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Abstract

Background: Bemisia tabaci (Hemiptera: Aleyrodidae) represents one of the greatest threats to agricultural crops. Chemical 
con-trol is the primary tool used in integrated pest management (IPM) programs. However, release of the predator 
Nesidiocoris ten-uis (Hemiptera: Miridae) on tomato plants is a highly recommended control tactic. The objective of this study 
was to evaluate the efficacy of a commercial borax plus citrus oil (BCO) product against B. tabaci in the presence and absence 
of N. tenuis. The synthetic insecticide lambda-cyhalothrin was used as a positive control. We also evaluated the sublethal 
effects of BCO on the 
behavior and predation rate of N. tenuis.

Results: Our results demonstrated that BCO, alone and at its maximum recommended field rate for B. tabaci, was not effective 
in controlling the pest under laboratory conditions. Application of BCO simultaneous with N. tenuis release did not reduce the 
increase in the B. tabaci population. Effective control of B. tabaci was achieved using only N. tenuis. However, synthetic 
lambda-cyhalothrin pyrethroid, used here as a control, caused high pest mortality and led to on-site extinction of N. tenuis, 
which did not occur for insects exposed to BCO. Lambda-cyhalothrin and BCO significantly affected the foraging behavior of 
N. tenuis, reducing the predation rate, especially following exposure to lambda-cyhalothrin.

Conclusion: The insecticide lambda-cyhalothrin achieved satisfactory results in suppressing B. tabaci, but was harmful to N. ten-
uis. Additionally, lambda-cyhalothrin and BCO affected predator behavior.
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1 INTRODUCTION
The silverleaf whitefly, Bemisia tabaci Gennadius (Hemiptera:
Aleyrodidae) (MED - biotype Q), is one of the most devastating
pests of several crops, and is of global economic importance.1,2

The whitefly is highly polyphagous, feeding on and damaging
∼ 500 host plants, including ornamentals, vegetables, legumes,
cotton, and corn.2–5 This herbivore can cause damage to plants
through direct phloem feeding; however, the greatest threat is
due to the transmission of plant pathogens during feeding.6,7 In
addition, B. tabaci excretes ‘honeydew’while feeding on the plant,
favoring the growth of opportunistic fungi, reducing plant photo-
synthesis, and consequently causing yield losses.2,8

Management of B. tabaci populations and the plant diseases
transmitted by this polyphagous insect represents a challenge
for farmers and researchers.9 Difficulty in controlling whiteflies
results from their rapid population growth, ability to develop
resistance to conventional insecticides, and their biological devel-
opment characteristics in that all life stages (eggs, nymphs and
adults) remain protected in the abaxial leaf surface of the host

plant.1,3 Tomato production systems usually require the use of
insecticides to control B. tabaci, and in most cases, this tool is used
in an inadequate manner.10 This practice has triggered resistance
to several conventional insecticides with different modes of
action in various B. tabaci populations.11 Cases of resistance are
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related to modulators of nicotinic acetylcholine receptors (e.g.,
neonicotinoids), molecules that act on the nerves and muscles
of insects (e.g., pyrethroids, organophosphosphates compounds,
and diamides) and a wide variety of growth-regulator insecti-
cides.10,12–14

The appropriate use of zoophytophagus predators is a safe
alternative to pesticides for controlling pests in tomato crops.
Additionally, these predators can be combined with other natural
enemy insects (e.g., parasitoids), natural pathogens (e.g., fungi,
nematodes, bacteria, and viruses) or selective insecticides (e.g.,
the diamide chemical group).15–21 Among the natural enemies
studied for the control of Solanaceae pests, are the predators
Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis (Reuter)
(Hemiptera: Miridae), which are considered to be efficient natu-
rally occurring and/or commercialized agents for biological con-
trol against several herbivorous arthropods in Europe, Asia, and
Africa.22–25 These predators are able to feed on various small pests
(e.g., whiteflies, aphids, mites, and lepidopterans),26–28 move over
the trichomes of plants to a satisfactory degree, and females lay
their eggs endophytically in tomato leaves.29

Because of possible mortality (acute toxicity) and several suble-
thal physiological and behavioral effects of non-selective insecti-
cides in beneficial arthropods,30,31 active compounds derived
from plants may be an alternative to other types of pesticides
for use in integrated pest management (IPM).32–37 Botanical pes-
ticides may be used as isolated substances or complex mixtures,
and their range of action includes their use as insecticides, fungi-
cides, nematicides, and bactericides.38 However, before including
new products in IPM programs, it is necessary to know the effects
of these botanical insecticides on target and non-target species.
Approaches that use population models can provide useful popu-
lation dynamics predictions based on individual-level parame-
ters.39,40 Thus, the harmful effects of insecticides on population
levels of pests and natural enemies can be estimated based on
the life history parameters of these organisms.41–46

This study explored the potential of a commercial product
based on borax plus citrus oil (BCO) combined with the predator
N. tenuis as a tool for whitefly control. The objectives of this study
were to: (i) provide information on the population growth of B.
tabaci following exposure to BCO and a standard synthetic insec-
ticide (lambda-cyhalothrin) in the presence and absence of N. ten-
uis; (ii) determine the influence of the botanical insecticide and
conventional insecticide on population growth in N. tenuis; and
(iii) evaluate possible sublethal effects on the foraging behavior
and predation rate of N. tenuis following exposure to BCO and
lambda-cyhalothrin.

2 MATERIALS AND METHODS
2.1 Biological materials
Bioassays were performed at the National Agronomic Research
Institute (INRA; Sophia-Antipolis) in France under controlled labo-
ratory conditions (25 ± 2 °C, 75 ± 10% relative humidity (RH) and
16:8 h light/dark photoperiod). Tomato and tobacco plants (Sola-
num lycopersicum cv. Marmande and Nicotiana tabacum var. Wild)
were cultivated in a climatic chamber (25 ± 2 °C, 75 ± 5% RH and
16:8 h light/dark photoperiod) on a commercial substrate (Tour-
nesol®, Nice, France) in plastic pots (2 L), without receiving pesti-
cide applications.
Bemisia tabaci (biotype Q) was maintained on tobacco plants in

a climatized room (25 ± 2 °C, 75 ± 5% RH and 116:8 h light/dark
photoperiod). Whiteflies were kept on two tobacco plants (20

and 40 days old) in an anti-aphid cage made by covering a
wooden cage (100 × 100 × 75 cm3) with an insect-proof net (50
mesh). Plants were irrigated three times a week. Once a month,
a new tobacco plant was offered to the colony and the oldest
plant was discarded.
The predator N. tenuis and an alternative prey Ephestia kueh-

niella Zeller (Lepidoptera: Pyralidae) were supplied by Koppert
Biological Systems (Almeria, Spain). Predators were kept on
tobacco plants (∼ 40 days old) in a plastic cage
(60 × 60 × 40 cm3) covered by an insect-proof net (50 mesh).
Nesidiocoris tenuis was fed on E. kuehniella eggs. Adult predators
were transferred to a new plant once a week, on which females
could lay eggs over a period of 1 week. Thus, predators of a similar
instar were kept together inside the anti-aphid cage to minimize
cannibalism by larger insects.47

2.2 Insecticides
Prev-Am® (borates tetrasodium salts and 60 g of orange oil per
liter; ORO AGRI Internacional Ltda., Gennevilliers, France), referred
to as BCO in this study, is produced from sweet orange peel oil
and is used as an alternative pest control agent in agroecological
systems. To evaluate the demographic parameters of B. tabaci
and N. tenuis, bioassays were performed using three BCO concen-
trations, namely, the maximum concentration recommended to
control whiteflies in the field (0.2352 g a.i. L−1), half of the maxi-
mum concentration (0.1176 g a.i. L−1), and 10 % of the maximum
concentration (0.0235 g a.i. L−1). The predation bioassay was per-
formed using only the maximum concentration of this product.
Karate Zeon® 100 EC (Syngenta International Ltda., Milano, Italy)

is a commercial formulation of the pyrethroid insecticide lambda-
cyhalothrin, which is widely used to control pests in agricultural
systems. It was used as a positive control at the maximum recom-
mended concentration to control whiteflies (0.0237 g a.i. L−1) in
the bioassays of demographic parameters and predation
behavior.
The given concentration were obtained by diluting Karate

Zeon® and Prev-Am® in distilled water, which alone served as neg-
ative control.

2.3 Estimating the demographic parameters of Bemisia
tabaci and Nesidiocoris tenuis
The bioassays aimed to determine the mean offspring and the
population growth of B. tabaci (ten treatments, of which five
had added predators and five had no predators) and N. tenuis (five
treatments). In both bioassays, 20 replicates were performed per
treatment.
Adults of B. tabaci and N. tenuis were exposed to dry residues of

lambda-cyhalothrin and BCO on tomato leaves. Tomato leaveswith
fully expanded leaflets (∼ 15 cm2, composed of five leaflets) were
immersed in BCO (in one of the three concentrations: 0.2352,
0.1176 and 0.0235 g a.i. L−1), lambda-cyhalothrin (0.0237 g a.
i. L−1) or distilled water for 5 s. The leaves were left to dry for 1 h
and placed inside a system composed of overlapping plastic cups,
as an experimental unit proposed by Biondi et al.48 The plastic cup
(700 mL, length: 15 cm) had a hole in the bottom center to allow
the leaf stem to reach a second plastic cup (350 mL, length:
11 cm) below that contained water. Subsequently, a fine mesh
net was fixed in the upper opening of the first upper cup to permit
ventilation and prevent insects from escaping.
To evaluate the demographic parameters of B. tabaci, four pairs

of whiteflies (∼ 2 days old) were maintained in each experimental
unit. In treatments comprising B. tabaci plus predator, one N.



tenuis female49 (∼2 days old) was also added. Additionally, to
evaluate the demographic parameters of N. tenuis, two pairs49 of
predators (∼8 days old) were maintained on tomato leaves in
the experimental unit described above.
Eleven days after the beginning of each bioassay, living off-

spring of the whiteflies and predators at each stage of life
cycle were counted under a stereomicroscope (×40 magnifi-
cation). The evaluation time was that proposed by Walthall
and Stark.50

2.4 Effects of insecticides on the foraging behavior and
predation rate of Nesidiocoris tenuis
Bioassays to determine behavioral response and predation rate of
N. tenuis were performed using B. tabaci (second instar) nymphs
as prey, and were performed with three treatments (BCO,
lambda-cyhalothrin and untreated control). Twenty replicates
were performed for each treatment.
Untreated tomato leaves were previously offered to B. tabaci

adults for 24 h so the insects could lay eggs. After 13 days, excess
nymphs were removed, leaving 150 whitefly nymphs (second
instar) in each replicate.
Nesidiocoris tenuis females49 (∼2 days old) were kept on treated

tomato leaves, and starved for 24 h. Leaves were treated with a
BCO or lambda-cyhalothrin solutions, both at the maximum con-
centrations recommended for the control of whiteflies, as previ-
ously described. Distilled water was used as a negative control.
Predators were subsequently isolated in Petri dishes (10 cm

diameter × 2 cm height) containing an untreated tomato leaflet
infested with B. tabaci nymphs in an agar–water solution (1%).
Petri dishes were closed with Teflon® film to prevent insects
escaping.
Predator activity was recorded for 10 min per replicate. Thus,

five actions were simultaneously recorded in real time: walking,
cleaning, feeding on plants, preying on B. tabaci and resting. Time
spent on each action was recorded using ETHOWATCHER®
software.51

The second step was to evaluate the predation rate of N. tenuis.
Thus, after the behavioral assay, predators were kept in the Petri
dish described above, and their predation rate (i.e., the number
of preyed on whitefly nymphs) was recorded 12 and 24 h after
the start of the experiment.

2.5 Statistical analyses
Data were subjected to tests of normality (Shapiro–Wilk)52 and
homoscedasticity (Bartlett).53 Subsequently, the number of B.
tabaci and N. tenuis nymphs at each instar was subjected to
an analysis of variance (PROC ANOVA) and Tukey's test to
detect the differences between the treatments (P < 0.05)
(PROC GLM).
The demographic parameters of B. tabaci and N. tenuis were

evaluated using the instantaneous rate of increase (ri), based on
the equation proposed by Walthall and Stark50 as follows:

ri=
ln N

N0

� �

Δt

where Nf is the final number of living insects, N0 is the initial
number of insects, and Δt is the time interval (days) from the
beginning to the end of the laboratory experiments.41,50 Sub-
sequently, the population growth of B. tabaci and N. tenuis
was estimated according to the equation below:

dN
dt

= rN
K-N
K

Where N is the initial population size, which represents the ini-
tial number of B. tabaci orN. tenuis used in each experimental unit.
r represents the per capita growth rate (capacity of each B. tabaci
or N. tenuis to produce descendants). In earlier trials, the carrying
capacity of the arenas was determined, based on the approximate
number of insects in natural colonized plants, which was repre-
sented by the K value; (K-N) is the unused capacity. Growth curves
were adjusted using Kaplan–Meier estimators from the non-para-
metric procedure (PROC LIFETEST). Similarities between the time–
response curves were tested in paired comparisons (χ2 log-rank
test) between the curves.
Canonical variate analysis (CVA) of predator behaviors (walking,

cleaning, plant feeding, preying, and resting) when subjected to
different treatments was performed to recognize possible differ-
ences and the main behavior contributing to the observed differ-
ences (PROC CANDISC with the Distance statement).
Finally, differences in the predation rates between times and

among treatments were analyzed by Generalized Linear Models
(GLM's) following a Poisson distribution. All analyses were per-
formed in SAS v. 9.2 (SAS Institute, Cary, NC, USA), except for the
predation rate analyses, which were performed using ‘R’ 3.4.4
(R Foundation for Statistical Computing, Vienna, Austria).

3 RESULTS
3.1 Estimating the demographic parameters of Bemisia
tabaci
In the absence of N. tenuis, whitefly females laid more eggs on
treatments exposed to distilled water and the minimum concen-
tration of BCO (Table 1). Bemisia tabaci females reduced their
oviposition when exposed to half-maximum and maximum con-
centrations of BCO. The lowest number of eggs was reported for
the lambda-cyhalothrin treatment. The number of first instar
nymphs found in the distilled water treatment did not differ signif-
icantly from the insects exposed to the minimum concentration of
BCO. The number of nymphs found at the maximum concentra-
tions of BCO and lambda-cyhalothrin treatments was lower than
with other treatments. For second instar nymphs, the highest num-
ber of offspringwas found for insects in distilledwater and themin-
imum BCO concentration; the lambda-cyhalothrin treatment had
the lowest number of nymphs. At the third instar, therewere no sig-
nificant differences in the numbers of offspring for insects exposed
to minimum and half the recommended BCO concentrations.
Finally, the lowest number of nymphs was found in the lambda-
cyhalothrin treatment (Table 1).
In the presence of N. tenuis, the lowest number of B. tabaci eggs

was obtained in the control and lambda-cyhalothrin treatments.
Regarding the first instar of B. tabaci, the lowest number of
nymphs was observed in the distilled water and lambda-cyhalo-
thrin treatments. For the second instar of B. tabaci, the largest
number of descendants was found in treatments containing the
half and maximum concentrations of BCO. In addition, a lower
number of B. tabaci nymphs was observed in the distilled water
and lambda-cyhalothrin treatments. With respect to the third
instar, the largest number of B. tabaci nymphs was observed at
the half-maximum concentration of BCO. Additionally, no signifi-
cant differences were observed between treatments composed
of distilled water, maximumBCO concentration and lambda-cyha-
lothrin (Table 1).



The treatment consisting solely of B. tabaci, B. tabaci + BCO
(minimum concentration), and B. tabaci + BCO (half concentra-
tion) resulted in the greatest population growth capacity. Bemisia
tabaci + N. tenuis resulted in fewer B. tabaci nymphs. However,
the lowest number of B. tabaci offspring was found on tomato
leaves treated with lambda-cyhalothrin (Fig. 1).

3.2 Estimation of demographic parameters for
Nesidiocoris tenuis
For the three BCO concentrations and lambda-cyhalothrin, the
number of N. tenuis nymphs that emerged from tomato leaves
was significantly lower than for insects exposed in the untreated
control. Emergence of first and fourth instar nymphs was signifi-
cantly lower in BCO treatments (three concentrations) than in
the untreated control. With respect to second instar nymphs,
the three concentrations of BCO also reduced emergence. The
half and maximum recommended concentrations of BCO were
more toxic for the third instar nymphs. Nesidiocoris tenuis adults
did not reproduce when exposed to lambda-cyhalothrin (Table 2).
Although the three BCO concentrations reduced the mean

number of offspring of N. tenuis, analysis of the demographic
parameters showed positive population growth for predators
exposed to BCO treated leaves (Fig. 2). In addition, the increase
in the population of predators exposed to theminimum BCO con-
centration was similar to that for the untreated control. However,
the samewas not observed for insects exposed to lambda-cyhalo-
thrin, which did not show any capacity for population growth fol-
lowing exposure to the synthetic insecticide (Fig. 2).

3.3 Effects of insecticides on the foraging behavior and
predation rate of Nesidiocoris tenuis
CVA indicated significant global differences in the behavior of the
predator insects when subjected to different treatments (Wilks
⊗ = 0.61; F = 2.93; df (num/den) = 10/106; P = 0.002) (Table 3).

The CVA diagram suggests that the lambda-cyhalothrin and
BCO treatments affected predator behavior compared with the
untreated control (Fig. 3). The first axis (P = 0.002) explained
98% of the observed differences (Table 3). Higher canonical loads
were observed in cleaning and predation behavior on the first
axis, which were responsible for most of the divergence observed
between the treatments.
N. tenuis individuals exposed to BCO and lambda-cyhalothrin

predated fewer B. tabaci nymphs than those in the untreated con-
trol. Moreover, the interaction between time factors and treat-
ments showed significant differences in the reduction in the
predation rate (χ2 = 8.42, df = 2, P = 0.015). The lowest number
of predated B. tabaci nymphswas observed for predators exposed
to lambda-cyhalothrin, and the highest number was observed for
predators treated with distilled water (χ2 = 67.40, df = 2,
P < 0.001). In all treatments, predators preyed more during
the first evaluation period (1–12 h) than during the second
(12–24 h) (χ2 = 1443.62, df = 1, P < 0.001) (Fig. 4).

4 DISCUSSION
Insecticides have beenwidely used in tomato and other crops due
to their effective pest control and rapid action against susceptible
populations of B. tabaci.54 However, environmentally safe
approaches (e.g., combining natural enemies and selective prod-
ucts) should be prioritized to avoid a build-up of insecticide resis-
tance.11,55,56 In our study, the B. tabaci population was able to
increase when exposed to dry residues of BCO on tomato leaves.
Furthermore, a seemingly additive relationship between this
botanical insecticide and N. tenuis was observed, although a
greater decrease in whiteflies nymphs was observed in the treat-
ment where N. tenuis acted alone. In addition, the insecticide
lambda-cyhalothrin provided the greatest control of B. tabaci. By
contrast, predators exposed to lambda-cyhalothrin exhibited the

Table 1 Mean (± SE) number of eggs laid and emerged individuals reaching the first, second or third instar in the progeny of Bemisia tabaci
exposed to dry residues of borax plus citrus oil (at 10, 50 and 100% label concentration), lambda-cyhalothrin (treated control) and distilled water
(untreated control)

Treatment

Absence of Nesidiocoris tenuis*

Eggs First instar Second instar Third instar

B. tabaci + Distilled water 325.9 ± 12.1 a 38.3 ± 2.8 a 308.9 ± 9.1 a 55.6 ± 4.9 a
BCO 10% 300.1 ± 10.2 a 37.4 ± 2.9 a 274.1 ± 6.9 ab 40.4 ± 4.0 b
BCO 50% 221.4 ± 13.9 b 26.8 ± 2.5 b 246.6 ± 14.9 b 37.2 ± 3.4 b
BCO 100% 117.4 ± 14.3 c 5.9 ± 0.9 c 167.7 ± 12.1 c 14.2 ± 1.8 c
Lambda-cyhalothrin 1.3 ± 0.5 d 0.1 ± 0.1 c 1.1 ± 0.4 d 1.1 ± 0.4 d

F4,95 139.58 67.69 150.05 43.81
P <0.001 <0.001 <0.001 <0.001

Presence of Nesidiocoris tenuis*

Eggs First instar Second instar Third instar

B. tabaci + Distilled water 17.1 ± 3.0 c 1.6 ± 0.3 c 27.1 ± 4.2 c 1.5 ± 0.4 c
BCO 10% 68.4 ± 7.0 b 5.7 ± 0.8 b 104.1 ± 10.3 a 11.4 ± 2.1 b
BCO 50% 109.9 ± 11.0 a 20.6 ± 1.6 a 103.5 ± 7.5 a 26.2 ± 1.5 a
BCO 100% 88.1 ± 12.2 ab 8.0 ± 1.0 b 66.5 ± 9.5 b 5.2 ± 1.4 c
Lambda-cyhalothrin 1.4 ± 0.4 c 0.5 ± 0.2 c 1.3 ± 0.4 c 1.2 ± 0.4 c

F4, 95 32.55 71.26 38.49 61.84
P <0.001 <0.001 <0.001 <0.001

*Values followed by the same letter within a column are not significantly different by Tukey's HSD test (P ≤ 0.05).



greatest reduction in population growth and predation rate. The
behavioral characteristics of N. tenuis were affected when preda-
tors were exposed to BCO and lambda-cyhalothrin.
Most toxicological studies involving botanical insecticides are

based on the acute mortality of target species and natural ene-
mies.57 However, after exposure to harmful compounds, insects
can compensate their individual mortality in the population
dynamics.42,58 Thus, insects are able to show logistic growth in
the population, even after the mortality of some individuals. In
our study, B. tabaci adults were able to reproduce and, conse-
quently, increase their population even after exposure to BCO.
The alternative hypothesis is as follows: (i) whiteflies are more sus-
ceptible to BCO during the nymphal stadium than during the egg
and adult stages; (ii) serosal cells present in eggs could protect
the embryo from BCO toxic compounds;59 and (iii) BCO does not
have a large residual effect by contact against B. tabaci. By contrast,

whitefly exhibited a decline in demographic parameters after expo-
sure to lambda-cyhalothrin, which was also observed for N. tenuis.
Nesidiocoris tenuis is an effective predator of B. tabaci on tomato

plants in greenhouses and open fields.60 Release of this predator
in tomato crops may result in > 80% B. tabaci control.61 Despite
the benefits provided by N. tenuis in terms of pest control, in some
cases, use of insecticides and botanical insecticides is necessary in
agricultural systems, especially when pests reach the economic
damage threshold in crops.62,63 Our results showed that BCO
and lambda-cyhalothrin caused a significant reduction in the
emergence of N. tenuis nymphs. However, the sublethal effect
on predator reproduction when exposed to both products cannot
be considered similar. Nesidiocoris tenuis exposed to BCO showed
an increase in its population growth curve. The same was not
observed for lambda-cyhalothrin, which compromised the repro-
duction of the predators.

Figure 1 Curves and box plots of estimated population curves of Bemisia tabaci exposed to dry residues of borax plus citrus oil (BCO; at 10, 50 and 100%
label concentration), lambda-cyhalothrin (treated control) and distilledwater (untreated control). Box plots indicate themedian and dispersion (lower and
upper quartiles and outliers) population growth. Box plots with different lower-case letters are significantly different by pairwise comparison in χ2 log-rank
test (P ≤ 0.05). [Color figure can be viewed at wileyonlinelibrary.com]

Table 2 Mean (± SE) number of Nesidiocoris tenuis first, second, third and fourth instars produced by females exposed to dry residues of borax plus
citrus oil (at 10, 50 and 100% label concentration), lambda-cyhalothrin (treated control) and distilled water (untreated control)

Treatment

Developmental stages of natural enemies*

First instar Second instar Third instar Fourth instar

N. tenuis + Distilled water 8.9 ± 0.7 a 20.6 ± 1.1 a 19.5 ± 1.4 a 7.4 ± 0.5 a
BCO 10% 5.5 ± 0.6 b 14.3 ± 1.2 b 14.6 ± 1.1 b 5.0 ± 0.4 b
BCO 50% 4.5 ± 0.6 b 11.5 ± 1.4 b 9.7 ± 1.4 c 4.5 ± 0.6 b
BCO 100% 3.5 ± 0.5 b 6.7 ± 0.5 c 8.0 ± 0.6 c 4.2 ± 0.5 b
Lambda-cyhalothrin 0.0 ± 0.0 c 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 c

F4,95 30.81 57.43 48.09 32.32
P <0.001 <0.001 <0.001 <0.001

*Values followed by the same letter within a column are not significantly different by Tukey's HSD test (P ≤ 0.05).

http://wileyonlinelibrary.com


BCO did not reduce the longevity of N. tenuis, as reported for
lambda-cyhalothrin, after exposure to dry residues of these prod-
ucts.64 Another important generalist predator, Orius laevigatus
(Fieber) (Hemiptera: Anthocoridae), did not have its longevity
altered when exposed to BCO (at field concentration), suggesting
that BCO has no effect on this biological trait in these predators. In
turn, the number of O. laevigatus offspring was reduced after
exposure to BCO.48 However, no effects were observed on the sur-
vival and reproduction of adult females of the scale insect parasit-
oid Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae) and
the tomato leafminer parasitoid Bracon nigricans Szépligeti
(Hymenoptera: Braconidae) when exposed to dry BCO
residues.43,65

D-Limonene (the primary component of BCO) is a monocyclic
terpene produced by plants as a secondary metabolite and is

often abundant in citrus peel.66 Interestingly, the mode of action
of D-limonene-based biopesticides is similar to that described for
lambda-cyhalothrin, which acts on the nervous systems of
insects.67–70 This property could explain the results of our bioas-
says, in which both commercial products had detrimental effects
on the behavioral response of N. tenuis. The undesirable sublethal
effects on the predator behavioral response may lead to reduc-
tions in the reproductive rate, host search capacity and prey cap-
ture.64,67,71,72 In a behavioral follow-up study, we offered Tuta
absoluta (Meyrick) (Lepidoptera: Gelechiidae) as prey for N. tenuis,
and the predators spent more time walking and resting after
exposure to BCO during the assessments.64 Moreover, the preda-
tion rate was lower compared to that of the untreated insects.
Despite the results described above, in the same report, lambda-
cyhalothrin was more harmful to N. tenuis than BCO.64

The services provided by natural enemies during crop protec-
tion may be direct, by predation and/or parasitism, and indirect,

Figure 2 Curves and box plots of estimated population curves of Nesidiocoris tenuis exposed to dry residues of borax plus citrus oil (BCO; at 10, 50 and
100% label concentration), lambda-cyhalothrin (treated control) and distilled water (untreated control). Box plots indicate median and dispersion (lower
and upper quartiles and outliers) population growth. Box plots with different lower case letters are significantly different by pairwise comparison in χ2 log-
rank test (P ≤ 0.05). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3 Ordination (CVA) diagrams showing divergence in predator behav-
ior when exposed to dry residues of borax plus citrus oil (BCO; at 10, 50 and
100% label concentration), lambda-cyhalothrin (treated control) and distilled
water (untreated control). Solid symbols represent individual replicates. Large
circles indicate treatments that are not significantly different by the approxi-
mated F-test (P ≤ 0.05), based on theMahalanobis (D2) distance between class
means. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3 Canonical loadings (between canonical structures) of the
canonical axes for the Nesidiocoris tenuis foraging behavior previously
exposed to dry residues of borax plus citrus oil (at 10, 50 and 100%
label concentration), lambda-cyhalothrin (treated control) and dis-
tilled water (untreated control)

Predator behavior

Canonical axes

First Second

Resting −0.55 0.47
Preying 0.68 0.08
Plant feeding 0.73 −0.34
Walking −0.37 0.15
Cleaning −0.99 −0.92
Fappr. 2.93 0.11
Proportion 0.98 0.01
P 0.002* 0.974
Eigenvalue 0.61 0.01

Bold type indicates the main contributors of each axis. *Signifi-
cant axes.
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by inhibiting the presence of herbivores, because these insects
can recognize the chemical signals released by predators and/or
parasitoids.21,73–75 Consequently, the importance of using harm-
less insecticides can be emphasized because, even with lower
predation rates, the presence of predators is indirectly beneficial
for tomato crops. In our results, N. tenuis had the highest preda-
tion rate in B. tabaci nymphs during the first evaluation, due to
the fasting time (24 h) before exposure to prey in the experimen-
tal areas. Furthermore, both compounds promoted a reduction in
the number of B. tabaci nymphs preyed on by N. tenuis. The same
products decreased the total predation rate of N. tenuis over
T. absoluta in a laboratory bioassay.64 The undesirable interfer-
ence in predatory behavior after insecticide exposure can be char-
acterized by the: (i) repellent effect, (ii) anti-alimentary properties,
and (iii) interruption in the ability to locate prey.30,71 We suggest
that hypothesis (iii) is applicable here because both commercial
products could trigger random movements and increase insect
restlessness.76

In summary, despite the smaller effect of BCO on the demo-
graphic parameters of B. tabaci, use of this type of botanical insec-
ticide should be prioritized instead of lambda-cyhalothrin in IPM
programs. BCO could act simultaneously with N. tenuis against B.
tabaci, which was not noted for predators exposed to lambda-
cyhalothrin. Bemisia tabaci was exposed via residual contact with
dry residues; however, direct topical spraying on nymphs and
adults may provide more effective pest control. Consequently,
direct topical spraying could have additional negative effects on
the predator. Thus, to achieve the maximum potential of both
control methods, BCO should be employed at first aiming to
reduce the B. tabaci population. Since this commercial product
is considered to have low persistence in agronomic environments
(∼ 7 days, according to the manufacturer), N. tenuis could be
released as a second line of defenze on tomato crops. It may also
be worth evaluating the sublethal effects of BCO on N. tenuis
under commercial conditions, as this predator could avoid treated
tomato plants, thus reducing the damage caused to its biological
characteristics by pesticides.
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