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Abstract: In this study, we present an operational methodology for mapping irrigated areas at plot
scale, which overcomes the limitation of terrain data availability, using Sentinel-1 (S1) C-band SAR
(synthetic-aperture radar) and Sentinel-2 (S2) optical time series. The method was performed over
a study site located near Orléans city of north-central France for four years (2017 until 2020). First,
training data of irrigated and non-irrigated plots were selected using predefined selection criteria to
obtain sufficient samples of irrigated and non-irrigated plots each year. The training data selection
criteria is based on two irrigation metrics; the first one is a SAR-based metric derived from the S1
time series and the second is an optical-based metric derived from the NDVI (normalized difference
vegetation index) time series of the S2 data. Using the newly developed irrigation event detection
model (IEDM) applied for all S1 time series in VV (Vertical-Vertical) and VH (Vertical-Horizontal)
polarizations, an irrigation weight metric was calculated for each plot. Using the NDVI time series,
the maximum NDVI value achieved in the crop cycle was considered as a second selection metric.
By fixing threshold values for both metrics, a dataset of irrigated and non-irrigated samples was
constructed each year. Later, a random forest classifier (RF) was built for each year in order to
map the summer agricultural plots into irrigated/non-irrigated. The irrigation classification model
uses the S1 and NDVI time series calculated over the selected training plots. Finally, the proposed
irrigation classifier was validated using real in situ data collected each year. The results show that,
using the proposed classification procedure, the overall accuracy for the irrigation classification
reaches 84.3%, 93.0%, 81.8%, and 72.8% for the years 2020, 2019, 2018, and 2017, respectively. The
comparison between our proposed classification approach and the RF classifier built directly from
in situ data showed that our approach reaches an accuracy nearly similar to that obtained using
in situ RF classifiers with a difference in overall accuracy not exceeding 6.2%. The analysis of the
obtained classification accuracies of the proposed method with precipitation data revealed that years
with higher rainfall amounts during the summer crop-growing season (irrigation period) had lower
overall accuracy (72.8% for 2017) whereas years encountering a drier summer had very good accuracy
(93.0% for 2019).

Keywords: irrigation; synthetic aperture radar; normalized difference vegetation index; soil moisture;
summer crops

1. Introduction

The current changing climate has altered the frequency and severity of extreme hydro-
logical events [1] causing adverse impacts on crop production [2] and endangering food
security [3]. Insufficient precipitation and the significant increase in evaporative demand
due to higher air temperatures have already affected agricultural regions particularly in
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arid and semi-arid regions [4]. As a natural response, water demand for crop cultivation
has increased in the last decades [5] despite the significant decrease in water resources in
many regions worldwide [6]. Over the last 50 years, irrigated areas have doubled [7] and
they are projected to increase from 287 million hectares in 2005 to 318 million hectares in
2050 [8]. Given the regional water shortage, new agricultural policies should be adapted
for a transition towards a more efficient and sustainable agriculture system to conserve
water and enhance crop productivity.

Imposing sustainable water conservation policies at the core requires quantifying the
spatial extent of the irrigated areas. Currently, the extent of irrigated areas at global scales
is principally derived from country-level statistics and remains uncertain [9–12]. Although
national statistical data gives the gist of irrigated areas and water use, these data may lack
precision especially when irrigation is not reported by the farmers. To address the need
for a precise large-scale mapping of irrigated areas, remote sensing provides a powerful
tool for mapping irrigated areas [10,13–16]. With the availability of several operational
cost-free and open access satellites (e.g., Landsat, Sentinels), remote sensing has been
widely used for monitoring and managing agricultural crops from the field level [4,17] to
large domains [18–21].

Irrigation extent mapping using optical satellite data has been explored in several stud-
ies using various methodologies to distinguish between irrigated and rain-fed crops [22–24].
Nevertheless, these methods are developed based on a similar principle that the phenologi-
cal differences between irrigated and non-irrigated crops (e.g., growth rate, greenness) are
detectable by the vegetation spectral information derived from satellite optical sensors [25].
Vegetation indices such as NDVI (Normalized Difference Vegetation Index) [26], NDWI
(Normalized Water Vegetation Index) [24], NDRE (Normalized Difference Red-Edge) [14],
or GI (Greenness Index) [27] derived from Landsat, MODIS, and Sentinel-2 data have been
widely used to map irrigated areas. Most of the prior studies using optical data tend to
classify irrigated/non-irrigated areas only for one specific crop type. The transferability
of the methods based on the optical data is further limited in humid regions due to the
cloud cover [28], and the marginal difference in the crop phenology between irrigated and
rain-fed crops [29].

Synthetic Aperture Radar (SAR) data have been also exploited for mapping irrigated
areas. The key element in the usage of the SAR data for irrigation mapping is the surface
soil moisture (SSM) values that have been widely demonstrated to be correlated with the
radar backscattering coefficients [30–36]. Several studies have shown that the C-band SAR
temporal series derived from the Sentinel-1 (S1) satellite is efficient for mapping irrigated
areas at plot scale [15,16]. The increase in the soil moisture due to an irrigation event causes
an increase in the SAR backscattering coefficient between two consecutive SAR acquisitions
if no rainfall is observed. However, since rainfall and irrigation have the same influence
on the SSM values, it is important to distinguish between the increase of the SSM due to
rainfall and irrigation.

In a recent study, Bazzi et al. [16] used the differences between the S1 SAR signal
calculated at grid-scale and plot scale to remove the rainfall–irrigation ambiguity. Using
this technique and employing a convolutional neural network as a classification tool,
Bazzi et al. [16] mapped irrigated areas at plot scale using the S1 C-band SAR temporal
series over a semi-arid region in Catalonia with an overall accuracy of 94%. Other studies
including Gao et al. [15], Bousbih et al. [37], and Yann et al. [14] have also used S1 SAR data
for mapping irrigated areas with accuracy ranging from 78% to 82%. Bazzi et al. [38] used
a change detection model for detecting irrigation episodes at plot scale using S1 data. They
achieved an overall accuracy of 76% in detecting irrigation episodes over grassland plots.
The applicability of SAR data for irrigation mapping, however, could be limited in regions
with frequent rainfall events [38,39]. Additionally, the C-band SAR data have been reported
to be more sensitive to canopy density than soil moisture in dense vegetative areas such
as wheat and grasslands [38,40,41]. In the case of very well-developed vegetation cover,
the penetration of the C-band into the canopy is significantly reduced. El Hajj et al. [41]
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and Nasrallah et al. [40] showed that the soil contribution in the C-band SAR backscattered
signal (wavelength of 6 cm for S1) is negligible between the germination and heading
growth stages in wheat due to the low penetration of the C-band signal to the soil surface.
In this case, detecting an irrigation event using the increase in the backscattering coefficient
could be challenging.

Another key factor in mapping irrigated areas using remotely sensed data is the
classification method. Most of the previous studies on land cover classification and ir-
rigation mapping are based on supervised classification techniques including Random
Forest (RF) [16,20], Support Vector Machine (SVM) [15], or neural networks (NN) [18,21,42].
Supervised classification methods require obtaining in situ data (at yearly or half-yearly
period), which is time and resource consuming, and may not be spatially and temporally
transferable [43]. To circumvent this issue, Bazzi et al. [44] proposed a spatiotemporal
transfer-learning framework that transfers a CNN (Convolutional Neural Network)-based
irrigation classification model built on a source geographical region (Catalonia northeast
Spain), to map irrigated areas on a target region (Tarbes of southwest France). Nevertheless,
this method still requires in situ data over the target area in order to refine the source
classification model.

Therefore, for continuous and yearly mapping of irrigated areas with fewer in situ
measurements, an operational methodology capable of overcoming the limitation of ter-
rain data collection is required. The proposed methodology should be reproducible and
applicable for several years. In the context of operational mapping of irrigated areas, this
study proposes an operational semi-supervised framework for mapping irrigated areas at
a plot scale that overcomes the limitation of the availability of in situ data. The proposed
methodology is based on a pre-step of selecting irrigated and non-irrigated plots to be
served as training data for building a classification model. The training data selection
is based on SAR and optical derived irrigation metrics (without using in situ data). The
defined training data were then implemented in a RF classifier to map irrigated areas using
SAR and optical temporal series. The obtained classifier was validated using real in situ
data acquired over four years to assess the accuracy of the classification. The findings
including the irrigated area map, could be later used by local authorities and stakeholders
for estimating and managing water use at regional scales. These maps could help decision
makers better follow the current irrigation situation and build future policies to manage
water resources.

2. Materials

2.1. Study Site

The study site examined is located near Orléans city of north-central France (Figure 1).
Located in the “Centre-Val de Loire” region, the study site is characterized by oceanic
climate with an average rainfall of 730 mm per year with several rainfall events recorded
in summer season. The cumulative precipitation was recorded from a local metrological
station located in Orléans city, during the period between May and October for the years
2017, 2018, 2019, and 2020 reached 321 mm, 210 mm, 150 mm, and 180 mm, respectively.
In the study site, irrigation mainly exists for summer crops (maize, sorghum, sunflower,
etc.) during the period between May and October of each year. The agricultural plots in
the studied area are almost flat with a very slight average slope of 3.2%.
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Figure 1. Location of the study site with collected in situ data near Orléans city in north-central France for (a) 2017, (b) 2018,
(c) 2019, and (d) 2020. Non-irrigated plots are presented in red and irrigated plots are presented in blue.

2.2. Field Campaigns

In the study site, irrigation mainly occurs for spring and summer crops, which are
generally sowed in April and May and harvested in September and October. For this
reason, four field campaigns in the years 2017, 2018, 2019, and 2020 were conducted over
the study site in June and July of each year to collect irrigation information. In the field
campaigns, each plot was registered as either irrigated, if irrigation was in progress during
the campaign date or irrigation materials exist on the plot with summer crop cycle, or
non-irrigated if neither irrigation nor irrigation materials has been observed.

Table 1 presents the number of terrain samples collected for each year. In 2020, a
large database of 686 plots was registered. However, a total of 92, 127, and 116 plots
were registered for the years 2017, 2018, and 2019 respectively. The years 2017 and 2018
had the least percentage of non-irrigated plots from the total number of examined plots
(approximately 28%). On the other hand, 49% and 42% of the collected plots were non-
irrigated in the database for 2019 and 2020, respectively.

Table 1. Distribution of the number of in situ irrigated and non-irrigated plots for the four years.

Year Irrigated Non-Irrigated Total Average Area (ha)

2017 66 26 92 10.96
2018 91 36 127 10.34
2019 59 57 116 8.35
2020 395 291 686 7.18
Total 611 410 1021 8.00

The average area of the visited plots in 2017, 2018, 2019, and 2020 is 10.96, 10.34, 8.35,
and 7.18 hectares, respectively (Table 1). For the four years together, the average area of all
the visited plots is 8.0 ha. The area of the in situ plots for the four years varies between one
ha and 48 ha. Seventy percent of the plots have a surface area between 1 and 10 ha, 21% of
the plots have a surface area between 10 and 20 ha, and 9% of the plots have a surface area
greater than 20 ha.
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2.3. RPG Data

The graphical parcel registry (RPG) is the French official graphical declaration system
used by farmers, which provides an annual geo-localized representation of the agricultural
parcels and their corresponding crop type. Covering around 26 million hectares, the RPG
contains more than 6 million small parcels over the entire country. For each year, the
corresponding RPG data were downloaded over the study site (Figure 1) (https://www.
data.gouv.fr/en/datasets/, accessed on 1 July 2021) and used in this study. Among all
the existing agricultural classes in the RPG, only classes corresponding to agricultural
activities of summer and winter crops (including irrigated grasslands) were kept whereas
vines and fruit trees were discarded. It is worth mentioning that the RPG data contain only
the plot limits and their crop type and do not contain any information about irrigation.
In this study, the RPG data were used to obtain the agricultural fields. Using the RPG
agricultural fields, the training plot dataset (irrigated/non-irrigated) used for the irrigation
classification model is later selected with the training dataset selection criteria.

2.4. Sentinel-1 SAR Data

The high-resolution Level-1 ground range detected (GRD) product of the S1 satellite
provides a 10 m × 10 m pixel spacing SAR image with a 6-day revisit time. However,
with several crossing orbits of the S1, four SAR images could be obtained in the period of
6 days within a study site. Thus, 578 available S1 images over the study site from different
orbit acquisitions have been downloaded for the four years via the Copernicus website
(https://scihub.copernicus.eu/dhus/#/home, accessed on 1 July 2021). Figure 2 shows
an example of the frequency of the four SAR images acquired from the four S1 orbits for the
year 2020 in both ascending ‘A’ and descending ‘D’ modes. Images in the descending mode
were acquired in the morning (~05h00 UTC) whereas images in the ascending mode were
acquired in the evening (~17h00 UTC). After the first acquired descending morning image
(D1), another descending morning acquisition was available 24 h later (D2). Thirty-six
hours later, an ascending evening image was acquired (A1). Finally, the fourth image (A2)
was acquired 24 h after the first evening acquisition. The hatched area in Figure 2 shows the
period where no images were acquired (2.5 days). After 6 days from the first descending
image acquisition (D1), the first descending morning image was then repeated (revisit
time of S1 satellite) and the same acquisition pattern was later repeated. Therefore, over
the study site and for each year, four S1 temporal series (TS) were obtained later referred
to as TSI, TSII, TSIII, and TSIV (for 2020, it corresponds to TSD1, TSD2, TSA1, and TSA2,
respectively). The four S1 temporal series correspond to S1 images from the four different
S1 orbit acquisitions. Each TS in each year is composed of 42 to 46 S1 images (at 6 days
revisit time) according to the studied year.

Figure 2. Example of the frequency of S1 images in ascending ‘A’ (evening, blue) and descending
‘D’ (morning, red) modes for the year 2020. Hatched area represents the period with no available
SAR acquisitions.

Radiometric and geometric calibration were performed for all S1 images using the S1
toolbox developed by the ESA (European Space Agency) jointly with Brockmann Consult

https://www.data.gouv.fr/en/datasets/
https://www.data.gouv.fr/en/datasets/
https://scihub.copernicus.eu/dhus/#/home
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and SkyWatch; Hamburg, Germany. The radiometric calibration allows passing from
the DN (digital number) of the pixel to backscattering coefficient (σ0) in linear units
while the geometric calibration ensures the ortho-rectification of the S1 images using the
digital elevation model (DEM) of the SRTM (Shuttle Radar Topography Mission) at 30 m
spatial resolution.

2.5. Sentinel-2 Optical Data

For each year, temporal series of S2 optical images were downloaded from Theia
website (https://www.theia-land.fr/, accessed on 1 July 2021) covering the period between
February and October. This period largely fits the period of the irrigation of summer crops
in the four years (usually between May and October). Optical S2 images were downloaded
at a frequency of one to two images each month. The images downloaded from the French
land data center (Theia) were calibrated for atmospheric correction and ortho-rectified
for geometric correction (level 2A). Moreover, starting from 2018, Theia started providing
monthly synthesized cloud-free S2 images (level 3A), which were also downloaded when
available. The S2 images were mainly used to calculate the NDVI images used later in the
training dataset selection criteria and the irrigation mapping classifier.

2.6. Global Precipitation Mission (GPM) Data

The GPM mission is an international satellite mission initiated by the National
Aeronautics and Space Administration (NASA) and the Japan Aerospace and Explo-
ration Agency (JAXA) with the aim to provide global precipitation measurements from
space [45]. The IMERG (Integrated Multi-satellite Retrievals for GPM) data product of the
GPM offers global precipitation estimations at 0.1

◦
spatial resolution (~10 km × 10 km)

between 60
◦
N and 60

◦
S. In this study, the daily cumulative rainfall maps offered by the

Final GIS (Geographic Information System) IMERG data (version 06) were downloaded
for the period between February and October of each year (https://gpm.nasa.gov/data/
directory accessed on accessed on 1 July 2021). Nevertheless, the rainfall data from the
GPM were not used in the proposed mapping method. They were only used to analyze
and discuss the obtained results with rainfall registrations.

3. Methods

3.1. Overview

The proposed methodology, later referred to as S2IM (Sentinel-1/Sentinel-2 Irrigation
Mapping), consists of two major steps for mapping irrigated summer crops (Figure 3). In
the first step, the irrigated/non-irrigated training plots are selected based on multi criteria
derived from both SAR and optical data. The selection criteria of the training dataset are
based on threshold values for the maximum attained NDVI for the plot during the studied
period (calculated from S2 data), and an irrigation possibility weight at each plot obtained
using the newly derived irrigation event detection model (IEDM) at plot scale [38,39]. After
selecting the training dataset that corresponds to the plots deemed as irrigated and non-
irrigated with a high confidence degree, the second step consists of implementing S1 data
(radar backscattering coefficient at plot and grid scales), S2 data (NDVI), and the selected
training plots into a random forest classifier to build a classifier for mapping irrigated areas
(Irrigation Classifier). Finally, using the in situ dataset, the performance of the classifier was
assessed using several accuracy metrics. The methodology was performed and validated
for four years separately (2017, 2018, 2019, and 2020).

https://www.theia-land.fr/
https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
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Figure 3. Overflow of the methodology for irrigation mapping at plot scale.

3.2. Sentinel-1 Data

Using the plots’ boundaries of the RPG data, the average S1 backscattering coefficient
at plot scale σ0

p was calculated for each acquired S1 image by averaging the pixel values
within each plot. Before averaging the pixel values within each plot, an interior buffer of
−10 m (10 m ~ one S1/S2 pixel) was applied to the RPG plots in order to avoid including
boundary pixels from nearby plots, highways, or surrounding vegetation. Moreover,
RPG plots with a surface area less than 0.1 ha were not considered in order to avoid
the speckle noise in the SAR data due to very small number of averaged pixels (0.1 ha
~ 10 S1 pixels). The σ0

p is calculated in both VV and VH polarizations. For each plot,
four distinct S1 temporal series could be obtained (TSI, TSII, TSIII, and TSIV) each at 6-day
revisit time (maximum time difference between TSI and TSIV is 3.5 days). However,
due to the limited overlapping zone of the S1 images, some plots of the RPG are only
covered by two TS. In addition, the radar backscattering coefficients were calculated at
a grid of 10 km × 10 km

(
σ0

G
)
. Indeed, as shown by Bazzi et al. [16,39] the grid scale S1

backscattering helps in reducing the uncertainty between rainfall and irrigation. In fact, the
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increase of the S1 backscattering signal at grid scale σ0
G, between two consecutive S1 images,

is mainly due to the increase of soil moisture caused by a rainfall event. On the other
hand, when σ0

p increases between two consecutive S1 images and σ0
G decreases or remain

stable (no rainfall) then an irrigation event could have occurred. As such, the average S1
backscattering coefficient σ0

G at the grid scale was calculated by averaging the pixel values of
bare soil pixels within each grid cell (10 km× 10 km) in both VV and VH polarizations. The
extraction of bare soil pixels at each S1 date was performed by delineating the agricultural
area from the French land cover map [46] and applying a threshold value of the NDVI
calculated from S2 images (NDVI < 0.4). Thus, for each agricultural plot, a temporal series
of σ0

p at each TS is obtained at plot scale and its corresponding grid scale (σ0
G). The plot

and grid scale S1 backscattering coefficients for each TS were used as input layers for
applying the irrigation event detection model (IEDM) and later in the RF classification of
irrigated areas.

3.3. Sentinel-2 Data

Using each available S2 image, the average NDVI value at plot scale was obtained
by averaging the NDVI pixels within each RPG parcel. The interior buffer of −10 m was
also considered on the RPG plots to eliminate border pixels and plots with area less than
0.1 ha were also not considered. Thus, an NDVI temporal profile is obtained for each plot
in each year. The NDVI was first used as input in the IEDM, then in the selection criteria
of the training dataset (maximum attained NDVI value), and finally as input data for the
RF classifier.

3.4. Training Dataset Selection Criteria

The selection of the irrigated/non-irrigated training plots from the RPG data is based
on two threshold criteria fixed from S1 and optical derived metrics. Using the S1 data,
an irrigation possibility weight was calculated for each plot by applying the IEDM on
the several S1 temporal series in VV and VH polarizations. In addition, using the optical
NDVI temporal profile, the maximum attained NDVI value at each plot was considered as
additional selection metric.

3.4.1. Irrigation Possibility Metric

In a recent study, Bazzi et al. [39] developed a change detection model (called IEDM
for irrigation event detection model) capable of detecting irrigation events at plot scale
using S1 SAR temporal series. The IEDM principally uses the σ0

p and σ0
G for detecting

the irrigation possibility at each S1 acquisition for each plot. In the IEDM, the increase
in the SAR backscattering σ0

p between two consecutive SAR acquisitions is assumed to
be related mainly to the increase in the surface soil moisture (SSM) of the plot. However,
since both rainfall and irrigation lead to an increase in the SSM values, the IEDM considers
that rainfall/irrigation uncertainty could be removed by using the S1 backscattering at
grid scale. Indeed, the increase in the σ0

G between two consecutive S1 acquisitions is most
probably linked to a rainfall event occurring between the two S1 images.

For each plot and at each S1 image, the IEDM gives an irrigation possibility 0, 25,
50, and 100. The four irrigation possibility values are directly related to the change in the
σ0

p between two dates ti and ti−1 (∆σ0
P = σ0

p(ti)− σ0
P(ti−1) ). The value 0 corresponds to

the absence of any irrigation chance between ti and ti−1 caused either by the decrease of
the σ0

p (∆σ0
p ≤ −0.5 dB decrease of SSM) or increase of the σ0

G (∆σ0
G ≥ 1 dB rainfall event

occurred). The low irrigation possibility weight (value = 25) correspond to the absence
of rainfall events between ti and ti−1 ensured by the decrease of σ0

G (∆σ0
G ≤ 0.5 dB) and

a slight modification in the σ0
p between ti and ti−1 (−0.5 ≤ ∆σ0

p < 0.5 dB). The medium
irrigation possibility weight (value = 50) is associated with a moderate increase in the σ0

p

(0.5 ≤ ∆σ0
p < 1 dB) with the absence of rainfall events (∆σ0

G ≤ 0.5 dB). Finally, the high
possibility of irrigation (value = 100) is ensured when the σ0

p strongly increases (∆σ0
p ≥ 1 dB)

with no rainfall event detected (∆σ0
G ≤ 0.5 dB). However, additional filters are used in



Remote Sens. 2021, 13, 2584 9 of 28

the IEDM to confirm the existence of an irrigation event or to remove falsely detected
irrigation events. One of the additional filters considers the SSM estimations at plot scale
easily estimated using σ0

p and the neural network technique proposed by El Hajj et al. [33].
For example, to confirm the existence of low irrigation possibility weight (value = 25) with
only slight modification of σ0

p , the IEDM uses the SSM estimation at plot scale. In fact,
the low-possibility irrigation event is detected if and only if the plot’s SSM estimation at
time ti−1 was high (SSM ≥ 20 vol.%) and remained with high value to time ti (humid soil
conditions persisted from time ti−1 to ti). Moreover, an NDVI filter is used to reduce some
falsely detected irrigation events. The false detections could be due to the increase in the
σ0

p values related to the change of surface roughness [47,48]. The NDVI filter proposes that
if an event is detected with low NDVI value at date ti (NDVI < 0.4) and the NDVI value
one month later at ti+30 decreases or remains stable (NDVIti+30 − NDVIti ≤ 0.1), then the
event is discarded (crop cycle in decreasing stage or persistent bare soil conditions).

The IEDM was validated on several geographical areas with different climatic contexts
where Bazzi et al. [39] proved the applicability of this algorithm on several study sites (semi-
arid and temperate areas). Moreover, Bazzi et al. [38] validated the IEDM for irrigation
detection at intensively irrigated grassland plots. They reported that irrigation events
could be detected with an F_score of 75% when using both the VV and VH polarizations
and four S1 temporal series (all available acquisitions over a study site).

As proposed in [39] and [38], the IEDM was applied at each plot of the RPG, at each
S1 temporal series separately. This means that, for a given year, the IEDM was applied
at each plot using the S1 data (σ0

p and σ0
G) of the same temporal series at 6-day revisit

time. The separate use of the IEDM over the four TS is basically due to the diurnal effect
between the morning and the evening acquisitions that may lead to uncertain irrigation
detection [38,49,50]. Moreover, as the S1 images are acquired at different incidence angles,
the use of all S1 temporal series together necessitates a normalization of the incidence angle,
which generally does not allow eliminating completely the effect of incidence angle. Thus,
an undesirable error will be added to the σ0

p . Therefore, at each plot and each date (i) of
each TS, an irrigation possibility weight Pi

TS(pq) is obtained for each polarization (TS is
the temporal series, i is the date of the image and pq = VV or VH). Then, the results of the
irrigation possibilities of the four TS were combined in both VV and VH polarizations to
obtain an irrigation possibility metric for each plot.

Figure 4 illustrates the combination procedure of the four temporal series and both
VV and VH polarizations at each plot. For a given plot, four S1 TS are available where
each TS is treated separately with the IEDM for both VV and VH. The application of the
IEDM gives to each S1 date (i) in each TS an irrigation possibility indicator in both VV
and VH polarizations Pi

TS(pq) (pq = VV or VH). Then, the results of the IEDM from the
four series are summed for both VV and VH separately. In other words, the irrigation
possibilities appearing in the search window of the 4 consecutive S1 images (Figure 2) at
3.5 days interval are added. For example, in the VV and the VH polarizations, the four
irrigation possibilities occurring at the first acquisition date P1

I , P1
II, P1

III, and P1
IV of the

four S1 temporal series (3.5 interval between P1
I and P1

IV) are summed to obtain one value
for VV (P1

VV) and one value for VH (P1
VH). As a result, two irrigation indicator series are

obtained from the four TS; one for VV and the other for VH, henceforth referred to P-VV
and P-VH, respectively.
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Figure 4. Detailed description of the combination of temporal series (TS) in VV and VH polarizations to calculate the
irrigation metric for each plot using the IEDM. n is the number of images (dates) in each TS and i represents the date.
Number of TS equals to 4 in our case.

As suggested by Bazzi et al. [38], the combined use of VV and VH provides better
detection of irrigation events and reduces significantly the false detection. Thus, P-VV and
P-VH were further combined. For each irrigation indicator value obtained at each date (i) of
the P-VV and P-VH series, if no irrigation possibility exists within one polarization (Pi

VV = 0
or Pi

VH = 0), then the irrigation event is not considered. Thus, the irrigation indicator that
combines VV and VH Pi

VVVH will be 0 (no irrigation event retained by the algorithm).
If an irrigation possibility exists simultaneously within both VV and VH (Pi

VV 6= 0 and
Pi

VH 6= 0), then the maximum of the possibility weight value between Pi
VV and Pi

VH is
considered. Finally, the cumulative irrigation possibility weight for each plot “cumulipw” is
the sum of all the irrigation possibilities of combined VV and VH (∑n

i=1 Pi
VVVH) divided

by the number of the used temporal series (maximum 4 in our case). In fact, some plots
are not covered by four images due to the limited overlapping extent of the S1 images.
Therefore, it was important to normalize the cumulative irrigation possibility weight by
the number of used TS to get a discrete metric independent of the number of the used TS.
Thus, each plot has an irrigation indicator deduced from the application of the IEDM on
all possible TS using VV and VH polarizations. This indicator will be later used to select
training samples of irrigated/non-irrigated plots. The cumulipw is a value that represents
the accumulation of the irrigation possibility weights Pi

TS(pq) for each plot, which are
derived from the IEDM at each S1 image in both VV and VH and normalized for the
number of TS used. Thus, as the detectable irrigation events on the plot increase, the
cumulipw value will increase. Consequently, very low cumulipw values could be evidence of
the absence of irrigation events at the plot and very high cumulipw values could be evidence
of an intensively irrigated plot. Therefore, for a non-irrigated plot to be selected in the
training dataset, the value of the cumulipw should be very low to ensure that approximately
no possible irrigations are detected on the plot. On the other hand, a high value of cumulipw
is required for a plot to be selected as an irrigated training plot to be sure that the plot
corresponds to an irrigated plot.
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3.4.2. Maximum NDVI Metric

Several studies have shown that vegetation indices derived from optical images could
be used to separate irrigated and non-irrigated plots due to the different spectral response
between irrigated and non-irrigated plots.

The NDVI, which represents a proxy measure for absorbed photosynthetic active radiation,
is a commonly used vegetation index to map irrigated and non-irrigated crops [10,14,37]. In
fact, several studies assessed the effect of water abundancy on the NDVI values and showed
that the NDVI values of different crops increase when the available soil moisture for vegetation
increases [51–54]. When the crop benefits from additional amounts of water through
irrigation, the highest levels of photosynthesis could be achieved along with highest
biomass and densest vegetation cover. These three mentioned biophysical properties
induce high NDVI values for irrigated crops. Indeed, several studies have demonstrated
that irrigated crops, especially maize and wheat, show higher NDVI than non-irrigated
crops [55]. For example, Pervez and Brown [26] used the maximum NDVI criterion to map
irrigated areas over the entire US continent. In their study, they showed that the maximum
NDVI (peak value) for non-irrigated crops (including corn, dry beans, pasture, and millet)
does not exceed 0.75. However, all irrigated crops showed a peak NDVI value higher than
0.8.The same methodology was later used by Pervez and Brown [56] to map irrigated areas
over USA and extract the temporal change of irrigated surface.

Unlike other low-temporal-resolution satellites, the high revisit time of the S2 satellite
allows obtaining at least two cloud free images each month. The high revisit time of the
S2 permits detailed monitoring of the NDVI values at plot scale and thus extracts the
maximum NDVI or a value near to the maximum NDVI attained at the plot.

For these reasons, we propose to include additional criteria for the selection of the
training irrigated/non-irrigated plots based on the maximum value of the NDVI. As men-
tioned in Section 2.2, the irrigation period in our study site mainly occurs for irrigated
spring/summer crops, which are sowed in April and May and harvested between Septem-
ber and October. Therefore, the maximum NDVI value reached for each plot during the
crop cycle between May and October was registered (maxNDVI). Based on the literature
and the analysis of the in situ maximum NDVI for irrigated and non-irrigated plots (results
shown later in the Results section), we were able to define two threshold values to separate
irrigated and non-irrigated training plots. For the maxNDVI metric, we consider that for
the plot to be selected as a non-irrigated training plot, the maxNDVI value must not exceed
0.7 whereas the maxNDVI value for a plot to be selected as irrigated training plot must
exceed 0.8. The considered thresholds (<0.7 for non-irrigated and >0.8 for irrigated) allow
obtaining irrigated and non-irrigated training plots with high confidence and less overlap
between the two classes.

3.4.3. Selection Criteria of Irrigated/Non-Irrigated Plots

Based on the two calculated metrics, cumulipw and maxNDVI, the irrigated and non-
irrigated plots for the training phase of the RF each year are selected.

For the maxNDVI metric, we consider that for the plot to be selected as a non-irrigated
training plot, the maxNDVI value must not exceed 0.7 whereas the maxNDVI value for a
plot to be selected as irrigated training plot must exceed 0.8.

For the cumulipw metric, a plot must have a low value of cumulipw to be considered as
a non-irrigated training plot. In this study, we consider that for the plot to be selected in the
non-irrigated class of the training dataset, the cumulipw value should be less than or equal to
25. The cumulative possibility weight of 25 was considered as a very low value indicating
a very low number of detected irrigation events by the IEDM at the plot during the whole
crop season. For example, using four temporal series as present in Figure 4, a plot achieving
a cumulipw value of 25 can have only one high possibility-weight event (100) present on
only one image of the four images (from 4 TS: Pi

I, Pi
II, Pi

III, Pi
IV) during the whole season in

both VV (Pi
VV = 100) and VH (Pi

VH = 100) (Pi
pq = Pi

I + Pi
II + Pi

III + Pi
IV = 100+ 0+ 0+ 0).

In this case, the cumulipw is the maximum between Pi
VV and Pi

VH (100) divided by 4 TS
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(100/4 = 25). Another example to attain a cumulipw value of 25 is if a medium-possibility-
weight irrigation is detected on only one image of the four TS (Pi

I, Pi
II, Pi

III, Pi
IV) in VV

(Pi
VV = 50) and VH (Pi

VH = 50) and another medium-possibility-weight irrigation is
detected over one image of different four TS (date “k”) in VV and VH (Pk

VV = 50) and
Pk

VH = 50). In this case, the cumulipw value reaches 25 ((50 + 50)/4).
For the irrigated class, we consider that a plot must have a high value of cumulipw to

be taken for the irrigated training samples. The high cumulipw value ensures the detection
of several irrigation events on the plot during the crop season. In this study, a value of
cumulipw greater than or equal to 250 is fixed to consider a plot in the irrigated training
sample. For example, using the four TS, a value of 250 could be achieved if five irrigation
events are detected with high-possibility weights (100) and each irrigation event is present
on two of the four images from the 4 TS (e.g., Pi

pq = Pi
I + Pi

II + Pi
III + Pi

IV = 100+100+0+0) in
both VV (Pi

VV = 200) and VH (Pi
VH = 200). These 5 irrigation events will give a cumulative

irrigation possibility weight equal to 250 (5 irrigation events x 200 possibility weight/4 TS).
Thus, the value greater than or equal to 250 ensures that a sufficient number of irrigation
events are detected on the plot.

Finally, the selection of the training dataset for each class was fixed by combining both
metrics (maxNDVI and cumulipw). This means that a plot is considered as “irrigated training
plot” if the maxNDVI ≥ 0.8 and the cumulipw ≥ 250 simulatenously. In contrast, a plot
is selected as “non-irrigated training plot” if the maxNDVI ≤ 0.7 and the cumulipw ≤ 25.
For each of the four years (2017, 2018, 2019, and 2020), an independent training dataset of
irrigated and non-irrigated plots has been selected from the RPG data using the explained
selection criteria. This means that for each year, a corresponding classification model could
be obtained.

3.5. Random Forest Classifier

3.5.1. Training Phase

Through the literature, random forest (RF) has widely demonstrated its ability to
perform a high-quality classification. Particularly, irrigation mapping using random forests
has been recently exploited by several studies [14–16]. Moreover, studies dealing with
mapping irrigated areas proved the reliable use of both SAR and optical temporal series
for mapping irrigated areas. For example, Pageot et al. [14] used both S1 time series and
optically derived vegetation indices to map irrigated and rain-fed summer crops in a humid
area. Moreover, Bazzi et al. [16] showed that the use of the grid scale σ0

G S1 temporal series
along with the plot scale σ0

p series and NDVI derived from S2 images in an RF classifier
enhances the accuracy of irrigated area mapping. In addition, Gao et al. [15] demonstrated
that using statistical metrics derived from S1 SAR series at plot scale in a random forest
classifier leads to a good accuracy for mapping irrigated areas. Following these studies,
the RF classifier was used for mapping irrigated areas using σ0

p , σ0
G, and NDVI temporal

series (Figure 3). σ0
p , σ0

G, and NDVI temporal series of the training dataset derived from the
previously explained selection criteria (Section 3.4) were used to train the RF classifier. It
is worth mentioning that for each year, an RF classifier was developed using the training
dataset corresponding to each year (2017, 2018, 2019, and 2020).

3.5.2. Validation and Assessment Phase

To assess the accuracy of the obtained RF classifier in each year, we used the in situ
terrain dataset of irrigated/non-irrigated plots (Section 2.2) as a validation dataset. This
means that, for each year, the corresponding RF classifier, built using the selected training
dataset, was applied on the in situ terrain plots to predict whether each plot is irrigated or
not. From the obtained confusion matrix between predicted and in situ labels, the accuracy
of the RF classifiers could be assessed each year. The classifier accuracy was evaluated
using several accuracy metrics including the overall accuracy (OA), the weighted F_score
(F_score), the F_score of the irrigated class (F_score_Ir), and the F_score of the non-irrigated
class (F_score_Nir). The OA shows the percentage of correctly classified plots to the total
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number of plots while the F_score presents the harmonic mean between the precision and
the recall of each class. For each year, a classification accuracy report of the mentioned
metrics could be obtained.

In addition to the validation of the RF classifier each year using its corresponding
terrain data, we also compared the reported accuracy of each year using the proposed
methodology (S2IM) to the accuracy obtained when building a RF classifier using five-fold
cross validation of the in situ data. This comparison will allow us evaluate the robustness
of the proposed method against the classical training/validation methods that directly use
terrain data for classification.

4. Results

4.1. Irrigated vs. Non-Irrigated Plots

Figure 5 presents an example of the temporal evolution of the σ0
p (black dashed line)

and σ0
G (brown dashed line) for one of the four TS along with the NDVI (green line) for an

irrigated maize plot (Figure 5a) and non-irrigated maize plot (Figure 5b) between February
and October 2019. The blue bars in the figure represent the daily rainfall amounts given by
the IMERG GPM product described in Section 2.6. Between February 2019 and mid-May
2019, σ0

p and σ0
G of each plot show the same behavior for both irrigated and non-irrigated

plots. Indeed, for this period, both σ0
p and σ0

G increase with rainfall events (blue bars)
and decrease with the absence of rainfall. Moreover, the low NDVI values in the same
period for both plots (approximately 0.2) indicate the absence of a vegetation cycle (bare
soil conditions). After mid-May, the maize cycle of both irrigated and non-irrigated plots
started when the NDVI values increased from 0.2 to 0.6 for both irrigated and non-irrigated
plots between 15 May and 15 June 2019. This increase in the NDVI took place with a
cumulative rainfall of 110 mm. After a rainfall event on 23 June 2019, no rainfall events
occurred for approximately 1.5 months (until 12 August 2019) (very dry conditions). During
this period, the σ0

G values of both irrigated and non-irrigated plots decreased gradually
between 26 June and 12 August indicating no rainfall events.

Figure 5. Cont.
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Figure 5. Example of σ0
p σ0

G and NDVI temporal profiles for (a) irrigated maize plot and (b) non-
irrigated maize plots for the year 2019. Black arrows highlight the dates with detected irrigation
events by the IEDM. Blue bars show the daily rainfall from the GPM data.

For the irrigated plot, the σ0
p value increased between two consecutive S1 images on

26 June 2019 and 01 July (∆σ0
p = 1.9 dB) whereas for the same SAR images, the σ0

G value
decreased by 2.3 dB. Due to the important increase in σ0

p and the important decrease in
σ0

G between two consecutive SAR images, the IEDM was capable of detecting the first
irrigation event with a high irrigation-possibility weight on the irrigated plot on 01 July
2019. Similarly, two additional high probable irrigation events were detected on the S1
images of 13 July and 25 July (black arrows). The three high-chance detected irrigations are
mainly detected due to the important increase in σ0

p between two consecutive S1 image
and the decrease of σ0

G indicating no rainfall events occurring. Due to these three detected
irrigation events, the NDVI of the irrigated plot increased from 0.6 to 0.82 for the period
between 15 June 2019 and 30 July 2019. Finally, a fourth irrigation event with a low
possibility weight was detected on 24 August 2019 due to only slight decrease in σ0

p but
at high level of radar signal at plot scale (−9 dB and SSM ≥ 20 vol.%) accompanied by a
sharp decrease of σ0

G between 18 and 24 August 2019.
In contrast, the temporal profile of σ0

p of the non-irrigated plot (Figure 5b) decreased
during the dry period (between 23 June and 18 August) showing no possible irrigation
events on the plot. The similar behavior of σ0

p and σ0
G during the dry period of the season

could be evidence that the plot did not receive any additional water supplement. Therefore,
the IEDM did not detect any irrigation events on the non-irrigated plot. Moreover, the
NDVI value between 15 June and 30 July decreased from 0.6 to 0.5 and then continued its
decreasing pattern until the end of the cycle.

4.2. Comparison of Irrigation Derived Metrics Using In Situ Data

In this section, we present a comparison between in situ irrigated and non-irrigated
plots as a function of the irrigation derived metrics in the four years. We first present the
maxNDVI metric derived from the NDVI temporal profile and then the cumulipw metric
derived using the IEDM. It is worth mentioning that the objective of this metrics comparison
for in situ data is to only demonstrate the separability between the irrigated and non-
irrigated classes using the proposed metrics. However, in situ data were not used to
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build the classification model of the S2IM (step 1 of Figure 3) and were only used for the
validation of the built RF classifier each year.

4.2.1. Maximum NDVI Value(maxNDVI)

Figure 6 presents the boxplot of the distribution of the maximum NDVI value (maxNDVI)
acquired by the in situ plots in the summer cycle (between May and October) for the four
different years. The red line in the box plot represents the median value whereas the black
point represents the mean value. In Figure 6a of 2020, the distribution of maxNDVI for non-
irrigated plots shows that the average of maxNDVI value reached 0.61 with approximately
same median value (0.62). Moreover, the non-irrigated boxplot shows that 75% of the plots
had a maximum NDVI value less than 0.69. In contrast, the irrigated plots had an average
maxNDVI value of 0.82 and a median of 0.81 where 86.5% of the plots had a maxNDVI value
greater than 0.7. In Figure 6b, the distribution of the maxNDVI value for the non-irrigated
plots in 2019 shows approximately similar behavior as that in 2020 with a median value
reaching 0.58 and a mean value of 0.59. Additionally, in 2019, more than 75% of the non-
irrigated plots attained a maximum NDVI value less than 0.7. However, irrigated plots
in 2019 show that all the irrigated plots attained a maximum NDVI value greater than
0.7 with an average of 0.84 and a median value of 0.85. In 2018, the distribution of the
maximum NDVI value for non-irrigated plots shows an average value of 0.71 and a median
of 0.73 whereas that of the irrigated plots shows an average of 0.84 with a median value of
0.85 (Figure 6c). In 2017 (Figure 6d), all the irrigated plots had a maxNDVI value greater
than 0.7. However, Figure 6d of 2017 shows that in situ irrigated and non-irrigated plots
had close distributions with maxNDVI average values of 0.77 and 0.81 for non-irrigated
and irrigated plots, respectively. Given the poor separability between irrigated and non-
irrigated classes in 2017, it wasdifficult to accurately map irrigated plots for the year 2017.

Figure 6. Boxplots of the distribution of maximum NDVI values (maxNDVI) for in situ irrigated and
non-irrigated plots in (a) 2020, (b) 2019, (c) 2018, and (d) 2017. The red line in each box represents
the median value while the black dot shows the mean value. The number of the irrigated and
non-irrigated plots for each year corresponds to the number of in situ plots presented in Table 1 of
Section 2.2.
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4.2.2. IEDM Cumulative Irrigation
(
cumulipw

)
The histograms in Figure 7 present the distribution of the cumulipw metric obtained for

in situ data for the four years. In Figure 7a, the cumulipw distribution in 2020 shows good
discrimination between irrigated and non-irrigated plots. In fact, 26% of the non-irrigated
plots encountered a cumulipw value less than 25, 41% had a cumulipw less than 50, and 67%
had a cumulipw less than 100. In contrast, irrigated plots registered higher cumulipw values
than the non-irrigated plots where 80% of the irrigated plots had a cumulipw value more
than 100, 54% had a cumulipw value more than 150, and 33% had a cumulipw value greater
than 200. For 2019, Figure 7b shows that better discrimination between irrigated and non-
irrigated plots was available using the cumulipw metric. Indeed, 87% of the non-irrigated
plots had a cumulipw value less than 75 including 38% less than 25 and 22% between
25 and 50. Moreover, 61% of the irrigated plots in 2019 had a cumulipw value greater than
150, 46% greater than 200, and 24% greater than 250. On the other hand, the distribution
of cumulipw values for irrigated and non-irrigated plots in both 2018 (Figure 7c) and 2017
(Figure 7d) have less separability than that present in 2020 and 2019. In 2017 and 2018,
fewer irrigation events were detected over irrigated plots. Thus, the cumulipw at irrigated
plots did not reach high values compared to those reached in 2019 and 2020, and therefore
the histogram of the irrigated plots is closer to that of the non-irrigated plots. For example,
in 2017, Figure 7d shows that 34% of the non-irrigated plots had a cumulipw value less than
50 and 73% of the non-irrigated plots had a cumulipw value less than 100. However, 48% of
the irrigated plots had a cumulipw value less than 100 and 52% of the irrigated plots had a
cumulipw value between 100 and 200. Moreover, the irrigated plots in 2017 had a maximum
cumulipw of 200 whereas the maximum cumulipwvalue of irrigated plots in 2019 and 2020
was between 400 and 450.

Figure 7. Distribution of the cumulative irrigation metric “cumulipw” for in situ irrigated (blue bars)
and non-irrigated (red bars) plots for (a) 2020, (b) 2019, (c) 2018, and (d) 2017. The overlap between
irrigated and non-irrigated classes appears with dark red color. The cumulipw is unitless.
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4.3. S2IM Selected Training Data

Table 2 presents the number of the training samples of irrigated and non-irrigated
plots selected using the proposed metrics for each year. The total RPG represents the total
number of investigated summer crop plots in the study area.

Table 2. Number of the selected irrigated and non-irrigated training samples for each year.

Year Non-Irrigated Plots Irrigated Plots Total RPG Plots

2020 1486 2209 19,938
2019 1033 614 15,958
2018 1441 1176 14,161
2017 852 289 23,599
Total 4812 4288 73,656

Figure 8 shows the NDVI temporal profiles of the selected irrigated and non-irrigated
training data (Table 2) and the in situ data for each year. The blue dashed line represents the
temporal profile of the average NDVI of all the selected irrigated plots surrounded by the
standard deviation (shaded blue) while the black line represents the temporal NDVI profile
of the in situ irrigated plots. The red dashed line shows the temporal profile of the average
NDVI for the selected non-irrigated plots with the red shading of the standard deviation
value compared to the in situ NDVI temporal profile represented by the grey line.

Figure 8. Comparison of average NDVI temporal profiles between selected training plots and in
situ plots for (a) 2020, (b) 2019, (c) 2018, and (d) 2017. The red dashed line represents the selected
non-irrigated plots while the grey line represents the in situ non-irrigated plots. The blue dashed
line represents the selected irrigated plots while the black line represents the in situ irrigated plots.
Shaded regions represent the standard deviation of the average NDVI for selected samples for both
irrigated (blue) and non-irrigated (red). Number of in situ plots refers to Table 1 whereas the number
of selected plots refers to Table 2 for the irrigated and non-irrigated classes each year.
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Figure 8a–d of the four years shows that the selected irrigated plots had the same
behavior of the NDVI as the in situ irrigated plots. The NDVI started to increase between
April and May with approximately the same increasing gradient for both in situ and
selected irrigated plots. The NDVI in both datasets (selected and in situ) then reached a
maximum high NDVI value (approximately 0.85) between July and August. Similarly, the
selected non-irrigated plots showed the same NDVI pattern as the in situ non-irrigated
plots for the years 2020, 2019, and 2018. The NDVI values increased between April and
May to reach a maximum value of approximately 0.6 in July and August. Only in 2017
(Figure 8d) did the NDVI temporal profile of the in situ non-irrigated plots look far different
from the selected non-irrigated plots. In fact, in 2017, both irrigated and non-irrigated
classes of the terrain in situ data show similar temporal profile with only small differences.
In general, except for 2017, the selection criteria of by the S2IM produced a training dataset
of irrigated and non-irrigated plots that were nearly similar in terms of NDVI profile to the
dataset of irrigated and non-irrigated plots collected through a terrain campaign.

4.4. Random Forests Classification Results

In this section, we present the results obtained by the S2IM for each RF classifier built
at each year using the selected training data of our proposed methodology. Moreover, for
each year, we compare the obtained S2IM results with RF 5-fold cross validation developed
using the in situ terrain data (RF in situ). Table 3 summarizes the accuracy metrics obtained
when applying the RF classifier, trained with selected training data of each year, on the in
situ validation dataset of the same year.

Table 3. Accuracy metrics of RF classifications obtained using the proposed S2IM methodology and
the in situ 5-fold cross validation for four years.

Year Method OA F_score F_score_irr F_score_nirr

2020
RF S2IM 84.3% 84.1% 86.4% 81.3%

RF in situ 89.0% 87.5% 90.2% 88.1%

2019
RF S2IM 93.0% 92.8% 93.0% 92.5%

RF in situ 91.3% 91.3% 91.2% 91.3%

2018
RF S2IM 81.8% 82.2% 86.8% 70.0%

RF in situ 88.0% 86.9% 92.0% 73.6%

2017
RF S2IM 72.8% 74.0% 78.1% 62.0%

RF in situ 78.3% 76.5% 85.7% 53.7%

The validation of the RF classifier built from selected training data in 2020 generally
shows very good accuracy (Table 3). The overall accuracy (OA) obtained using the S2IM
reached 84.3% with a similar F_score value (84.1%). The irrigated class seems to have
higher accuracy (86.4%) than the non-irrigated class (81.3%). On the other hand, the RF
5-fold cross validation (RF in situ) shows slightly higher accuracy values than the RF
S2IM for the four accuracy metrics (Table 3). In terms of OA, F_score, and irrigated class
F_score (F_score_irr), the 5-fold cross validation was approximately 5% higher than the
proposed S2IM. A higher difference of 7% between the 5-fold cross validation and the S2IM
is observed for the non-irrigated class.

In 2019, the results show that an optimum accuracy was obtained for the irrigation
mapping (Table 3). Indeed, the validation of the S2IM with in situ data shows that the four
accuracy metrics attained high values (between 92.5% and 93%). In addition, the RF 5-fold
cross validation built directly from in situ data shows approximately the same accuracy
values as that obtained using the S2IM for the four accuracy metrics.

Using the selected training dataset in the S2IM, an overall accuracy of 81.8% was
obtained for the year 2018 with a weighted F_score of 82.2% (Table 3). While the irrigated
class showed good accuracy (F_score_irr = 86.8%), the non-irrigated class showed lower ac-
curacy than the irrigated class (70.0%). However, in the 5-fold cross validation using in situ
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data, similar results were obtained. The F_score_nirr of the non-irrigated class (73.6%) was
lower than that of the irrigated class (92.0%) while the overall accuracy reached 88% (6.2%
more than that obtained with the S2IM). In the RF 5-fold cross validation, the weighted
F_score (86.9%) was also slightly higher than that obtained using the S2IM (82.2%).

When validating the S2IM using in situ data in 2017, an overall accuracy of 72.8% was
obtained for irrigation mapping with an F_score value of 74.0% (Table 3). However, the
accuracy between the two classes was different. While the irrigated class showed good
accuracy (F_score 78.1%), the non-irrigated class showed a moderate accuracy reaching 62%
only. This trend is also present in the RF 5-fold cross validation where the irrigated class
attains an accuracy of 85.7% greater than that of the non-irrigated class (53.7%). In general, the
RF 5-fold cross validation had marginally higher accuracy than the proposed S2IM. Although
the overall accuracy of the RF 5-fold cross validation (78.3%) was slightly higher than that of
the S2IM, the S2IM gave higher accuracy for the non-irrigated class (53.7% vs. 62%).

4.5. Method Generalization

The effectiveness of the S2IM mainly resides in the ability to generate a training dataset
each year. The training data generation helps in obtaining an irrigation map each year even
with the absence of terrain campaigns for in situ data collection. On the other hand, it is
known that when using machine-learning algorithms such as RF, the transfer of the model
from one year to another remains difficult due to the variable response obtained using SAR
and optical data between different years. However, to explore the difficulty of transferring
the RF model from one year to another, we conducted an experiment to test the ability to
transfer the RF classifier for mapping irrigated areas from one year to the other years. In
this experiment, we built a RF model at each year using its own in situ data with S1 and
optical data, and we applied it on the three other years to obtain the classification accuracies.
For example, a model was built using in situ data of 2017 (considered for training) and
applied over the in situ data of 2018, 2019, and 2020 (considered for validation). Table 4
summarizes the weighted F_score obtained when applying an in situ-built RF model of one
year on other years. Among different scenarios of training and validation for the four years,
the maximum accuracy of the transfer does not exceed 68.6%. All the models trained on
one year and applied on the three other years presented low accuracy for mapping irrigated
areas. Indeed, the F_score value ranged between 51.5% and 68.6% only. The results thus
confirm the difficulty of mapping irrigated areas using only one-year in situ data and
applying over several years. Therefore, as the irrigation mapping using spatiotemporal
machine learning transfer was not yet achieved with high accuracy, the need for a training
dataset for each year remains important. However, since the terrain campaigns are still
time and resource consuming, the automatic reference data generation of the S2IM offers a
powerful tool to achieve irrigation mapping with very good accuracy without the need for
a yearly terrain campaign.

Table 4. Accuracy metrics derived from training an RF classifier in a year and applying on the
other years.

Training

Validation

2017 2018 2019 2020
2017 61.3% 65.1% 65.8%
2018 68.6% 54.2% 51.5%
2019 67.1% 53.4% 67.4%
2020 62.2% 61.7% 60.9%

4.6. Thresholds Sensitivity Analysis

For the operational use of the S2IM method, it is important to discuss the threshold
values of the irrigation metrics fixed to select training datasets (irrigated and non-irrigated
classes). In order to show the flexibility of the thresholds considered, we conducted a
sensitivity analysis to test the effect of changing the threshold values of the cumulipw
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metric on the accuracy of the classification. For this experiment, we chose two years, one
representing a humid year (2017) and the other representing a dry year (2019). The selection
of the training dataset (step 1 of Figure 3) was re-performed using different threshold values
for cumulipw for both irrigated and non-irrigated classes. In fact, instead of considering
cumulipw ≤ 25 for non-irrigated class and cumulipw ≥ 250 for the irrigated class, we
considered new values in three different tests (Table 5). In the first test, a threshold less
than or equal to 50 was considered for the cumulipw value of non-irrigated class and greater
than or equal to 225 for the irrigated class. In the second test, we considered a value of
cumulipw ≤ 75 for the non-irrigated class and cumulipw ≥ 200 for the irrigated class. Finally,
we considered the threshold values cumulipw ≤ 100 and cumulipw ≥ 175 for non-irrigated
and irrigated classes respectively. Table 5 presents the weighted F_score obtained for both
2017 and 2019 when applying the S2IM in the three tested thresholds compared with the
initial thresholds (≤25 and ≥250). For the dry year 2019, the F_score value remains nearly
constant with the change of the threshold values. The F_score decreased only 1% when the
threshold values changes to cumulipw ≤ 100 for non-irrigated and cumulipw ≥ 175 for the
irrigated class. In contrast, the F_score of 2017 decreased by 10% as the threshold values
of the two classes became closer (≤100 and ≥175 for non-irrigated and irrigated classes
respectively). However, for the threshold values ≤50 and ≥225, for non-irrigated and
irrigated classes, respectively, both years showed the same accuracy as the initial thresholds
considered in this study.

Table 5. Variation of obtained weighted F_score as a function of the threshold values of cumulipw for
2017 and 2019.

Threshold Test Non-Irrigated
Threshold ≤

Irrigated
Threshold ≥

F_score
2019

F_score
2017

Initial 25 250 0.93 0.74
Test 1 50 225 0.93 0.74
Test 2 75 200 0.92 0.66
Test 3 100 175 0.92 0.66

The results could be analyzed using the histograms of the distribution of cumulipw
for in situ data presented in Figure 7 of Section 4.2.2. For the dry year of 2019 (Figure 7b),
the distribution of the cumulipw for the in situ irrigated class is distinguished from that
of the non-irrigated class where the separability between both classes is highly present
using the cumulipw. This distribution could be the same for the RPG data when selecting
the training dataset. For this reason, when narrowing the difference between the irrigated
and non-irrigated threshold values from (≤25, ≥250) to (≤100, ≥175), both classes remain
separable and distinct and thus the classification accuracy remained constant. However,
for a humid year as in 2017, the cumulipw distributions of the in situ irrigated and non-
irrigated classes were closer to each other than 2019 (Figure 7d). Thus, narrowing the
threshold window from (≤25, ≥250) to (≤100, ≥175) increased the ambiguity between the
two classes. When using the RPG data, the consideration of the thresholds (≤100, ≥175)
most probably reduced the separability of the two classes in the selected training dataset
(as shown for the in situ). As a result, the classification accuracy decreases significantly.

5. Discussion

5.1. Classification Accuracies and Rainfall Data

In order to understand the variable performance of the irrigation mapping classifiers
between the four studied years, it is important to discuss the limitations that can affect
the distinction between irrigated and non-irrigated plots. Among several limitations in
both radar and optical data for irrigation mapping, the most important factor that can
affect the irrigation classification is the amount of rainfall received during the growth cycle
of the crop. In fact, several studies have reported that irrigation classification in humid
areas is more difficult than that in semi-arid and arid regions due to abundant rainfall



Remote Sens. 2021, 13, 2584 21 of 28

events [14,39]. Therefore, we analyzed the performance of the proposed S2IM method for
each year as a function of the cumulative rainfall data received each year. Figure 9 shows
the accumulation of the daily precipitation record from 01 May (considered as starting
point for the cumulative calculation) until 01 October for the four years derived from the
IMERG daily rainfall maps presented in Section 2.6.

Figure 9. Daily cumulative rainfall for the period between May and October for 2020 (red),
2019 (green), 2018 (orange), and 2017 (blue) over the study site.

Between 01 May and 1 June, the study area received a cumulative rainfall of 66, 92,
50, and 56 mm in 2017, 2018, 2019, and 2020, respectively. In 2020, the cumulative rainfall
from May to mid-June reached 100 mm and then remains stable until the mid-August
(approximately 2 months with no registered rainfall). In 2019, no rainfall was registered
in the summer season for approximately 3 months between mid-June and late September
where the cumulative rainfall remained stable at 100 mm during this period. On the other
hand, in 2018, an important rainfall was registered at the beginning of June, causing the
cumulative rainfall to reach 150 mm during the first two weeks of June 2018. From mid-June
until the beginning of October, the study area received 60 mm of rainfall distributed over
the summer season to reach a cumulative rainfall of 210 mm in the end of September. In
2017, rainfall events occurred during the whole summer season. After a stable cumulative
rainfall in June (100 mm) for 2017, successive rainfall events occurred between July and
August, which increased the cumulative rainfall to 150 mm by the beginning of August. In
August, important rainfall events occurred causing an increase in the cumulative rainfall
between the first week of August until the beginning of October. In August and September
2017, the area received a cumulative rainfall of 158 mm. Thus, in 2017, a cumulative
rainfall of 320 mm was registered for the period between May and October 2017 with
continuous rainfall events during the whole summer season. Finally, we conclude that
both 2019 and 2020 were the driest years (2019 the driest) with cumulative rainfall during
the irrigation period (summer season) reaching 150 and 180 mm, respectively. The year
2018 had moderate cumulative rainfall of 210 mm but with a very important rainfall event
occurring with the beginning of the crop cycle (end of May and beginning of June 2018).
The most humid year was 2017 with continuous rainfall events during the whole irrigation
period and the highest cumulative rainfall of 321 mm.

Concerning the irrigated/non-irrigated classification accuracy, we notice that the
years 2019 and 2020 attain the highest overall accuracies of 93.0% and 84.3%, respectively,
among the four years, accompanied by the least amount of cumulative rainfall (150 and
180 mm, respectively). In 2018, the overall accuracy reaches 81.8% with moderate amount of
cumulative rainfall (210 mm). However, the discrimination between the irrigated and non-
irrigated class is less accurate in 2018 than that of 2019 and 2020. In fact, the F_score_nirr
(F_score of non-irrigated class) reaches 70% for the year 2018 compared to 92.5% and
81.3% for the years 2019 and 2020, respectively. This means that the discrimination of
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non-irrigated plots from irrigated plots is harder in 2018 than that in 2019 and 2020 due to
higher rainfall amounts received during the summer season. In 2017, the overall accuracy
is the lowest among the four years whereas the cumulative rainfall is the highest. With
320 mm of rainfall during the irrigation period of 2017, the overall accuracy reached
72.8% only, which is the lowest accuracy compared to the other three years. Moreover,
in 2017, the F_score_nirr value attained its lowest value of 62.0% among the four years.
This indicates that in a humid year (2017) with abundant and continuous rainfall events
during the summer crop-growing season, which corresponds to the irrigation season, the
discrimination between irrigated and rain-fed plots is more complicated. Therefore, when
less rainfall events and cumulative rainfall are registered during the irrigation period, the
classification accuracy increases and the discrimination of irrigated and non-irrigated plots
becomes easier.

The effect of rainfall on discriminating irrigated and non-irrigated plots appears on
both radar and optical data. Using optical data, frequent rainfall events expose a similar
vegetation index profile for both irrigated and non-irrigated plots. This is mainly due to the
fact that with abundant rainfall, the non-irrigated plots also benefit from a sufficient amount
of water capable of giving a well-developed canopy cover. This similarity in the NDVI
between irrigated and non-irrigated plots due to high frequency of rainfall events is clearly
visible in the in situ data for the year 2017. In Figure 6d of Section 4.2.1, the distribution
of the maximum NDVI values (maxNDVI) of irrigated and rain-fed plots shows that both
classes from in situ have nearly the same distribution with similar average values of
0.81 and 0.77, respectively. On the other hand, in both 2019 and 2020 with the lowest rainfall
amounts, the distribution of the maxNDVI value showed that the separability between the
irrigated and non-irrigated class of in situ data is high. In Figure 8d (Section 4.3), the NDVI
temporal profile of the non-irrigated class (in situ) showed the same behavior as that of
the irrigated profile, which indicates that both classes had similar vegetation development.
Therefore, more difficulty to separate both classes is present in 2017. In contrast, in the
dry years (2019 and 2020), the temporal profile of the NDVI for non-irrigated plots was
easily distinguished from the NDVI temporal profile of irrigated plots (in situ data). This
indicates that the addition of water for irrigated plot in dry year induces a significant
difference in the NDVI temporal profile when compared to non-irrigated plot.

Using radar data, frequent rainfall events can affect the detection of irrigated plots. In
fact, if a rainfall event and an irrigation event occurred between two consecutive S1 images,
the irrigation event will be difficult to detect. This is mainly due to the incapability to
distinguish whether the increase of soil moisture is due to irrigation or rainfall since both
have the same effect on the SSM. Therefore, with frequent rainfall events, the capability
to detect irrigation events decreases. This fact has been demonstrated in Bazzi et al. [38]
where they reported that frequent rainfall events in the spring season limited the detection
of irrigation events over grassland plots. In Figure 7c,d (Section 4.2.2), the histogram of the
distribution of the cumulipw metric for 2017 and 2018 using the in situ data showed that
both irrigated and non-irrigated plots have close distribution. This is due to the fact that
over the irrigated plots in a humid season with frequent rainfall events, a limited number of
irrigation events could be detected, and thus the cumulipw metric will not attain high values
due to low numbers of detected irrigation events. In contrast, 2019 and 2020 showed higher
separability in the in situ data between irrigated and non-irrigated plots using the cumulipw
metric. In dry conditions with a low number of rainfall events, the irrigation frequency at
the plot increases and the capability to detect these irrigation events also increases with the
absence of rainfall. For this reason, most of the irrigated plots in 2019 and 2020 encountered
high cumulipw values, which were separable from the non-irrigated plots.

5.2. Limitations of S2 IM

5.2.1. Threshold Values and Reference Data Selection

In this study, an innovative approach is proposed to map irrigated areas at plot scale
(S2IM). To overcome the limitation of terrain data availability, the power of the proposed
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method resides in its ability to generate automatically its own reference data. The generated
reference data are then used in an RF classifier to map irrigated areas at plot scale. However,
the selection of the training reference data is based on two metrics (SAR and optical) with
threshold values to deem whether a plot is irrigated or not. The first metric is related to the
number of detected irrigation events computed from the newly derived IEDM. However,
the irrigation detection using IEDM presents some limitations. The IEDM is based on the
detection of soil moisture change using the S1 C-band SAR data. Nevertheless, the detection
of soil moisture change (therefore irrigation) using the S1 C-band SAR data could be limited
to two main factors. First, the time lag between the irrigation time and the S1 acquisition
time plays an important role in irrigation detection. When the S1 acquisition is acquired
long time after the irrigation event (3 to 4 days), the detection of the irrigation event
becomes difficult. This is mainly due to the evaporation (especially in summer), which
causes soil moisture values to decrease 3 or 4 days after irrigation. This limitation has been
discussed in both El Hajj et al. [13] and Bazzi et al. [38]. In the study of El Hajj et al. [13],
they showed that using the X-band SAR data, a maximum of 3-day-old irrigation could
be detected. In the assessment of the IEDM by Bazzi et al. [38], they showed that for low
vegetation cover (NDVI < 0.7), the irrigation event could be detected until two to three days
after the irrigation event using S1 C-band data. For NDVI > 0.7, they showed that irrigation
event could be detected if it occurs on the same day of the S1 acquisition. Therefore, the
time interval between the S1 acquisition time and the irrigation time can constrain the
detection of irrigation events.

The second important factor that limits the detection of irrigation events by C-band
SAR data is the penetration of the C-band SAR signal in developed vegetation cover.
When the vegetation cover is well developed (NDVI > 0.7), the soil contribution to the
backscattered SAR signal in C-band decreases. This limitation has been demonstrated by
several studies [33,35,38,40,41,57]. In a study performed by El Hajj et al. [41], they compared
C and L bands’ penetration over wheat and maize. They showed that the C-band in VV
polarization is able to penetrate the maize canopy even when the canopy is well developed
(NDVI > 0.7) due to high-order scattering along the soil-vegetation pathway that contains
a soil contribution. Joseph et al. [57] also showed that surface soil moisture in maize plot
could still contribute to the C-band SAR backscattering signal even at maximum biomass
stage. On the other hand, El Hajj et al. [41] showed that for wheat crops, the sensitivity
of the C-band SAR signal to soil moisture estimations is negligible for NDVI > 0.7. For
grassland, Bazzi et al. [38] showed that for some grass types, the high vegetation canopy
(NDVI > 0.7) attenuates the SAR backscattering signal (no soil contribution) and therefore
makes the detection of the irrigation event difficult. Thus, the well-developed vegetation
cover reduces the opportunity of detecting part of the irrigation events on the plot. This
may lead to fewer detected irrigation events on the plot. Nevertheless, for less dense
vegetation cover, the radar signal in C-band has the necessary penetration to detect soil
moisture change. Thus, the irrigation events occurring from the sowing date until the stage
before the vegetation is very well developed and could still be detected using the C-band
SAR signal due to the existence of soil contribution in the backscattered signal.

Nowadays, the S1 satellite in C-band is the only operational radar satellite providing
free and continuous data acquisitions at high spatial and temporal resolutions. It is well
known that L-band SAR data can penetrate more the vegetation canopy [41], but the current
L-band satellites such as ALOS-2 does not provide continuous (high revisit time) and free
acquisitions. The arrival of new L-band SAR satellites (some are planned in 2022) could
help apply the IEDM using L-band data and acquire accurate detection of irrigation events
with less uncertainty caused by the vegetation cover.

The second metric used for reference data generation is based on the maximum NDVI
value during the crop cycle. For this metric, two thresholds were considered. The first
considers that reference non-irrigated plots should not attain a maximum NDVI more
than 0.7. The second states that reference irrigated plots must have a maximum NDVI
greater than 0.8. The thresholds on the maxNDVI metric were derived through the analysis
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of this metric using in situ data and supported by previous studies using the maxNDVI
for discriminating between irrigated and rain-fed crops. It is important to note that the
criterion on NDVI thresholds is not exclusive and the thresholds allow only the selection of
irrigated/non-irrigated plots. In fact, the RF can later detect irrigated plots with NDVI < 0.8
if the radar signal shows significant increases in σ0

p identified by the IDEM as potential
irrigation events.

However, for other terrains with irrigated plots corresponding to NDVI lower than
0.6 (vegetables plots for example), a small number of irrigated plots may not be detected
as being irrigated by the RF while the IEDM may show many irrigation events. For this
reason, once the classification is completed, a filter could be applied to the non-irrigated
plots, which consists in transforming a non-irrigated plot into an irrigated plot if the
IEDM detects many irrigation events with high certainty. For our database in Orlèans, the
improvement of the mapping accuracy after applying this filter is not more than 1%. This
improvement could be higher in another territory with irrigated crop types with low NDVI
values (0.5–0.7)

For some other crop types, the maxNDVI of both irrigated and non-irrigated plots
could be different from the proposed thresholds, which may lead to uncertain accuracy.
Generally, a priori information about the crop type in the studied area could help adjust the
threshold values of the maxNDVI metric. The addition of crop type map could help better
adjust the threshold values for each crop class and help distinguish irrigation/rain-fed for
each crop class. This threshold value adjustment could be done to enhance the selection
of the training data and thus ameliorate the classification accuracy. The crop type map
could be either provided by local authorities or obtained by classifying crop types using S2
and/or S1 data. Nonetheless, crop type maps are not always available. In this case, the
proposed general threshold that accounts for the most common summer crops could serve
as general thresholds for reference data selection.

5.2.2. Irrigation Mapping in Humid and Dry Areas

Over our study site, four different years were examined. One of the years (2017) was
characterized by a very humid summer while another (2019) was characterized by a very
dry summer.

As shown in the results, using either our approach (the S2IM) or an RF classifier
directly performed using in situ data, the irrigation mapping in humid conditions is less
accurate than that in dry conditions. Using either in situ RF or the S2IM, the irrigation
classification accuracy in 2017 was between 73% and 78%. The decrease in the classifier
performance is mainly due to the minimized difference between irrigated and non-irrigated
plots in both SAR and optical (NDVI) data for humid conditions. In fact, this is consid-
ered as one of the limitations for using remote sensing data (nowadays S1 and S2 data)
in irrigation mapping in humid areas. Regardless of the proposed methodology, when
abundant rainfall events occur during the irrigation period, the differences in NDVI be-
tween irrigated and non-irrigated cropland becomes negligible. Adequate moisture from
precipitation available to non-irrigated crops can increase the NDVI value, potentially nar-
rowing the difference in NDVI between irrigated and non-irrigated crops. This will make
the separation of irrigated and non-irrigated crops difficult. Using SAR data, abundant
rainfall events decreases the chance of detecting irrigation events. When irrigation and
rainfall occur between the same consecutive SAR acquisitions, it is difficult to distinguish
between irrigation and rainfall. However, the results show acceptable accuracy in 2017 for
irrigation mapping.

Several studies mapping irrigated areas have reported the same common limitation in
humid conditions [14,37,56,58]. Recently, Pageot et al. [14] tried to map irrigated summer
crops in a humid area in southwestern France (Adour Amont watershed). Despite using
climatic data (precipitation) in addition to S1 and S2 data in the RF classifier, the overall
accuracy for irrigation mapping did not exceed 78%. They showed that the difference
between the vegetation indices NDVI and NDWI (Normalized Difference Water Index)
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was narrow due to frequent rainfall events occurring during the growing season. This is
the same case as our study site in 2017 where the region received 320 mm of rainfall during
the irrigation period.

Finally, mapping irrigated areas is more important in dry areas, which suffer from wa-
ter scarcity and altering rainfall amounts. In humid climates, irrigation is a supplementary
water applied usually to meet the additional crop water demand especially for crops that
may require more water than that offered with natural precipitation. In arid and semi-arid
climates, continuous irrigation is usually required to ensure agricultural production [10].

6. Conclusions

In this study, an operational methodology for mapping irrigated areas at plot scale
(S2IM) has been proposed. To address the main issue related to the dependency of su-
pervised classification models on in situ terrain campaigns for irrigation mapping, the
methodology presented in this study is capable of automatically generating reference
dataset of irrigated and non-irrigated plots to be used in a supervised classification model.
The reference data selection was based on two metrics derived from S1 and S2 temporal
series. The RF classifier was then used to map irrigated areas using the selected reference
dataset, S1 and S2 data. The method was applied on a study site located in northcentral
France for four years between 2017 and 2020.

The proposed methodology “S2IM” delivered reasonable performance with overall
accuracy between 93.0% and 72.8% depending on the climatic conditions. Dry years with
slight rainfall events in the irrigation period had significant separability between both
classes with a mapping accuracy reaching 93%. Humid years with frequent rainfall in the
summer irrigation period had low separability between both classes in SAR and NDVI
data revealing moderate accuracy in irrigation mapping. The comparison of the S2IM
with traditional RF developed using in situ terrain data revealed that the proposed S2IM
performs well with accuracy nearly similar to that obtained using in situ RF. However,
generating yearly basis reference data using the S2IM showed widely better classification
results than using one in situ-based RF model built on a year and applied on others.

With the absence of terrain data to perform irrigated area maps, the strength of the
S2IM is the ability of generating yearly reference data. Thus, the proposed mapping ap-
proach is temporally transferable to other years, which can ensure continuous monitoring
of irrigated areas even in the absence of terrain data. The method could be also spatially
transferred to other areas sharing similar climate, cropping landscapes, and crop man-
agement. Areas with different climate and cropping land cover may only require some
adaptation of the reference data selection thresholds before further application.
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