same retention time as a
reference ion specific of a lipid class/subclass (§ 5 s, and §10 s
between the two ionization modes after merging the corresponding
peaktables). In addition, the relative isotopic abundance (RIA)
between the monoisotopic ion and its corresponding 13C isotope,
were automatically calculated and compared to theoretical ones.
Annotated lipid species with an RIA error higher than 30% were fil-
tered out. This threshold of 30% was selected since RIA errors of all
internal standards were below this value. The two lipidomic peakt-
ables obtained in both positive and negative ionization modes were
merged, because of their high degree of correlations, due to the
detection of specific lipid classes in both modes (i.e.: lysophosphati-
dylcholines, phosphatidylcholines and sphingomyelins) under
[M + H]+ and [M-H+CHO2]� forms, respectively. The two peaktables
were aligned according the retention time at § 10 s.

3.7. Statistical analyses

All statistical analyses were performed after data pre-processing
and filtration of the individual 6 datasets.

3.7.1. Measurement of serum metabolomes in the NuAge MetS sub-
cohort

Correlation analyses were performed to give an overview of links
between detected metabolites/lipids in serum, both at the level of
method datasets and individual variables. First, the RV coefficients
[38] were used to provide insight into the global association between
datasets using the R software (version 3.4.1) [39], with the R-package
FactoMineR [40]. This coefficient [38] is a multivariate generalization
of the squared Pearson correlation coefficient, defining a scale of sim-
ilarity between two matrices and measure to what degree the differ-
ent datasets give the same view on the samples [41]. Second, to
investigate individual correlations between detected features, pair-
wise Spearman correlation coefficients between variables were cal-
culated using the Between Table Correlation tool available in the
W4M and a network analysis was done. The significant correlation
coefficients >0.7 (after Benjamini-Hochberg correction) were filtered
and a graphical representation of Spearman correlation network was
made with Cytoscape [42].

3.7.2. Metabolite and lipid levels modulated with MetS
Individuals in this study were selected stable regarding their MetS

status. Nonetheless we could expect that part of their metabolism
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was affected by time. Thus, the impact of time on the metabolomic/
lipidomic datasets was also evaluated. As no interaction effect was
observed between status and time, linear mixed models (LMM) were
performed to analyze repeated measures, considering fixed effect fac-
tors (time, status (case/control), and their interactions) and subject as
random effect, using the module available in W4M. In order to verify
that the LMM assumptions were met, we considered the different
residuals of LMM. The assumption of homogeneity of variance of the
residuals was checked for each fixed factor using a Levene test. Then,
the normality of the conditional residuals and random effect resid-
uals were verified using quantile-quantile plot. The linearity of fixed
effects was checked as proposed by Singer et al. [43] using plot of the
marginal predictions vs standardized marginal residues. A p-value
threshold of 0.05 after Benjamini-Hochberg (BH) correction was con-
sidered to detect variables strongly affected by status and time. Simi-
lar statistical analyses were performed on epidemiological data.

3.7.3. Identification of a comprehensive molecular MetS signature
The objective of the present study was to identify a limited num-

ber of metabolites that could together reflect the MetS status. In this
context, a variable selection was first performed based on the meth-
odology developed by Rinaudo et al. [44], using the biosigner module
available in theW4M Galaxy instance [34] on each individual dataset.
The aim was to focus on the variables, which significantly contribute
to the performance of the discrimination. As feature selection may be
affected by correlations between variables, a Pearson correlation fil-
ter on each dataset (over 0.8) was applied beforehand. All variables
selected by biosignerwith at least one of three classifiers (Partial Least
Squares Discriminant Analysis (PLS-DA), Support Vector Machine
(SVM), and Random Forest (RF)) were first considered. Then, this pro-
cess was repeated five times to cope for the selection variability
induced by the bootstrap effect of the methodology. The unions over
the five repetitions were included in individual predictive subsets. In
a second step the selected variables of each subsets were integrated
into a common PLS-DA model to characterize the discriminant power
of the comprehensive signature by combining the 6 individual pre-
dictive subsets. For all PLS analyses, unit variance scaling (UV) was
applied to variable intensities. All PLS models were defined using the
7-fold cross validation method. The prediction power of the model
was assessed using the Q2 parameter. To check that PLS components
could not lead to a correct classification by chance, a permutation
evaluation was carried out (n = 200). For each test, samples are ran-
domly assigned to each experimental group, a PLS model is carried
out and R2Y and Q2 are computed. The result of the tests is displayed
on a validation plot, which shows the correlation coefficient with the
original non-permuted sample, having a value 1 on the horizontal
axis and R2Y and Q2 values on the vertical axis. Logically, permuted
samples must lead to poor predictive models with lower Q2 values
compared to the true model.

In a perspective of future clinical application, an optimized
reduced signature was then proposed. To fulfill this objective, the
redundancy between methods was eliminated (correlation coeffi-
cient > 0.8), keeping the most robust variable (highest intensity, best
peak purity). In a second step, this signature was restricted to the
strictly formally identified compounds. The prediction model per-
formance was evaluated using a confusion matrix, cross-validated
error rates (using 200 repetitions of random training/test splits),
and areas under ROC curves (AUC) [45] using the R software (ver-
sion 3.6.2) [R package “pROC” [46]] with a CI estimated with the
DeLong’s method [47].

3.8. Metabolite annotation

The metabolite annotation was first conducted computationally
using W4M and then, all annotations involved manual curation and
interpretation of spectra.
Metabolites contributing to the discrimination of the MetS pheno-
type were first identified using in-house databases, containing the ref-
erence spectra of more than 2000 authentic standard compounds
analyzed in the same analytical conditions, and providing a compre-
hensive spectral information (i.e. protonated or deprotonated mole-
cules, adducts and in-source fragment ions for LC-HRMS, or molecular
ions as well as major fragments for GCMS). Metabolite annotation was
first performed by using these spectral databases according to accu-
rately measuredmasses within MS spectra and chromatographic reten-
tion times. Confirmation of metabolite annotation in LC-HRMS was
then accomplished by running additional LC-MS/MS experiments using
a Dionex Ultimate chromatographic system combined with a Q-Exac-
tive mass spectrometer (Thermo Fisher Scientific) under non-resonant
collision-induced dissociation conditions using higher-energy C-trap
dissociation (HCD) in both positive and negative ion modes, conducted
on the same QC samples, and with the instrument set in the targeted
acquisition mode, using inclusion lists. Resulting MS/MS spectra were
thenmanually matched to those included in the in-house spectral data-
base and acquired using different collision energies. Confirmation of
metabolite annotation in GC-MSwas done bymatching electron impact
spectra, as well as using reports from the literature.

Then, the remaining unknown compounds were identified on the
basis of their exact masses which were compared to those registered
in Metlin (https://metlin.scripps.edu; [48]), in the Human Metabo-
lome Database (HMDB; www.hmdb.ca; [49]), in Massbank (https://
massbank.eu/MassBank/; [50]), in Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kegg/; [51]), or in
the National Institute of Standard and Technology (NIST; https://
www.nist.gov/srd/nist-special-database-14; [52]). Database queries
were performed with a mass error of 0.005 Da, and a retention time
difference of 0.1 min for the in-house databases. Database results
were confirmed using appropriate standards when available, isotopic
patterns, and mass fragmentation analyses. For unidentified ions, the
number of plausible elemental compositions were restricted to a
small number (or uniquely identified) with the support of additional
chemical information, i.e. the molecular formula of the precursor
ions, reports from the literature [53], and knowledge of possible met-
abolic pathways. Metabolites were classified accordingly to Sumner
et al. [54] concerning the levels of confidence in the identification
process: identified (confirmed by an authentic chemical standard
analyzed under the same conditions, with the match at least two
orthogonal criteria among accurate measured mass, retention time
and MS/MS or EI(MS) spectrum), putatively annotated (spectral simi-
larity with public/commercial spectral libraries), putatively charac-
terized compound classes or unknown.

It is important to note that only very few standards of lipid species
are commercially available compared to the large diversity of endog-
enous lipid species present in complex biological matrices. Therefore,
results of in-house database queries were filtered, according to the
workflow described in Seyer et al. [32], taking into account retention
time ranges of each lipid class, as well as isotope patterns, for selec-
tion of relevant lipid species, as previously described in the data fil-
tration section. Finally, all HCD mass spectra resulting from the
additional MS/MS experiments, were manually inspected to identify
specific diagnostic ions and to confirm the structure of lipid species
[55] (see Supplemental Fig. 2), that were named following the Lipid-
Maps nomenclature [56].

Spectral assignments were based on matching 1D and 2D NMR
data to reference spectra in a homemade reference database, as well
as with other databases (http://www.bmrb.wisc.edu/metabolomics/;
http://www.hmdb.ca/), and reports from the literature [57].

3.9. Extraction of modulated metabolic network

To link metabolites identified in untargeted metabolomics/lipido-
mics experiments within the context of genome-scale reconstructed
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Table 1
Overview of the study population.

Controls Cases Corrected p-value
time (BH)

Corrected p-value
MetS status (BH)

T1 T4 T1 T4

n 62 62 61 61 � �
Age (yrs) 73.5 § 4.1 (62) � 74.1 § 3.6 (61) � 1.00 0.34
Body weight (kg) 71.0 § 8.0 (62) 69.9 § 7.8 (62) 87.7 § 12.5 (61) 87.4 § 13.3 (61) 0.04 6.2 £ 10�14

BMI (kg/m2) 25.1 § 2.3 (62) 24.8 § 2.4 (62) 30.5 § 3.7 (61) 30.6 § 3.7 (61) 0.37 1.5 £ 10�16

Waist circumference (cm) 93.3 § 6.9 (62) 92.8 § 6.9 (62) 109.9 § 8.9 (61) 110.8 § 9.5 (61) 0.67 6.2 £ 10�21

Fasting serum glucose (mM) 5.08 § 0.44 (62) 4.86 § 0.58 (62) 6.66 § 1.45 (61) 6.54 § 1.21 (61) 0.04 2.1 £ 10�15

Fasting TG (mM) 1.23 § 0.47 (50) 1.18 § 0.40 (53) 2.23 § 1.01 (51) 1.94 § 0.86 (51) 0.04 1.6 £ 10�8

Fasting HDL-C (mM) 1.43 § 0.45 (50) 1.50 § 0.34 (53) 1.13 § 0.29 (56) 1.16 § 0.26 (56) 0.74 1.1 £ 10�5

SBP (mmHg) 126.2 § 16.6 (62) 120.9 § 18.4 (62) 138.4 § 15.8 (61) 133.7 § 19.3 (61) 0.02 4.4 £ 10�5

DBP (mmHg) 71.8 § 9.9 (62) 73.9 § 8.1 (62) 74.7 § 8.9 (61) 73.6 § 9.4 (61) 0.69 0.47
Leucoc (109/L) 5.61 § 1.29 (62) 5.97 § 1.57 (62) 6.32 § 1.22 (61) 6.55 § 1.34 (61) 0.02 2.0 £ 10�2

Lympho (109/L) 1.49 § 0.45 (62) 1.54 § 0.46 (62) 1.75 § 0.43 (61) 1.76 § 0.63 (61) 0.50 2.0 £ 10�2

SF-36-Physical Component Summary Score* (PCS) 52.8 § 5.8 (62) 52.3 § 6.0 (61) 49.7 § 8.0 (61) 46.7 § 9.2 (61) 0.01 3.6 £ 10�3

Physical activity (PASE score) 125.4 § 51.9 (62) 124.7 § 53.5 (59) 107.1 § 55.2 (61) 94.6 § 50.5 (57) 0.41 2.3 £ 10�2

Energy (kCal/day) 2179 § 524 (62) 2251 § 576 (62) 1935 § 462 (60) 2026 § 506 (59) 0.08 2.5 £ 10�2

Carbohydrate (g/day) 269.6 § 68.8 (62) 272.3 § 73.6 (62) 231.7 § 64.0 (60) 238.4 § 62.5 (59) 0.45 6.8e-3
Protein (g/day) 87.5 § 22.8 (62) 89.3 § 28.2 (62) 83.1 § 20.4 (60) 82.9 § 22.6 (59) 0.75 0.31
Lipid (g/day) 78.5 § 23.9 (62) 83.8 § 26.7 (62) 71.9 § 23.4 (60) 80.3 § 27.0 (59) 0.02 0.35
C-HEI-Cereals (score: 0�10) 7.99 § 2.25 (62) 7.72 § 2.26 (62) 6.66 § 2.05 (60) 6.99 § 2.20 (60) 0.88 1.3 £ 10�2

Total dietary fiber (g/day) 23.6 § 9.4 (62) 24.9 § 10.7 (62) 19.8 § 7.5 (60) 21.4 § 7.2 (59) 0.10 5.2 £ 10�2

Mean § SD; linear mixed model p-value (after Benjamini-Hochberg (BH) correction for 58 parameters). Bold: corrected p-value < 0.05.
* T-scores based on a mean of 50 and a SD of 10.
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metabolic networks, the metabolites described as modulated after
LMM, stable over time, and identified or annotated, were mapped
into the human genome-scale metabolic network Recon2.2 [58]. This
network contains 7785 reactions and 6047 metabolites. In order to
map the modulated metabolites on this network, we first retrieved
their ChEBI identifier and then search for their matching identifier in
the Recon2.2 network using the "identifier matcher tool" in MetEx-
plore. This tool allows performing both an exact matching (to find
the exact metabolite in the network corresponding to the modulated
metabolite from the experimental dataset) and an ontology-based
matching (to make the link with a corresponding more generic class
metabolite, when the exact same metabolite cannot be retrieved in
the network) [59]. In the metabolic network, each metabolite is
assigned to several different cellular compartments. However,
because current global and untargeted metabolomics approaches do
not provide information on cellular localization of metabolites, we
chose to consider only cytosolic metabolites. In order to focus on the
most likely modulated part of the network, we first selected all the
metabolic pathways in which at least one modulated metabolite was
found, while excluding pathways involving only transport reactions.
Forty-one pathways, including 2753 reactions, were selected. Then, a
metabolic sub-network extraction was performed from the modu-
lated metabolites. It consists in computationally identifying among
the previously selected reactions, the ones that are more likely to be
related to the modulated metabolites. The algorithm computes the
lightest path between each pair of metabolites in the dataset. The
lightest path is a sequence of reactions and metabolites connecting
two metabolites and minimizing a topological criterion in the net-
work [60,61]. For one dataset, the related sub-network is thus the
union of all the lightest paths between metabolites present in this
dataset. Pathway enrichment analyses were performed to assess
whether the modulated metabolites were significantly over-repre-
sented in a metabolic pathway. Pathway enrichment statistics were
performed using the one-tailed exact Fisher test, with a BH correction
for multiple tests, using the metabolic pathways defined in Recon2.2.
All computational and visualization tasks were performed within
MetExplore web server based on the Recon2.2 metabolic network
(biosource id #4311) [62,63].

Role of funding sources: All metabolomics and lipidomics analyses
(data collection) were funded by the MetaboHUB French
infrastructure (ANR-INBS-0010). Funders had no role in study design,
data analysis, interpretation or writing of report.

4. Results

4.1. Overview of study population

Fifty-eight quantitative variables in total were considered to pre-
cisely describe the selected population: 23 biochemical parameters, 8
clinical variables, 25 nutritional data (essentially related to macronu-
trient intake and selected nutrients described as being related with
MetS), and finally 2 scores related to physical activity and global
health (see Materials and Methods). As defined in the subject selec-
tion process (see Materials and Methods), MetS status of individuals
was stable over the three years follow-up (for the 4 time points con-
sidered). Behind the stability of MetS status, the clinical parameters
associated with MetS, analyzed at T1 and T4, were found stable over
time, with a slight improvement for some of them (i.e. significant
reduction of systolic blood pressure, fasting glucose and triglycerides
(TG)). Differences of most of the MetS criteria quantitative variables
were highly significant between cases and controls (BH corrected p-
values from 10�5 to 10�21, Table 1; Supplementary Fig. 1). The main
descriptive data, as well as results from linear mixed models, are pre-
sented in Table 1 and Supplementary Tables 1a, 1b. They showed that
all the subjects were globally stable over time, not only for clinical
values of MetS criteria, as already emphasized, but also for the main
parameters related to physical activity, nutrition and health-related
quality of life (physical (PCS) component summary score). Regarding
MetS status, results showed that MetS subjects were less healthy and
active than controls, with all global scores related to physical activity
(PASE) and health-related quality of life (PCS) found significant (cor-
rected p-values = 0.02 and 3.6 £ 10�3, respectively). Moreover, cases
showed also significant lower total energy and carbohydrate intakes
(corrected p-value = 0.025 and 6.8 £ 10�3, respectively). In addition,
despite the fact that total dietary fiber intake was at the limit of sig-
nificance, the evaluation of the consumption of cereal products, based
on the Canadian Food Guide recommended intakes for grain products
(Canadian-Healthy Eating Index, C-HEI) was significantly lower in
cases in comparison to controls (corrected p-value = 0.052 and 0.013,
respectively).



Fig. 1. Study design and multiplatform metabolomics data generation.
a: Experimental design of the MetS case/control study, involving the follow-up of 123 stable subjects over 3 years.
b: Analytical workflow based on seven complementary untargeted metabolomics methods using 3 different analytical platforms (LC- and GC-HRMS, NMR) for the serum analy-

sis of the 123 subjects collected at two time points. Data analysis resulted in 2915 metabolite and lipid related features, detected across at least 20% of the subjects over time.
c: The similarity of method blocks evaluated using RV coefficients (a matrix correlation coefficient (see method section)) after Multiple Factorial Analysis. d: Spearman correla-

tion network between the 2915 metabolite and lipid features from the six metabolomic/lipidomic datasets (significant correlation >0.7). Nodes correspond to features obtained
using the different analytical platform (Pink: C18pos; Dark Blue: C18neg; Green: GCMS; Blue: HILICneg; Yellow: Lipidomics; Black: NMR). Two nodes are connected by an edge if
correlation is significant between the corresponding features (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.).
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4.2. Serum metabolomes in the NuAge sub-cohort

Given the high diversity of metabolites present over a wide con-
centration range in biological samples, proper MetS evaluation
requires a broad metabolome coverage. The use of complementary
technologies, combining both Nuclear Magnetic Resonance (NMR)
and high-resolution mass spectrometry (HRMS), as well as different
chromatographic systems, including gas, reverse-phase and hydro-
philic interaction chromatography with detection in both positive
and negative electrospray ionization modes, allowed covering both
polar and apolar compounds for relevant and comprehensive metab-
olome and lipidome analysis (see Materials and Methods). On this
basis, a full workflow was developed for serum analysis, allowing the
sample preparation and the measurement of a wide diversity of
metabolites from the more polar ones to lipids (Fig. 1a and b).

After data processing using a reproducible online Galaxy work-
flow [34], consisting in automatic peak detection, alignment and inte-
gration, quality control steps and removal of redundant spectral
features, a total of 2915 metabolite and lipid related robust features
(mean CV in QCs = 13%), were detected across at least 20% of the sub-
jects over time (Fig. 1b). Correlation analyses of still unannotated spe-
cies were performed to give an overview of links between detected
features. The similarity of the various retrieved datasets evaluated
using RV coefficients [38] between matrices was found to be low (<
0.18), in accordance with the complementary serum metabolome
coverage of the 6 chosen methods (Fig. 1c). This result was also con-
firmed by the low level of strong correlations between individual
metabolite and lipid features detected in the different platforms,
with only 7% of Spearman correlation coefficients found significant
(after Benjamini-Hochberg (BH) correction) and > 0.7, as shown in
Fig. 1d (and supplementary data). This network highlights both
analytical correlations (shared features between methods) and bio-
logical ones (that could come from different metabolites involved in
the same metabolic pathways).

4.3. Metabolite and lipid levels modulated with MetS

This 3-year follow-up and the analyses performed at two time
points (T1 and T4) enabled us to study the serum metabolome modu-
lations by MetS and robustly delineate the associated metabolic per-
turbations, in relation with clinical parameters and some potentially
interacting extrinsic factors, such as diet and physical activity.

In regards to the characteristics of the study population, consis-
tent results were observed with a wide range of metabolites modu-
lated by MetS and stable over time. More precisely, 476 metabolite
and lipid features were found significant between cases and controls,
and independent of time, which represents around 16% of the
detected metabolome/lipidome. Fig. 2 (a and b, Datasets EV2 and
EV3) highlights the magnitude of these changes as well as their
respective significance (248 metabolites and 228 lipids). Among
them, 158 were successfully identified or annotated, and 26 were
attributed to putatively characterized classes (e.g. by spectral similar-
ity to known compounds of a chemical class), as exemplified in Sup-
plementary Fig. 2. Only nine compounds are shared metabolites
detected by several methods (reported as metabolite_Mx in Datasets
EV2 and EV3). Moreover, six metabolites are detected still with
redundant spectral features (mainly carbohydrates), due to interfer-
ence of co-eluting compounds (reported as metabolite_Fx in Datasets
EV2 and EV3). Globally 50% of these molecular features are positively
associated with MetS, with a high confidence (LMM corrected p-
value < 10�5) for the identified carbohydrates, amino acids and some
lipids (mainly TGs, corrected p-value < 10�7). Among the negatively



Fig. 2. The effect of MetS on metabolome/lipidome.
Volcano-plots representing metabolites (a) and lipids (b) found significantly different (linear mixed model p-values adjusted with BH correction) between cases and controls,

and independent of time: x-axis represents the magnitude of changes (log2 mean fold change (case/control)), y-axis the confidence (-log10 corrected p-value) for the 248 metabo-
lites and 228 lipids related features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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modulated molecules, metabolites from food (e.g. 1,5-anhydrogluci-
tol), microbial metabolism (e.g. indole-3-propionic acid, pipecolic
acid) and several amino acid derivatives and peptides (corrected p-
values ranging from 10�3 to 10�5) were highlighted. When grouping
lipids into common classes, only TGs and gangliosides were found
significantly different (fold change (log2 (case /control), FC) = 0.94,
corrected p-value = 7.4 £ 10�10; FC = �0.32, corrected p-
value = 9 £ 10�6, respectively). Some other lipid classes, such as
phosphatidylcholines (PC), phosphatidylethanolamines (PE) or fatty
acids (FA) were found very heterogeneous, with still individual com-
pounds highly significantly modulated (PC(18:0_20:3), FC = 0.33, cor-
rected p-value = 3.8 £ 10�8; PE(18:0_20:4), FC = 0.5, corrected p-
value = 5.2 £ 10�8).

To explore and visualize the underlying mechanisms, a network
analysis was performed. First, the ChEBI identifiers of the 132 modu-
lated unique metabolites stable over time (after removal of remaining
redundancy from spectral features and shared metabolites), identi-
fied or annotated, were retrieved and then, their matching identifiers
in the Recon2.2 network [58], were searched. Among these metabo-
lites, 21 were "exactly" matched with network metabolites, whereas
68 were matched with a more generic compound and the remaining
without any match. This is especially the case for lipid compounds
such as the different triglyceride species (e.g. TG(46:0), TG(48:0))
Fig. 3. Visualization of predicted modulated reactions network analysis.
a: Visualization of the modulated metabolites within the Recon2.2 metabolic network. O

lite (except for transport reactions) were included in the visualization (2753 reactions). Rea
significantly modulated by MetS (mapped metabolites) are colored in red. Metabolic pathwa

b: Metabolic pathways significantly enriched in modulated metabolites. Pathway enrichm
lated by MetS. The p-values were obtained by performing a hypergeometric test followed by

c: Modulated metabolic sub-network. The metabolic sub-network was extracted by ga
interpretation of the references to color in this figure legend, the reader is referred to the we
which are all represented by the "M_tag_hs" metabolite in the net-
work corresponding to the generic triglyceride class. Therefore, sev-
eral of the modulated metabolites matched to the same network
metabolite. The complete list of the 89 modulated metabolites along
with their ChEBI and matching network identifiers is provided in
Supplementary Table 2. Those 89 metabolites were mapped into the
human genome-scale metabolic network Recon2.2 corresponding to
43 unique metabolites in the network. Fig. 3a displays the localization
of these metabolites within the global metabolic network, highlight-
ing the pathways in which they are preferentially located. It provides
a global view of the modulated pathways, as well as their inter-con-
nections. The predicted modulated pathways obtained after the over-
representation analysis are highlighted on Fig. 3b. To identify more
specifically the parts of the networks that are modulated by MetS,
and based on the hypothesis that the reactions connecting the modu-
lated metabolites within the network are the most likely to be associ-
ated with the disease perturbation, we extracted the metabolic sub-
network corresponding to the union of all the lightest paths between
metabolites of interest (Fig. 3c, Supplementary Tables 3 and 4). This
sub-network suggests that the metabolome/lipidome changes rely
essentially on the modulation of pathways mainly related to amino
acid pathways (arginine/proline metabolism, glycine/serine/alanine/
threonine metabolism, lysine metabolism, phenylalanine
nly reactions belonging to metabolic pathways with at least one discriminant metabo-
ctions are represented by squares and metabolites by circles. Metabolites identified as
ys significantly enriched in modulated metabolites are highlighted in colors.
ent analysis was performed on the set of metabolites identified as significantly modu-

a Benjamini-Hochberg correction.
thering the union of all lightest paths between each pair of mapped metabolites (For
b version of this article.).



Fig. 4. Exploration of the links between metabolic profiles and phenotypic parameters.
Spearman correlations (coefficients significantly different from 0 after BH correction) between the stable modulated metabolites/lipids by MetS and the 58 phenotypic quantita-

tive variables. Green: positive correlations; Red: negative correlations.
a: Global view of the resulting network organized by methods: Pink: C18pos; Dark Blue: C18neg; Green: GCMS; Blue: HILICneg; Yellow: Lipidomics; Black: NMR. Dark Green:

nutritional data; Orange: scores related to physical activity and health-related quality of life; Red: clinical data.
b: Detailed view showing individual correlation (variables re-organized by hierarchical clustering analysis). Metabolite_M1: detected in C18pos; Metabolite_M2: detected in

C18neg; Metabolite_M3: HILICneg; Metabolite_M4: detected in LIPIDO; Metabolite_M5: detected in GCMS; Metabolite_M6 detected in NMR (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).
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metabolism, valine/leucine/isoleucine metabolism, and alanine/
aspartate metabolism) and urea cycle. Other key pathways including
metabolites and reactions related to sphingolipid metabolism, glycer-
ophospholipid metabolism, fructose and mannose, and aminosugar
metabolism were also found to be implicated (Fig. 3).

4.4. Relationships between modulated metabolites/lipids and clinical
parameters

Correlation analyses contributed to explore the links between the
molecular signature and biochemical/clinical/nutritional and general
health parameters. Fig. 4a (and Supplementary data) presents the
correlation network of significant correlations between the modu-
lated metabolites and lipids by MetS (after removal of redundant
spectral features) and all the other parameters considered. It shows
that when using this multiplatform approach, metabolomics gives a
global metabolic view of MetS considering its intrinsic and lifestyle
factors (related in this case to nutrition and physical activity). More
precisely, Fig. 4b (and Supplementary data) highlights the links
between almost all significantly modulated metabolites and the five
individual clinical criteria defining MetS, without that much specific-
ity (i.e. a metabolite chemical family being related to several MetS cri-
teria), revealing the interconnection of underlying metabolic
processes and MetS components. Moreover, it shows some associa-
tions between around 20% of the metabolites and physical activity
evaluation. Regarding nutrition, global scores or food intake data do
not reach to capture the complexity of changes at the individual
metabolite level. However, some specific associations can be
observed between some food groups and particular metabolites, as
interestingly between fiber/cereal consumptions and microbiome
metabolites (e.g. indole-3-propionic acid, pipecolic acid).

4.5. Identification of a comprehensive molecular MetS signature

A full feature selection strategy was developed to build a compre-
hensive molecular MetS signature, stable over time (Fig. 5a). After
LMM, all the variables stable over time regardless of their link with
MetS (i.e. 2176 variables in total for the six datasets) were submitted
to a feature selection step. The biosigner recursive feature selection
method [44] was applied to each of the six datasets (after



Fig. 5. Identification of a comprehensive molecular MetS signature.
a: Feature selection strategy developed to build a comprehensive molecular MetS signature, stable over time. b: Score plot of the Partial Least Squares Discriminant Analysis per-

formed on all subjects at both times, on the 102 variables issued from feature selection, showing the MetS phenotype effect (R2Y = 0.68 and Q2 = 0.60) with the graphical result of the
200-permutation test. Graphical representation using the SIMCA software � Umetrics AB, 2015.
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filtration of intrinsic correlations) to select the smallest feature
subsets which significantly contribute to the MetS prediction
using 3 binary classifiers with distinct mathematical backgrounds
(Partial Least Square-Discriminant Analysis (PLS-DA), Random For-
est, and Support Vector Machine), and repeated five times (see
Materials and Methods). For each dataset, the metabolites most
contributing to prediction, selected by at least one of the three
methods, and being part of the union over the five repetition,
were retained. This approach allows selecting the necessary and
sufficient variables for MetS prediction, mainly due to its ability to
combine large number of data permutations with three different
multivariate methods. It resulted in six subsets, including a selec-
tion from 2 to 39 variables. These six predictive subsets were then
integrated into a PLS-DA model to obtain a comprehensive molec-
ular MetS signature (that includes 102 variables, see Supplemen-
tary data) and characterize its discriminant power. The resulting
validated model allowed a good discrimination between cases and
controls (R2Y = 0.68 and Q2Cum = 0.60). Fig. 5b shows the score
plot and the permutation test.
In a perspective of future clinical application where a short list of
robust biomarkers is needed, an optimized reduced signature was
then proposed. Of the 102 statistically significant variables of interest,
41 were successfully identified or annotated, and 6 attributed to a
characterized compound class. Then, the spectral redundancy (6 vari-
ables for 2 metabolites) and the redundancy between methods were
eliminated (9 variables for 4 shared metabolites), keeping the most
robust variable (highest intensity, best peak purity) as representative.
Restricting this signature to the most robust unique annotated com-
pounds, the final model (R2Y = 0.61 and Q2Cum = 0.55; Fig. 6a)
included 26 metabolites, namely, D-a- and D-b-glucose, lactic acid,
1,5-anhydroglucitol, L-glutamic acid, L-valine, L-proline, isoleucine,
betaine, proline betaine, glutamyl glutamine, g-glutamyl leucine,
urea, pipecolic acid, indole-3-propionic acid, LPC(16:0_0:0), LPC (P-
16:0_0:0), LPC(18:1_0:0), LPC(18:2_0:0), LPC(20:1_0:0), PE
(18:0_20:4), PC(18:0_20:3), PC(P-39:5), TG(16:0_18:1_18:1), GM3
(42:2), and total cholesterol (Fig. 6b, and Supplementary data). The
loading plot highlighted the importance of these metabolites in the
discrimination. This model still allowed a very good prediction



Fig. 6. Reduced MetS signature.
a: Score plot of the Partial Least squares Discriminant Analysis performed on the most robust unique annotated compounds for all subjects at both times (R2Y=0.58 and Q2=0.56)

with the graphical result of the 200-permutation evaluation.
b: Loading plot associated with the score plot of the PLS-DA. This plot corresponds to the projection of each variable on the latent components of the PLS-DA model. The farthest

a variable is from the plot origin, the highest importance it has to the discrimination. As the twin of the score plot, the loading plot enables to grasp similarity between variables in
the contribution to discrimination (proximity on the plot) as well as to assess which group of individuals is more likely to have a high intensity value of the metabolite. Status: MetS
status; Metabolite_M1: detected in C18pos; Metabolite_M2: detected in C18neg; Metabolite_M3: HILICneg; Metabolite_M4: detected in LIPIDO; Metabolite_M5: detected in GCMS;
Metabolite_M6 detected in NMR; Metabolite_F: variable related to a metabolite fragment.

c: ROC curve of the PLS-DA model (11% adjusted misclassification rate, AUC=0.96, CI:[0.94�0.99]). d: box-plot of the error rate corresponding to the 200 cross-validated models
(12% error rate, with adjusted confusion matrix). Graphical representation using the SIMCA software � Umetrics AB, 2015.
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(AUC = 0.96, CI [0.94�0.99]) with 11% of error rate (12% using cross
validated estimation) (Fig. 6c and d). To illustrate the complementar-
ity of the present signature to clinical variables, correlation analyses
between the predicted Y and the individual clinical criteria related to
MetS were performed. Results (Supplemental Table 5) showed corre-
lation coefficients ranging from �0.48 to 0.77, which is consistent
with the additional metabolic information brought by the present
signature.

5. Discussion

Metabolic syndrome is a complex health condition responsible for
the concurrence of several metabolic abnormalities and cardiovascu-
lar disturbances. Even if several clinical definitions co-exist, its
increasing worldwide prevalence, with now above 1 billion people
affected worldwide, particularly in the aging population with chronic
metabolic diseases, makes it a global public health concern [64-66].
In this context, the present study objective was to deeply investigate
and characterize the MetS phenotype. Our strategy was based on
analysing MetS subjects stable over a 3-year follow-up and on per-
forming a large phenotyping using complementary untargeted
metabolomics/lipidomics platforms. The type of design selected (i.e.,
comparing each individual with himself, and with a control group) is
of major interest in metabolic disease research as it increases the
ability to identify potential biomarkers by reducing the impact of
confounding factors. Using this multiplatform approach allowed then
generating novel integrated insights into MetS mechanisms and pro-
posing new candidate biomarkers within an optimized statistically,
analytically and biologically refined associated molecular signature.

The multiplatform untargeted strategy allowed a broad metabo-
lome coverage, delivering a comprehensive picture of the MetS with
no a priori knowledge the identity of analytes. Indeed, advances in
analytical techniques, and particularly the increase of their resolving
and separation powers, significantly impacted metabolomics
research allowing higher sensitivity and deeper metabolic coverage
[66]. In the present study, we successfully measured 2915 metabolite
and lipid features in serum samples from 123 older men at two time
points using 6 distinct analytical platforms. Results showed, as expected,



14 B. Comte et al. / EBioMedicine 69 (2021) 103440
good complementarity of the 6methods, allowing to detect a large diver-
sity of metabolites, from very polar molecules such as carbohydrates, or
amino acids to very apolar compounds such as TG. This complementarity
was also evidenced at each data treatment steps, first by the low correla-
tion level between method datasets, and between individual metabolite
and lipid related features, and second by the small number of shared
metabolites and lipids detected by several methods. Among them, it is
interesting to note that carbohydrates and derivatives, often poorly
detected in LC-HRMS methods, are more precisely characterized
(because of enhanced separation performance) by GC-HRMS and more
quantitatively assessed by NMR.

The significantly altered metabolites captured by the multi-
metabolomic platforms were integrated to reveal the modulated
metabolic pathways and get potential information about the involved
mechanisms. The contextualization of metabolites into pathways and
diseases is a difficult task that stems from several of the following
aspects. Firstly, despite the use of the most recent databases and
tools, a large part of the metabolome remains unknown and identi-
fiers of annotated species have to be harmonized, as well as ontolo-
gies between different research fields to fully map identified
metabolites and nodes in metabolic networks [59]. This partial map-
ping, together with some annotation uncertainties (especially for lip-
ids), can lead to limitation of biological interpretation [59]. Secondly,
the complexity of interpretation lies in the fact that metabolites are
involved in multiple overlapping pathways. Thirdly, the challenge in
metabolic network analysis resides in the quality of the reconstructed
networks, as well as the choice of the algorithm to extract sub-net-
works [60]. Eventually, although pathway enrichment analysis is use-
ful in identifying the metabolic pathways in which modulated
metabolites are overrepresented and which are therefore more likely
to be modulated, the results of this analysis must be interpreted with
caution as the different state-of-the-art metabolomics methods and
databases allow covering only a limited part of the metabolic net-
work, resulting in some uncovered or partially covered metabolic
pathways that would never be highlighted because of analytical lim-
its [67]. In the present study, the mapping of modulated metabolites
into the highly curated human metabolic network Recon2.2, per-
formed with the MetExplore tool [62], revealed that among the spe-
cific identified modulated metabolic pathways, changes in the global
metabolism of amino acids is of key importance in MetS. In fact, the 6
metabolic pathways linked to amino acids, showed that glutamate,
glutamine, and serine play central roles in energy and nitrogen
metabolisms. These observations are in accordance with several pub-
lications that have linked their metabolisms to insulin resistance and
impaired glucose tolerance [68,69]. More precisely, glutamate, as
part of 5/11 modulated pathways, was found as one of the most mod-
ulated metabolites (corrected p-value = 5.8 £ 10�10). The role of glu-
tamine and glutamate (as well as their ratio) on insulin and glucagon
activity have been widely reported [70,71]. Moreover, it has been
shown that serine and glycine nitrogen groups contribute in multiple
transamination reactions via glutamate formation [72]. Secondly,
branched-chain amino acid (BCAA) metabolism was identified as
highly modulated (with corrected LMM p-values ranging from
2 £ 10�6 to 2 £ 10�4) as well as some gamma-glutamyl-derivatives
(corrected p-value < 2 £ 10�4) formed in the glutathione dependent
transport of some amino acids. Some previous work indicated that
these modulations could also reflect an effect on the transport of these
amino acids [73]. These results are in accordance with a large body of
literature associating an increase of BCAA pathway to obesity and
related metabolic dysfunction, as well as to insulin resistance and dia-
betes [69,74�77]. Multi-organ complex metabolic interplaying pro-
cesses seem to be linked to these changes and the full mechanisms still
remain to be elucidated [77�79]. In addition, the gut microbiota may
play a role in the supply of BCAA to the body [79�81].

Moreover, serine is a central amino acid linked not only to other
amino acids but also to lipids with the phosphatidylserine family. In
particular, it is the precursor for the biosynthesis of the large family
of sphingolipids, which includes sphingomyelins and gangliosides. In
fact, among this last subclass, the ganglioside GM3 circulating levels
were reported as affected by both glucose and lipid abnormalities,
even if the mechanisms are still unclear [82,83]. In the present study,
some GM3 species were found highly negatively modulated (GM3
(42:2) corrected LMM p-value = 2 £ 10�6; GM3 (36:1) corrected p-
value = 2 £ 10�5), with significant positive correlation with HDL-Chol
and negative with glucose levels. Such findings may confer a protec-
tion role to the GM3 species against cardiometabolic risk. In particu-
lar, GM3 (42:2), often reported in the literature as GM3(d18:1/24:1),
has been identified as the most attractive target for metabolic screen-
ing of MetS risk factors [84]. Analysis of the different lipid families
and subclasses have been shown to provide insights into the patho-
physiology of MetS and all of its clinical components [13]. In lipido-
mics dataset, TG were found to be the most modulated family, as
expected in the context of MetS and dyslipidemia. Lysophosphatidyl-
choline species (LPCs) as major bioactive lipid components of oxi-
dized LDL-cholesterol, are known to play a key role in inflammation
processes [85,86]. In particular, LPC levels were described as
decreased with insulin resistance, independently of obesity [87].
More specifically, two main modulated species in our study (namely
LPC(18:2_0:0) and LPC(16:0_0:0), corrected LMM p-value = 2 £ 10�4

and 3 £ 10�3, respectively) were found as being associated with met-
abolic health in obesity [88]. Another study deeply investigated the
positive associations between LPC levels and whole-body insulin sen-
sitivity and concluded that they were related to muscle insulin sensi-
tivity, rather than hepatic insulin resistance [89]. Moreover, van der
Kolk et al. [90] recently highlighted that lower fasting plasma levels
of several LPCs, are associated with muscle insulin resistance rather
than obesity per se, with a key importance of LPC(18:1_0:0), LPC
(18:2_0:0), LPC(16:0_0:0), as found in the present study. Further-
more, the modulation of the glycerophospholipid pathway also
reflects the contribution of PCs from two major subclasses that were
found inversely modulated, namely diacyl-phosphatidylcholines
(PCaa) and the ether-bond PCs. In fact, PCaa were described as essen-
tial for the VLDL particles and HDL hepatic formation and secretion
[89,91]. Ether-bound PCs were already reported to be negatively cor-
related with MetS [89] with a decrease in oxidative stress level, as
they can act as antioxidants to prevent lipoprotein oxidation.

Additionally to LPCs involved in glucose metabolism/uptake, cir-
culating hexoses were found highly modulated (corrected LMM p-
values between 10�6 and 10�14) as well as the galactose pathway.
Associations between plasma hexose levels and dysglycemia/risk for
T2D have been already reported and it was suggested that excess glu-
cose could increase fluxes towards secondary conversion pathways
with for example, enlarged fructose concentrations [89,92]. Fructose,
glucose, and galactose are all precursors of glycogen and the impor-
tance of galactose as a substrate for hepatic glycogen synthesis has
been described [93]. In consequence, these increased sugar concen-
trations may again, reflect some insulin resistance and/or b-cell dys-
function in our older adult cases. While metabolic syndrome and
insulin resistance have been associated with increased gluconeogen-
esis [70,94], the importance of glutamine as a renal gluconeogenic
substrate is in agreement with the observed decreased in circulating
level of glutamine in association with the modulation of the glucose
pathway. Furthermore, the observed decreased level of 1,5-anhydro-
glucitol, previously described in prediabetes and T2D, was related to
its renal loss stimulated under hyperglycemic conditions [73,95,96].

Finally, in contrast to Ostojic et al. [97], the present case/control
comparison showed that plasma levels of the amino acid derivative,
guanidinoacetic acid, were significantly down-regulated in cases with
a significant increased level of creatine. This might suggest an increase
of creatine synthesis from guanidinoacetic acid. However, it is impor-
tant to keep in mind that creatine levels can also be modulated by
numerous factors, in addition to the guanidinoacetic acid-creatine axis.
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As metabolome does also reflect some modulation by extrinsic
factors, nutritional data must be considered. Indeed, subject charac-
teristics revealed that MetS subjects appear to be under some nutri-
tional ‘control’ with less energy and carbohydrate intakes as usually
recommended. The negative modulations of exogenous sugars evalu-
ated from metabolomics data, are in accordance with these results.
Moreover, data from dietary intakes suggested that cases were con-
suming less fibres/cereals, in agreement with beneficial effects of
fibres on glycemic control/insulin resistance [98]. In serum metabo-
lome, the indole-3-propionic acid level was found positively corre-
lated with dietary fiber ingestion as previously described [99]. This
metabolite, known to be a microbial product of tryptophan, was
described as part of the link between diet, intestinal microbiota, insu-
lin, and glucose metabolism through its role in modulating secretion
of glucagon-like peptide (GLP)�1 [100]. As reported by De Mello
et al. [99], it was directly associated with fiber intake mainly origi-
nated from whole grains. Indeed, the type of carbohydrate ingested
and pH can modulate the production of indole metabolites by the
intestinal microflora. Our results, together with the lower consump-
tion of grain products in cases, suggest similar mechanisms. In addi-
tion, pipecolic acid which originates mainly from the catabolism of
dietary lysine by intestinal bacteria [101], was found positively corre-
lated with cereals and fiber intakes, consistently with previous stud-
ies associating pipecolic acid with a whole grain-enriched diet [102]
as well as with total and soluble fiber intakes [103].

Finally, activation/prevalence of gut microbial species, bile acid
reabsorption, and dietary factors have been shown to change the
composition of the bile acid pool: among their numerous functions,
bile acids are involved in the regulation of energy expenditure, glu-
cose and lipid metabolism. Chenodeoxycholic acid (corrected LMM
p-value=10�3) in particular, has been shown to be increased in insu-
lin resistance and obesity [104,105].

In addition to this biological contextualization, different alterna-
tive integration methods have been developed in systems biology to
reduce the gap between the high amount of generated data and the
knowledge of complex biological systems. Performing large-scale
metabolomics requires special attention, in particular because of the
high dimensionality of data [106]. Special attention must therefore
be paid to standard operating procedures for data production and
data processing [107] to be able to extract meaningful information
[108]. In the present strategy, a mid-level data fusion (i.e. selection of
variables from each metabolomic/lipidomic dataset before integra-
tion) was performed to build the MetS comprehensive signature.
First, removing analytical redundancies both facilitates annotation of
metabolites, which is a complex step in the metabolomics workflow,
and avoids over correction during multiple testing. Then, as described
in different studies, variable selection is of major interest, both to
limit the over fitting and increase robustness of the models, maxi-
mize potentiality of each complementary method, and summarize
the biological information of importance [109]. Finally, contextualiza-
tion of signatures using enrichment and network analyses are of
great value for a functional integration and the identification of
molecular mechanisms involved in the pathophysiology. Conse-
quently, in the present study, the refinement of the comprehensive
signature, performed both in terms of measurement reliability, but
also by showing the consistent association between the modulated
metabolites/lipids and the underlying biological mechanisms, is
increasing the value of the proposed biomarker combination within
the reduced signature for further investigation and possible clinical
application [110].

This study has limitation in term of sample size and male subject
inclusion only. Nevertheless, the NuAge cohort quality in terms of fol-
low-up and phenotypic characteristics as well as the present study
being performed at two-time points, contributes to the robustness of
the results. Additionally, the use of such a large serum phenotyping
approach involving complementary analytical platforms is time and
expertise consuming and the associated high-costs limit such discov-
ery studies. Evidently, the proposed biomarker combination within
the reduced signature will need validation for its qualification in vari-
ous populations. The present study will contribute to fulfill this objec-
tive and accelerate the translation into clinics, with the possibility of
implementing such a reduced signature using a targeted strategy
based on a single available and robust analytical device, with man-
ageable analytical issues and reasonable costs.

From a clinical perspective, the interest of a large phenotyping
strategy, as the one reported here, to better characterize disease phe-
notypes and discover potential candidate biomarkers and signatures
that can become after validation, new tools for diagnosis, is now a
recognized approach [111]. Then, in a subsequent step, the combina-
tion of the assessment of an individual health status from metabolo-
mics/lipidomics together with clinical measurements [112] will
contribute to improve clinical diagnosis and refine the different phe-
notypes associated with MetS components. Indeed, disentangling the
relative contribution of different factors (e.g. diet, medical co-mor-
bidities, fasting versus fed state, age, sex) to circulating metabolite
levels is required to understand the functional role of novel metabo-
lites, and assess the potential value of selected markers in association
with clinical outcomes [113]. Finally, this will allow developing sys-
tems medicine by combining high-throughput large scale measure-
ments at multi-scale levels over time with different types of clinical
information [114].
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