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Abstract
Main conclusion In Medicago sativa nodulated roots, NR-dependent NO production is involved in maintaining energy 
state, presumably through phytoglobin NO respiration, under both salinity and hypoxia stress.

Abstract The response to low and average salinity stress and to a 5 day-long flooding period was analyzed in M. sativa 
nodulated roots. The two treatments result in a decrease in the biological nitrogen fixation capacity and the energy state 
(evaluated by the ATP/ADP ratio), and conversely in an increase nitric oxide (NO) production. Under salinity and hypoxia 
treatments, the use of either sodium tungstate, an inhibitor of nitrate reductase (NR), or carboxy-PTIO, a NO scavenger, 
results in a decrease in NO production and ATP/ADP ratio, meaning that NR-dependent NO production participates to the 
maintenance of the nodulated roots energy state.

Keywords Hypoxia · Legume · Nitrogen-fixing symbiosis · Phytoglobin NO respiration · Salt stress

Abbreviations
ARA   Acetylene reducing activity
BNF  Biological nitrogen fixation
cPTIO  2-[4-carboxyphenyl]-4,4,5,5-tetramethylimida-

zoline-1-oxyl-3-oxide
DAF-2  4,5-diaminofluorescein
NR  Nitrate reductase
Phytogb  Phytoglobin

Introduction

Nitric oxide (NO) is a reactive gaseous molecule with a 
broad spectrum of regulatory functions in plant growth 
and development (Besson-Bard et al. 2008), and response 
to biotic (Hichri et al. 2015; Thalineau et al. 2016) and 
abiotic stresses, including salinity and hypoxia (Blokhina 
and Fagerstedt 2010; Simontacchi et al. 2015). Under salt 
stress, enhancement of NO production is accompanied by 
the exclusion of  Na+ and retention of  K+, through increased 
membrane  H+-ATPase and  H+-PPase activities (Zhang et al. 
2006; Wang et al. 2009; Zhao et al. 2018). NO induces the 
expression of genes related to osmotic adjustment, heat-
shock protein, and ROS-scavenging processes (Uchida 
et al. 2002; Kopyra and Gwózdz 2003). It contributes to the 
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maintenance of cellular redox homeostasis by controlling 
the NADPH level (Liu et al. 2007) and by inducing antioxi-
dant enzyme activities (Tanou et al. 2009). Overall speaking, 
NO protects plants by helping them to control water status, 
maintain ionic homeostasis and reduce oxidative damage 
imposed during salt stress (Molassiotis et al. 2010; Simon-
tacchi et al. 2015).

On the other hand, increased NO production is a hallmark 
of plant response to flooding and hypoxia (Blokhina and 
Fagerstedt 2010; Gupta and Igamberdiev 2011). Hypoxia 
compromises mitochondrial respiration and leads to an 
insufficiency in ATP for energy-demanding processes (Bai-
ley-Serres and Voesenek 2008). In these conditions, NO 
contributes to the recycling of NADH and the synthesis 
of ATP through the setting up of an alternative respiration 
called “phytoglobin (Phytogb)-NO respiration” (Stoimenova 
et al. 2007; Igamberdiev and Hill 2009; Gupta and Igam-
berdiev 2011). NO is also essential for the development of 
lysigenous aerenchyma that enhance  O2 diffusion along with 
the roots (Wany et al. 2017). Furthermore, the signaling role 
of NO in the perception and the response to hypoxia was 
recently elucidated in Arabidopsis thaliana (Hartman et al. 
2019). An increase in NO production, therefore, appears to 
be a common response to both salt stress and hypoxia.

Exposure of nitrogen-fixing legumes to high salt concen-
trations resulted in a rapid decrease in nitrogenase activity 
and nodule respiration, and this decrease was compensated 
by raising  pO2 (Serraj et al. 1994; Serraj and Drevon 1998). 
Similarly, by comparing nodule respiration of various leg-
umes under NaCl treatments, Delgado et al. (1994) con-
cluded that under low salinity the supply of  O2 to nodules is 
the limiting factor of the biological nitrogen fixation (BNF). 
These observations suggest that under salt stress, the nodu-
lated roots of legumes could also face hypoxia and that this 
could limit BNF.

To test this hypothesis, using the Medicago sativa legume 
model, we analyzed BNF, NO production and energy state 
in the nodulated roots of plants grown in the presence of low 
to average salinity and subjected to short-term flooding. Our 
data show that, under moderate salt stress as under flood-
ing, a nitrate reductase (NR)-dependent NO production is 
induced which participates to the maintenance of the energy 
state of the root system.

Materials and methods

Biological material and growth conditions

Seeds of Medicago sativa (var. Siriver; obtained from 
Espave Vert Tunesie, Tunis, Tunesia) were sterilized and 
germinated as previously described (del Giudice et al. 
2011). Five-day-old germinated seeds were 
transplanted 

in pots (2 plants/pot) filled with 250  cm3 of B5 sand 
(0.6–1.6  mm diameter). Plants growth conditions and 
nutrient solution are described in Sghaier et al. (2020). 
To set salinity conditions, nutrient solution also contained 
either 0.2 mM  KNO3 (Control, Ctrl), 0.2 mM  KNO3 and 
20 mM NaCl (Treatment 20, T20), or 0.9 mM  KNO3 and 
50 mM NaCl (Treatment 50, T50). Plants were inoculated 
7 days after transplanting with Ensifer meliloti 2011 bac-
teria (Sghaier et al. 2020).

In the first set of experiments (experiment 1), at 28 days 
post-inoculation (dpi), half of the Ctrl, T20 and T50 plants 
were subjected to flooding for 5 days by submerging pots 
in their respective nutrient solutions to sand level (Fig. 
S1a). Non-flooded plants were watered with nutrient 
solutions at 28 and 31 dpi (Fig. S1b). At 32 dpi, nod-
ulated roots were harvested and either used for growth 
parameters analysis (9 plants/assay),  N2-fixing capacity 
(2 plants/assay), NO production (2 plants/assay), or imme-
diately frozen in liquid  N2, ground in powder and stored at 
− 80 °C until analysis of protein and adenine nucleotide
contents (2 plants/assay).

In the second set of experiments (experiment 2), at 28 dpi, 
the plants were transferred either into syringes filled with 
35 ml nutrient solution and traversed by a humidified airflow 
(normoxia, Fig. S2a and b) or into glass tubes filled with 
40 ml nutrient solution previously flushed with a mixture 
of 4.5–95.5%:  O2-N2 (hypoxia, Fig. S2c and d). The plants 
(2 plants/syringe or tube) were cultured either in normoxia 
or hypoxia for 5 days. To compensate for the evaporation, 
syringes and tubes were supplemented daily with nutrient 
solution. One day before harvest, nutrient solutions were 
supplemented with either 0.1 mM 2-[4-carboxyphenyl]-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a 
scavenger of NO, or 1 mM sodium tungstate (Tg), an inhibi-
tor of NR, or water (control). At 32 dpi, nodulated root was 
promptly excised, and used for the analysis of NO produc-
tion (3 × 2 plants/assay), or immediately frozen in liquid 
 N2, ground in powder and stored at − 80 °C until adenine 
nucleotide measurements (3 × 2 plants/assay).

Vegetative growth analysis

Root systems were washed in distilled water, blotted on filter 
paper and weighted. Dry weights were measured after dry-
ing of samples for 48 h at 70 °C.

Biological nitrogen‑fixing capacity

BNF capacity of nodulated roots was determined in vivo by 
measuring the acetylene reducing activity (ARA) as previ-
ously described (Pierre et al. 2014).



Measurement of NO production

Segments (2 cm-long) of nodulated roots were incubated 
in the dark, at 23 °C, in 5 mL tubes containing 2 mL of 
detection medium (10 mM Tris–HCl pH 7.5, 10 mM KCl) 
in the presence of 10 μM 4,5-diaminofluorescein (DAF-2, 
Coger, with excitation at 495 nm and emission at 515 nm) 
fluorescent probe. NO production and controls were car-
ried out as in Horchani et al. (2011). In addition, to test the 
specificity of the DAF-2 probe, NO production was also ana-
lysed with the Cu(II) fluorescein (CuFL) fluorescent probe 
(Strem Chemicals, with excitation at 495 nm and emission 
at 515 nm), which is known to react rapidly and specifically 
with NO itself (Lim et al. 2006).

Extraction and measurement of adenine 
nucleotides and proteins

Adenine nucleotides were extracted essentially as in Hor-
chani et al. (2011). All extraction steps were carried out 
at 4 °C. Frozen material (40–60 mg) was crushed in liquid 
nitrogen with 300 mL of perchloric acid solution, containing 
7% (v/v)  HClO4 and 25 mM  Na2EDTA, with a mortar and 
pestle. After thawing, the extract was taken and the mortar 
was rinsed with 200 mL of perchloric acid solution, which 
was then pooled with the extract. The sample was centri-
fuged for 5 min at 13,000g. The supernatant was quickly and 
carefully neutralized at pH 5.6–6.0 using a 2 M KOH–0.3 M 
MOPS solution.  KClO4 precipitate was discarded by cen-
trifugation (5 min, 13,000g). Adenine nucleotides of the 
supernatant were measured in a Xenius spectrofluorimeter-
luminometer (Safas, Monaco) using the ATPlite one-step 
assay system (ATPLT1STP-0509; Perkin-Elmer) according 
to the manufacturer’s instructions. Proteins were extracted 
and quantified on clarified extracts as in Horchani et al. 
(2010).

Results

Salinity and flooding affect nodulated roots 
nitrogen‑fixing capacity and energy state, 
and increase NO production

Salt and flooding treated M. sativa roots were first analysed 
for their biomass and nodule production. As reported in 
Table S1, root system dry weight is not affected by the two 
treatments. However, T20 and T50 salt treatments decrease 
by 38 and 52%, respectively, the number of nodules per 
plant, indicating that salt stress affects nodulation. On its 
side, flooding treatment has no effect on the number of 
nodules per plant. It can be noted that, regardless of the 
treatment, the protein content of the root system remains 

unchanged (Fig. S3), suggesting that, as a whole, the root 
system is not senescent and is still functional.

The effects of salinity and flooding on M. sativa BNF 
capacity were assessed by measuring the ARA of nodules 
(Fig. 1a). As compared with control nodules in normoxia, 
T20 and T50 treatments result in an 18 and 75% decrease in 
ARA, respectively. When compared to normoxia, flooding 
also results in a 33 and 52% decrease in ARA for control and 
T20 nodules, respectively, but is without additional effect 
for T50 nodules.

To test the effects of salinity and flooding on the energy 
state, we analyzed the ATP/ADP ratio (experiment 1). 
ATP/ADP ratio of control roots is 7.4 (Fig. 1b), which is in 
agreement with previous analysis in either roots or nodules 
(Brouquisse et al. 1991; Horchani et al. 2011). ATP/ADP 
ratio is not modified in T20 (7.0), but significantly decreased 
in T50 roots (6.5), indicating that average but not low salt 
stress impairs the energy status of the nodulated roots. After 
a 5-day flooding period, ATP/ADP ratios decrease close to 
5.0, 4.5 and 4.2 in Ctrl, T20 and T50 treated roots, respec-
tively (Fig. 1b). These results indicate that the saline and 
flooding stresses, independently of each other, affect the 
energy state of the nodulated roots and that their combined 
effect is partly cumulative.

In roots and nodules under hypoxia, NO production has 
been associated with the establishment of a Phytogb-NO 
respiration, whose function is to maintain the energy state 
of the tissues when  O2 concentration decreases (Igamberdiev 
and Hill 2009; Horchani et al. 2011). We checked whether 
NO production could be involved in the maintenance of the 
root system energy state under each stress. As compared 
with control, T20 and T50 treatments caused a 1.8 and 3.8-
fold increase in NO production (Fig. 1c). Similarly, flooding 
induced a 1.3 to 2.7-fold increase in NO production com-
pared to normoxic conditions. As a control, NO produc-
tion was also measured with Cu(II) fluorescein probe with 
similar results (Fig. S3), indicating that measurements with 
DAF-2 are reliable and relevant in this context. Thus, NO 
production was increased by both saline and flooding treat-
ments, suggesting (1) that the effects of salinity and flood-
ing on NO production and energy state could result from 
hypoxic environment, and (2) that Phytogb-NO respiration 
could be activated in response to both saline and flooding/
hypoxia treatments.

NO production contributes to the maintenance 
of energy state under both salinity and hypoxia

To test the above hypothesis, we analyzed the effects of 
cPTIO (a NO scavenger) and Tg (a NR and Phytogb-NO 
respiration inhibitor) on ATP/ADP ratio and NO produc-
tion in the root system of control (0) and T50 (50) treated 
plants submitted (H) or not (N) to hypoxia. To this end, we 



used a specific hydroponic experimental setup where the 
root system was incubated in nutrient solution supplemented 
or not with the inhibitors (experiment 2, Fig. S2). Compared 
to the control (0-N), NR inhibition by Tg results in a 43, 33 
and 41% decrease of ATP/ADP ratio in 0-H, 50-N and 50-H 
roots, respectively (Table 1). Similarly, NO scavenging by 
cPTIO results in a 34, 37 and 37% decrease of ATP/ADP 
ratio in 0-H, 50-N, and 50-H roots, respectively, compared 
to control conditions. cPTIO and Tg has no significant effect 
on the ATP/ADP ratio in 0-N roots. Treatment with Tg trig-
gers a strong decrease in NO production in 0-H, 50-N and 
50-H treated root systems, but not in 0-N treated root system
(Table 1). In the presence of cPTIO, NO production is totally
abolished. Taken together, these data indicate that both the
functioning of NR and the production of NO are necessary
to maintain root and nodule energy state under salinity and
hypoxia, alone or combined together.

Discussion

The present data show that nodulation, but not root growth, 
of M. sativa plants is affected by average salinity (Table S1). 
This is in line with literature data reporting that alfalfa is 
a moderately salt-tolerant legume (Bruning and Rozema 
2013) and that its growth is significantly affected only from 
NaCl concentrations above 80 mM (Rogers et al. 2008, 
2009, 2011). However, salinity is known to inhibit BNF 
more rapidly than growth in legumes (Bruning and Rozema 
2013). In our study, ARA is the more inhibited as the salt 
concentration increases (Fig. 1). Under low salt stress, the 
supply of  O2 to nodules was suggested to be the limiting 
factor for BNF (Bergersen 1982; Delgado et al. 1994; Ser-
raj et al. 1994). This inhibition would be due to the fact that 
the salt stress disrupts the symplastic connections between 
nodule cells, decreases the permeability of the nodules to  O2 
and increases its critical  O2 pressure, which would have the 
effect of inhibiting the energy metabolism and the regenera-
tion of ATP. These interpretations were supported by Serraj 
et al. (1998) and Serraj and Drevon (1998) who showed that 
the BNF of common bean, soybean and alfalfa submitted to 
50–100 mM NaCl concentrations is partly inhibited com-
pared to that of control plants when measured at 21%  O2, 
but that the inhibition is reversed by increasing  pO2. Consid-
ered together, these studies suggest that the decrease in ARA 
under salt stress is due to an  O2 limitation within the nodules 
leading to a reduction in energy metabolism.

Short-term effects of flooding on BNF have been little 
studied. However, in Trifolium repens (Pugh et al. 1995) 
and soybean (Sánchez et al. 2010) nodulated roots, a short 
period of flooding (6–7 days) resulted in a complete or half 
inhibition of ARA, respectively. Similarly, our data show 
that in M. sativa nodulated roots, ARA is inhibited after 
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5 days of flooding (Fig. 1), confirming that flooding inhibits 
ARA presumably through flooding-associated  O2 shortage.

In the root system of many plant species, including leg-
umes, submitted to flooding or hypoxia, the induction of a 
Phytogb-NO respiration occurs, allowing cell energy sta-
tus retention (Dordas et al. 2003; Gupta and Igamberdiev 
2011; Berger et al. 2018). The Phytogb-NO respiration cycle 
involves (1) the reduction of  NO3

− by NR (2) the transloca-
tion of  NO2

− from the cytosol to the mitochondrial matrix, 
(3) the reduction of  NO2

− to NO via the mitochondrial
electron transfer chain (ETC) allowing ATP regeneration,
and finally (4) the passive diffusion of NO to the cytosol
where it is oxidized back to  NO3

− by Phytogb (Gupta and
Igamberdiev 2011). Functional legume nodules are naturally
characterized by a microoxic environment, and the existence
of such a Phytogb-NO respiration was also evidenced in M.
truncatula nodules (Horchani et al. 2011). In these nodules,
a hypoxic treatment triggers an increase in NO production,
which is abolished by the addition of either cPTIO or Tg,
and the energy state (ATP/ADP) is significantly inhibited
when nodules are incubated in the presence of Tg (Horchani
et al. 2011). In our study, under either salt or hypoxic treat-
ment, or both, the use of Tg and cPTIO leads to a reduction
of the ATP/ADP ratio and to an inhibition of NO produc-
tion (Table 1) indicating that both NR activity and NO pro-
duction are necessary to maintain the energy state. Taken
together our data first confirm that in M. sativa nodulated
roots under flooding/hypoxia, NO production is involved in
maintaining energy state presumably through the establish-
ment of a Phytogb-NO respiration. Second, our study shows
that NR-dependent NO production is also involved in main-
taining energy state under salt stress, which argues that salt
treatment triggers a hypoxic stress in the nodulated roots.
Third, this study strongly suggests that the functioning of
Phytogb-NO respiration is induced in nodulated roots under
salt stress.
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