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Glossary 27 

ABA: Abscissic acid 28 
ACP: Agroecological Crop Protection 29 
AsA: Ascorbic Acid 30 
ASC: Reduced AsA 31 
ATP: Adenosine Tri Phosphate 32 
DHA: De Hydro Ascorbic acid (Oxidized AsA)  33 
EC: Electrical conductivity 34 
Eh: Redox Potential 35 
ET: Ethylene 36 
G x E x M x P Interactions: Genotype x Environment x Management x Pest sensu lato interactions  37 
GSH: Reduced Glutathione 38 
GSSG: Oxidized Glutathione 39 
ISR: Induced Systemic resistance 40 
JA: Jasmonic Acid 41 
NADPH: Reduced form of Nicotinamide Adenine Dinucleotide Phosphate 42 
NO: Nitric Oxide 43 
pH: Hydrogen potential 44 
RAS: Root-Adhering Soil  45 
ROS: Reactive Oxygen species 46 
SA: Salicylic Acid 47 

https://orcid.org/0000-0002-5438-1078
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SAR: Systemic Acquired Resistance 48 
SOM: Soil Organic Matter 49 
 50 

Introduction 51 

“Research is to see what everybody has seen, and think what nobody has thought” Albert Szent-Gyorgyi, Nobel 52 

prize laureate.  53 

Since the late 19
th

 century and until quite recently, medical microbiology was based on the assumption that a few 54 

microorganisms are pathogens while most are not. Although this binary view has now been strongly criticized, 55 

and considered untenable (Méthot and Alizon 2014), it is generally recognized that the interaction of the three 56 

factors of the host, pathogenic agent, and environment (plant disease triangle) determine whether a disease 57 

develops or not. Thus, plant stage of growth, pathogen virulence, and environmental changes result in a dynamic 58 

relationship over space and time (Agrios et al. 2005). Variations in any of the three interacting factors could 59 

significantly alter expected patterns of disease spread and development (Farber and Mundt 2017). Even if a host 60 

plant and a potential virulent pathogen are present in a certain area, serious disease epidemics will not occur 61 

unless the environment fosters their development (Bateman 1978; Keane and Kerr 1997; Agrios et al. 2005). 62 

Abiotic stresses can dramatically alter the outcome of plant-pathogen interactions and, depending on the 63 

pathosystem and stress intensity, the stress may enhance or reduce diseases. Even mild, episodic stresses can 64 

predispose plants to levels of pathogen inoculum that would not be damaging in the absence of the stress 65 

(Bostock et al. 2014). Environmental stresses also influence overall plant tolerance to insect pests (Louda and 66 

Collinge 1992).  67 

The idea that a pathogenic organism is essentially a static or unchanging entity distinct from other types of 68 

microbes would mean that such a microorganism possessed an inherent capacity to cause disease in hosts. 69 

Pathogenicity is a dynamic feature of an interaction between a host and microbes as influenced by the 70 

environment (Agrios et al. 2005; Méthot and Alizon 2014). The role of beneficial or commensal microorganisms 71 

in plant health is now widely acknowledged, both in soil (especially the rhizosphere microbiome), and in leaves 72 

(the phyllosphere microbiome; Andrews and Harris 2000; Paszkowski 2006; Leveau 2019; Teixeira et al. 2019; 73 

Yu et al. 2019). Although knowledge of plant–plant and plant–microbe interactions has been greatly extended in 74 

recent years, the chemical communication leading to defense priming is not well-understood (Mhlongo et al. 75 

2018) and highlights the need to further elucidate microbial functions and interactions (Toyota and Shirai 2018).  76 

Thus, two of the major questions remaining are “what makes a commensal or an opportunistic microorganism 77 

become pathogenic?” and “how do pathogenic microorganisms impact plant health?” 78 

Understanding the impacts of stresses on plant health is, therefore, important for obtaining optimum crop 79 

production efficiency. Stress is defined as “a sudden change in the environment that exceeds the organism's 80 

optimum to cause homeostatic imbalance which must be compensated for” (Kilian et al. 2012). Homeostasis is 81 

considered an underestimated focal point of ecology and evolution (Giordano 2013) although “cellular redox 82 

homeostasis in plants” is understood to be central to the plant stress defense system (Anjum et al. 2016). More 83 

generally, Eh and pH signaling and homeostasis should be regarded as key processes in many aspects of plant 84 

biology (Rengel 2002; Foyer and Noctor 2016) since plants function in a specific Eh-pH spectrum and rely on 85 

various processes to ensure intracellular homeostasis (Husson 2013). Therefore, the redox balance in both the 86 
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host and pathogen may be considered a key battlefield in determining the outcome of pathogen attack (Williams 87 

et al. 2011). 88 

Indeed, redox potential (Eh) and hydrogen potential (pH) regulation (Eh-pH, maintenance of extra- and intra-89 

cellular redox states) are key to both plant-pathogen (bacteria, fungi, oomycetes, and viruses) and plant-animal 90 

pest (especially insects) interactions through: 91 

i) upstream regulation by maintaining the plant unfavorable to pest or pathogen attacks: via 92 

development of physical barriers (wax, suberin, cutin, hardened cell walls, silica, etc.) or regulation 93 

of natural openings such as stomata (Chen and Gallie 2004; Foyer 2005; Liu et al. 2007; Pollard et 94 

al. 2008; Samuels et al. 2008; Pastor et al. 2013; Coskun et al. 2019);  95 

ii) downstream regulation after pest or pathogen attack, mainly through oxygen burst by plants and 96 

responses of pathogens-pests (Mehdy 1994; Lamb and Dixon 1997; Kuzniak et al. 2005; Kuzniak 97 

2010; Lehmann et al. 2015; Qi et al. 2016; González-Bosch 2018; Segal and Wilson 2018) to 98 

include  99 

iii) control of Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR) (Fobert 100 

and Després 2005; Spoel and Loake 2011; Frederickson Matika and Loake 2013) in a complex 101 

interaction with plant hormones (Srivastava et al. 2017).  102 

In addition, sensing of the host plant by pests and pathogens can be influenced by the plant’s Eh-pH state in 103 

different ways, including emission of volatiles (Wei et al. 2014), redox associated mechanisms as in parasitic 104 

weeds (Yoder 2001), osmotic changes, and alteration of magnetic and electric fields emitted by plants which are 105 

recognized by insects (Newland et al. 2008; Greggers et al. 2013; Clarke et al. 2013), nematodes (Shapiro-Ilan et 106 

al. 2012; Ilan et al. 2013) and oomycetes (van West et al. 2002).  107 

 108 

Cook and Baker (1983) defined disease suppressive soils as soils in which either: i) the pathogen does not 109 

establish or persist, ii) the pathogen establishes but causes no damage or iii) the pathogen causes some damage 110 

but the disease becomes progressively less severe even though the pathogen persists in soil. Two types of soil 111 

suppressiveness are known: i) general suppression, which is due to nutrient status and activity of the total 112 

microbial biomass in soil and is not transferable between soils, and ii) specific suppression owing to the activity 113 

of individual or selected groups of microorganisms and is transferable (Weller et al. 2002; Schlatter et al. 2017). 114 

While soil suppressiveness is mainly derived from the biological functions of soils (Toyota and Shirai 2018; 115 

Steinberg et al. 2019; De Corato 2021), there is plenty of evidence showing the role of both biotic and abiotic 116 

factors in disease suppression (Schneider 1982). Chemical and physical components of soil, including pH, 117 

organic matter and clay content, can operate in the suppression of plant diseases directly or indirectly through 118 

their impact on soil microbial activity (Smiley and Cook 1972; Chandrashekara et al. 2012).  119 

The definition of soil health or quality generally includes a range of physical, chemical and biological soil 120 

properties, such as soil type, organic matter content, nutrient cycling, biological activity and soil structure, all of 121 

which impact and are impacted by soil Eh and pH (Van Bruggen and Semenov 2000; Cardoso et al. 2013; 122 

Moebius-Clune et al. 2017; Bünemann et al. 2018; Husson et al. 2018b). Methods developed to assess plant 123 

health based on the underlying stress level measured as chlorophyll fluorescence or other photo-oxidative stress 124 
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markers (including photosynthetic pigments, Photosystem II efficiency, Reactive Oxygen Species -ROS-, 125 

reactive carbonyl species, antioxidant systems) are all related to Eh and pH (Husson et al. 2018a). 126 

A previous interdisciplinary review provided evidence that Eh and pH are major drivers of soil-plant-127 

microorganism systems (Husson 2013). This review bridged different disciplines such as soil sciences, plant 128 

physiology and microbial ecology and proposed a conceptual framework for further studies of soil-plant-129 

microorganism functioning. The framework was based on the hypothesis that plants function physiologically 130 

within a specific internal Eh-pH range and that, along with microorganisms, they alter Eh and pH in the 131 

rhizosphere to ensure homeostasis at the cell level. Based on that review and subsequent works, we propose a 132 

conceptual model of soil-plant-microorganism system functioning driven by Eh and pH (Fig. 1): 133 

 134 

 135 
 136 

Fig. 1: The Eh-pH driven conceptual model of how the soil-plant-microorganism system could function to 137 

indicate the key role of dynamic maintenance of Eh-pH homeostasis for soil and plant health. Plants (01) grow 138 

in soil with highly fluctuating Eh-pH characteristics (02). To insure the necessary Eh-pH homeostasis at the 139 

cellular level (03), they regulate Eh and pH at short term through cascades of chemical and buffering reactions 140 

(04). When short-term buffering capacity is exceeded, there is a response at the transcript level (05). Eh-pH 141 

homeostasis is also sustained through metabolic compartmentation in the various organelles inside a cell that 142 

function at specific levels (06), and the cells evacuate the highly oxidized or reduced products from the 143 

cytoplasm through the cell walls (07). Another important process to achieve internal Eh-pH homeostasis is 144 

regulation of the external Eh-pH at the rhizosphere level (08). Under highly reduced (anaerobic) conditions, 145 

some plants (such as rice) have the ability to pump oxygen through aerenchyma cells to raise Eh in the 146 
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rhizosphere (09). Under aerobic (oxidizing) conditions, plants exudate a wide range of compounds (10). These 147 

exudates modify rhizosphere Eh-pH (11), stimulate and feed specific microorganisms (12), which further alter 148 

rhizosphere Eh-pH conditions (13). In return, soil, and especially rhizosphere, Eh-pH will largely determine the 149 

composition of the microflora (14) and the solubility and absorption of nutrients and heavy metals (15). Plant 150 

nutrition affects plant Eh-pH, especially nutrient deficiencies and toxic elements, which results in oxidative 151 

stress (16). Similarly, abiotic stresses (temperature, water, CO2, light, etc. (17) lead to oxidative stress in the 152 

plant which leads to higher susceptibility to pests and plant pathogens. These biotic stresses (18) also lead to 153 

oxidative stress in the plant (19). In the medium to long term, plant residues (20) feed the soil microbes, alter 154 

soil organic matter (21), determine biological activity and diversity (22) and influence soil structure (23). Via 155 

these interactions, soil pH is buffered towards neutral values and soil Eh is lowered and buffered (24). Finally, 156 

soil microbes and Eh affect the fate of soil organic matter by increasing mineralization and reducing 157 

humification under oxidized conditions (25).  158 

 159 

Changes in Eh-pH levels in plants can result from interactions among a large range of factors (edaphic, climatic 160 

and biotic). In this model, the effects of multiple stresses induce oxidative stress in the plant and result in a 161 

specific Eh-pH state. Under favorable conditions, plants will be able to sustain their homeostasis through an 162 

efficient photosynthetic process which uses solar energy to produce energy rich-glucose by combining CO2 with 163 

H2 from water. Oxidative stresses linked to unfavorable conditions (extreme pH, nutrient deficiency, NO3
-
 164 

absorption, metal toxicity, reduction of N, Fe, Mn, or S, pollution, low light, water stress, extreme temperatures, 165 

biotic stresses, etc.) require responses that represent an energy cost for the plant. The higher the stress, the higher 166 

the cost, creating a vicious circle where the more the plant spends energy to sustain cell homeostasis, the less 167 

energy it has to produce leaves; the smaller the leaf area, the lower the photosynthetic capacity; and the lower the 168 

photosynthesis, the lower the capacity to sustain Eh-pH homeostasis. When the various stresses overpass the 169 

plant capacity to sustain cell homeostasis, it leads to a strong imbalance that can cause severe consequences, as 170 

for example, increased susceptibility to pests and pathogens and ultimately plant death.  171 

 172 

This paper proposes a novel conceptual framework of plant interactions with pests and pathogens that is based 173 

on the following hypotheses: soil and plant health are strongly related to Eh-pH homeostasis and plants become 174 

susceptible to pest and pathogen attacks when imbalanced Eh-pH conditions in plant compartments correspond 175 

to the specific Eh-pH conditions at which the various pests and pathogens thrive. The conceptual framework is 176 

based on four sub-hypotheses:  177 

i) Pests and pathogens thrive in specific Eh-pH niches, i.e. spots in which the individuals of a species 178 

are exposed to a range of environmental conditions that allow microbial persistence and utilization 179 

of present resources. Species-specific phenotypic characteristics determine if a species can be 180 

found in a certain ecological niche and how it interacts with its environment (Koch and Harnisch 181 

2016), 182 

ii) The various plant parts (roots, shoots, stems, flowers, grains or fruits and phloem, xylem or 183 

apoplast, cells, organelles etc.) constitute different Eh-pH niches, with temporal variations, 184 

iii) Eh-pH in various plant parts depends on the plant genotype, 185 

iv) Environmental (abiotic and biotic) stresses alter Eh-pH in these niches. 186 
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 187 

Although redox regulation is also involved in plant-weed interactions, especially in parasitic weeds (Yoder 188 

2001) and through redox-associated mechanisms for allelopathy (Downum and Rodriguez 1986; Cheng and 189 

Cheng 2015), we excluded weeds from this review and limit it to only two kinds of pests (pathogens and insects 190 

or nematodes) for which Eh-pH interactions are better documented.  191 

Furthermore, the detailed processes involved in maintenance of Eh-pH homeostasis at various scales in 192 

plant/soil/microorganisms systems are not the object of this review. Especially, the critical roles of transition 193 

metals in processes related to dynamic redox regulation are not considered here. However, we would like to 194 

simply stress that metals such as Fe, Mn, Zn, Cu, Co, or Mo both regulate and are regulated by Eh-pH conditions 195 

and their homeostasis in the various plant compartments is crucial, especially in chloroplasts (Yruela 2013). 196 

Transition metals are involved in virtually all oxidation-reduction reactions through: i) physical processes, as 197 

their ability to accept or donate single electrons makes them able to overcome the spin restriction in oxidation by 198 

O2, in accordance with Pauli’s principle (Halliwell and Gutteridge 1984); ii) chemical processes, exchanging 199 

electrons and protons with a ratio different than one as the Fe
2+

/Fe(OH)3 redox couple exchanging three protons 200 

for one electron, thus impacting the electrons-protons balance (pe+pH) in soils (Ponnamperuma 1972); and iii) 201 

biological processes, being essential constituents of molecules involved in redox processes as chlorophyll, 202 

cytochromes and enzymes as oxidases and hydrogenases (Halliwell and Gutteridge 1984; Yruela 2013). 203 

Maintenance of Eh-pH homeostasis should therefore be regarded as a dynamic process, insured by strong 204 

interactions between physical, chemical and biological processes and related to metal ions homeostasis.   205 

To support our underlying hypotheses, we : i) Provide an analysis of plant-pests (pests sensu lato that includes 206 

animal pests and pathogens) interactions from an Eh-pH perspective by reviewing the literature; ii) Report 207 

examples showing how development and attacks of pests are correlated with spatial and temporal variations in 208 

plant Eh-pH; iii) Propose evidence-based discussion of how Eh-pH homeostasis can provide a new perspective 209 

on plant health and help clarify the many Genotype x Environment x Management x Pest (G x E x M x P) 210 

interactions; iv) Explore correlations between spatio-temporal variability of Eh-pH and genotypic variations 211 

impacted by various abiotic and biotic stresses and plant susceptibility-tolerance-resistance to pests; v) Revisit 212 

mineral nutrition and plant-pest interactions from an Eh-pH perspective as well as pathogenicity and virulence; 213 

vi) Propose an original perspective on energy allocation and growth-defense tradeoff by plants based on the Eh-214 

pH homeostasis approach and finally; vii) We review how Eh-pH conditions in the rhizosphere are the results of 215 

multiple interactions between roots and microorganisms and propose the following hypothesis: that soil structure 216 

leading to diverse Eh-pH niches and hosting a high diversity of microorganisms, is the key determinant of a 217 

soil’s disease suppressiveness.  218 

  219 

Eh-pH conditions at which pests can thrive 220 

Plant pathogens  221 

Each organism has an optimal Eh-pH range for its development. Pathogens having a broad host range are able to 222 

develop under a large range of Eh-pH conditions, as for instance Pseudomonas syringae (Morris et al. 2019). 223 

However, most pathogens are adapted to specific hosts, and have a relatively narrow optimal range of Eh-pH in 224 

which they are pathogenic (Rabotnova and Schwartz 1962). The Eh-pH conditions at which some plant 225 
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pathogenic fungi and oomycetes can thrive are summarized in Table 1 while those for bacteria and viruses are 226 

reported in Table 2. 227 

 228 

Table 1. Optimal Eh-pH conditions at which key plant pathogenic fungi and oomycetes are pathogenic. Most 229 

fungal pathogens develop under both oxidized (Eh>400mV) and acidic conditions. Necrotrophic fungi develop 230 

better in more acidic (and less oxidized) conditions than hemi-biotrophic and biotrophic fungi. A number of 231 

plant pathogenic fungi thrive in slightly acidic to alkaline conditions, as for example Gaeumannomyces, 232 

Verticillium, Colletotrichum sp. etc. Fungi developing in the apoplast develop at lower pH than those growing in 233 

the phloem. Many oomycetes develop in less oxidized conditions than their fungal counterparts, in a wide range 234 

of pH although with large species-specific variations in optimal pH. pH values in brackets indicate possible 235 

range of survival while na means non-available. These are only indications of the tendency of the main groups of 236 

pathogens. As large differences can exist between species, each pathogen should be characterized by its specific 237 

Eh-pH range of development and by its location in the plant. 238 

Pest type 
Affected 

tissues 
Species Organs pH Eh (mV) References 

F
u

n
g

i 

N
ec

ro
tr

o
p

h
ic

 

Apoplast 

Sclerotinia spp 

(Mold, rot) 

Stems, roots, 

leaves, fruits 
3-4 500-600  

(Webb 1921; Howlett et al. 

2001; Suzuki et al. 2003; 

Saharan et al. 2007; Yadeta 

and Thomma 2013; Alkan 

et al. 2013; Lebreton et al. 

2014; Armijo et al. 2016; 

Knight and Sutherland 

2016; Bousset et al. 2019; 

Zhang et al. 2020) 

Rhizoctonia spp 

(Various 

diseases) 

Roots, 

Seeds 
4.5-5.5 350-450  

Leptosphaeria 

maculans 

(Blackleg, 

canker, rot) 

Cotyledons 

Young leaves 
4-5.5 450-600  

Botrytis cinerea 

(Grey mould) 
Green tissues 4.1-5.9 500-550  

Epidermis, 

Hypodermis

Xylem 

Phloem 

Fusarium spp 

(Rot) 

Fusarium 

oxysporum 

(Wilt) 

Roots 5-8 400-500  

Endodermis 

Xylem 

Phloem 

Gaeumannomyc

es spp 

(Take all) 

Roots, stems 
6-7 

Specific 
na 

Epidermis, 

Xylem, 

Phloem 

Alternaria spp 

(Early blight, 

leaf spot) 

Stems, leaves 5-8 400-550  

H
em

i-
b

io
tr

o
p

h
ic

 

Apoplast 

Xylem 

Magnaporthe 

oryzae (Rice 

blast) 

Leaves, roots, 

grain (glumes) 
6-7 (5-8) 300-500  

(Venard and Vaillancourt 

2007; Diéguez-Uribeondo 

et al. 2008; Wicklow et al. 

2009; Xie et al. 2010; 

Miyara et al. 2012; 

Landraud et al. 2013; 

Yadeta and Thomma 2013; 

Lebreton et al. 2014; 

Bousset et al. 2019) 

Xylem 
Verticillium spp 

(Wilt) 
Roots, stems 6-9 400-600  

Apoplast, 

Fiber cells, 

Xylem, 

Phloem 

(function of 

the species) 

Colletotrichum 

spp 

(Antrachnose) 

Leaves, stems, 

roots (specific) 

7-8 

(3-9.2) 

Conidia: 5-

6. Variable 

with strains. 

Able to 

alkalinize 

na 

B
io

tr
o
p

h
ic

 

 

 

Apoplast 

 

 

 

 

 

 

Puccinia 

graminis  

(Cereal rusts) 

(Obligate) 

Green tissues 

Stems 

 

4-7.5 

Variable 

with 

growing 

medium 

na (Webb 1921; Gebrie 2016) 

Blumeria 

graminis 

(Mildews) 

(0bligate) 

Leaves 

 
<5.5 

Resistant 

-25mV vs 

susceptible 

(Felle et al. 2004) 
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Epidermis 

Ustilago maydis 

(Smut) 
Leaves 

5.1-5.5 

Strain 

specific 

na (Geiser et al. 2014) 

Erysiphe 

graminis 

(Powdery 

mildew) 

Leaves 

 
5.6 265-325  

(Benada 1966; Arabi and 

Jawhar 2002) 

O
o

m
y

ce
te

s 

N
ec

ro
tr

o
p

h
ic

 

Epi- and 

endodermis, 

Apoplast, 

Xylem, 

Phloem 

Pythium spp 

(Damping off) 

Seeds, roots, 

stems 

6-6.5 

(3 - 9) 

specific 

Using nitrate 

Cathodo-

tactic (P. 

aphadni-

dermatum) 

 

(Van West et al. 2003; 

Kong et al. 2009; Van 

Buyten and Höfte 2013; 

Krasnow and Hausbeck 

2017; Ah-Fong et al. 2019) 

H
em

i-
b

io
tr

o
p

h
ic

 

Apoplast, 

Xylem 

Phytophthora 

spp 

(Mildew) 

Roots, tubers, 

leaves 

6-6.5 

Specific 

P. citricola: 

9 P. 

tropicalis: 5 

P. 

palmivora:4

-6 

<350 mV (Ph. 

infestans) 

Using amino-

acids Anodo-

tactic (P. 

palmivora) 

 

(Morris et al. 1995; 

Simpfendorfer et al. 2001; 

Van West et al. 2003; 

Benada 2012; Ah-Fong et 

al. 2019) 

B
io

tr
o
p

h
ic

 

Apoplast 

 

Albugo candida 

(White rust) 

 

Green tissues 
6.5 

(3.5-9.5) 
na (Endo and Linn 1960) 

 239 

 240 

Table 2. Some Eh-pH conditions where various types of plant pathogenic bacteria and viruses can develop. 241 

Many plant pathogenic bacteria grow under more reduced (lower Eh) conditions than their fungal counterparts, 242 

in alkaline or slightly acidic plants or plant parts. These conditions are met in reduced (anaerobic) soils, and 243 

correspond to relatively oxidized plants as nutrient balanced plants are reduced (pe+pH<10). Viruses develop 244 

under both reduced and alkaline conditions, that also correspond to conditions found in reduced soils, but in 245 

strongly oxidized plants as the phloem is buffered at very low Eh in nutrient balanced plants. The listed Eh-pH 246 

values are indicative of where microorganisms are pathogenic on plants although some of them (notably Gram-247 

negative bacteria) can thrive under different Eh-pH conditions, especially in reduced soil conditions for 248 

bacteria, and then become pathogenic when conditions become more oxidized.  249 

 Aerobic conditions correspond to pe+pH >10 according to Rabotnova and Schwartz (1962). pe+pH is 250 

equivalent to the chemical notion of rH2 or to correct Eh to pH 7, which better characterizes oxidation in 251 

organic chemistry than Eh alone. At 25°C, pe +pH = Eh(V)/0.059 + pH. Electrical neutrality corresponds to 252 

pe+pH=14 or Eh@pH7=402mV (Husson et al. 2016). 253 

 254 

Pest type 
Affected 

tissues 
Species Organs pH 

Oxidation 

(pe+pH)  
References 

B
a

ct
er

ia
 

P
ro

te
o

b
ac

te
ri

a 
(G

ra
m

-

n
eg

at
iv

e)
 

Apoplast 

Pseudomonas 

syringae 
Leaves, 

roots, 

seedlings, 

Seeds 

Large range. 

Apoplastic 

alkalization 

induced 

lesions 

Oxic and 

microoxic = 

aerobic and 

facultative 

anaerobic 

(Rabotnova and 

Schwartz 1962; 

Gour et al. 2000; 

Bové and Garnier 

2003; 

Gnanamanickam 

2006; Hogenhout 

and Loria 2008; 

Bueno et al. 2012; 

Yadeta and 

 

Xanthomonas 

spp 

 

5-9 Aerobic 

Ralstonia 7-8 Aerobic 
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solanacearum Thomma 2013; 

Geilfus et al. 

2020) 

Apoplast,  

Erwinia spp 
Leaves, 

fruits, tubers 

7.5 

(5-9) 

Shifts >8 

upon 

infection 

Facultative 

anaerobic, 

fermentative 

(Nachin and 

Barras 2000; 

Shrestha et al. 

2005; Matthysse 

2006; Bueno et al. 

2012; Hwang et 

al. 2017; Wang et 

al. 2018) 

Agrobacterium 

tumefaciens 

Roots, 

stems, trunks 
5.5 

Aerobic 

Able to 

respire 

nitrogen 

oxides 

Xylem 

limited 

Xylella 

fastidiosa 
Leaves 6.5-6.9 Aerobic 

(Wells et al. 

1987) 

Phloem 

limited 

Candidatus 

Liberibacter 

crescens 
Leaves, 

roots, 

tubers 

5.8-6.8 
Strictly 

aerobic 
(Haapalainen 

2014; Bendix and 

Lewis 2018; 

Cruz-Munoz et al. 

2019; Molki et al. 

2019) 

Candidatus 

Liberibacter 

asiaticus 

Neutrophilic 

Alkalization 

of 

hemolymph 

to 8.1 

Micro-

aerophilic 

Facultative 

aerobic 

F
ir

m
ic

u
te

s 

(G
ra

m
+

) 

Phloem 

limited 

 

Candidatus 

Phytoplasma 

 

Spiroplasma 

 

 

Leaves, 

roots 
6 

Micro-

aerophilic 
(Wissenschafts et 

al. 1999; Bové 

and Garnier 2003; 

Hogenhout and 

Loria 2008; Jha 

and Sonti 2009; 

Sen et al. 2015; 

Bendix and Lewis 

2018) 

A
ct

in
o

-b
ac

te
ri

a 
(G

ra
m

+
) 

Xylem 

and 

apoplast 

Clavibacter 

michiganensis 

 

Corynebacteriu

m sepedonicum 

Leaves, 

seed, roots, 

tubers 

7-8 in 

culture 

Up to 5 in 

xylem 

Acidification 

of 

extracellular 

pH to 4.5 in 

Potato 

 

Aerobic 

V
ir

u
se

s 

Phloem 

Epidermi

s cells 

Tomato Spotted 

Wilt Virus 
Leaves 

7 

(>6 and < 9) 
<200 mV 

(Best and Samuel 

1936; Best 1968; 

Opalka et al. 

1998; Brugidou et 

al. 2002; 

Steinmetz et al. 

2006; Zechmann 

et al. 2007; Király 

et al. 2008; 

Clemente-Moreno 

et al. 2013; Gillet 

et al. 2013; Liao 

et al. 2015; Wilts 

et al. 2015; 

Berthelot et al. 

2019) 

Various viruses (Tobacco 

Mosaic Virus, Cowpea Mosaic 

Virus, Plum Pox Virus, Turnip 

Mosaic Virus, etc.) 

 

Swollen at 

high pH 

Reduced by 

low pH 

Controlled 

by 

antioxidant, 

increased by 

ROS 

Transmissio

n activation 

is operated 

by a redox 

switch 

Phloem 

and 

xylem 

Epidermi

s cells 

Rice Yellow 

Mottle Virus 

Leaves, 

stems 

Swollen, 

unstable at 

basic pH in 

cytosol (7.5) 

Compact, 

stable at 

acidic pH in 

vacuoles (5) 

Favored by 

H2O2 
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 255 

 256 

Insect pests 257 

Although it is well-known that insect pest interactions with plants are affected by both regulation and balance of 258 

pH (Harrison 2001), and by redox signaling (Zebelo and Maffei 2015), little is known about the influence of the 259 

combined Eh-pH levels (reflected in pe+pH) of the plant parts that insects feed upon.  260 

The redox state of the apoplast exerts a strong influence on the extent of the plant response to aphid infestation in 261 

terms of altered cell wall composition and nutritional quality (Rasool et al. 2017). Eh-pH conditions affect plant 262 

digestibility by insects, and redox active components such as phenols are regarded as antifeedant, digestibility 263 

reducers and toxic (Fürstenberg-Hägg et al. 2013; Usha Rani and Pratyusha 2013; Napoleão et al. 2017). The 264 

Eh-pH in insect intestinal tracts is related to digestive enzymes and reflects different digestive strategies. The 265 

effects of plant allelochemicals, especially phenols, on insect herbivores are influenced by gut redox conditions. 266 

Therefore, the regulation of gut redox conditions is an important adaptation strategy of insect herbivores to the 267 

plant chemical defenses that must be included in the analysis of plant-insect interactions (Appel and Martin 268 

1990). Herbivores may have multiple strategies to deal with foliar phenolics such as a "reducing strategy" in 269 

which reducing conditions in the gut prevent phenolic oxidation, and an "oxidative or polymerization strategy" 270 

in which phenolics are oxidized and rapidly polymerized. Herbivores feeding on foliage with a high 271 

concentration of readily oxidized and polymerized phenolics and low concentration of nutrients (e.g., many 272 

trees) may use the oxidative polymerization strategy. Conversely, herbivores feeding on foliage with a low 273 

concentration of phenolics but high concentration of nutrients for reducing potential (e.g., many herbs) may 274 

employ the reducing strategy (Appel 1993). Saprophytic larvae of Penthetria holosericea, which feed selectively 275 

on decomposed leaves and their own microbe-rich faeces, present very alkaline (pH>11) conditions with 276 

moderately low Eh (230 mV) and thus, have a high pe+pH (>15) in the midgut. These conditions differ 277 

fundamentally from those of detritivorous and humivorous insects which host a highly active, fermentative 278 

microbiota in their alkaline midgut or hindgut compartments (Šustr et al. 2014).  279 

In a study of Lepidopteran larvae, midgut pH of Helicoverpa zea, Heliothis virescens and Hyphantria cunea 280 

(Noctuidae) revealed significant differences between insect species, but no host plant effect (geranium, cotton, 281 

clover or soybean), since all were strongly alkaline at pH 9.3 to 10.6 (Johnson and Felton 1996a). In contrast, 282 

midgut Eh was influenced by both insect and host plant species. Midguts of larvae feeding on clover and 283 

soybean had more positive potentials, with redox values about 100 mV higher than those of larvae feeding on 284 

geranium. In this interaction, much of the variation in midgut redox conditions was due to the redox activity of 285 

host plant chemicals at the alkaline pH of the gut (Johnson and Felton 1996a).  286 

Midgut Eh-pH, in relation to plant Eh-pH, therefore, can help discriminate insects based on their feeding mode 287 

and capacity to cope with an oxidized diet. Adults or nymphs of sucking insects preferentially feed on plant parts 288 

at neutral to basic pH, e.g. the phloem (Giaquinta 1977; Gerendás and Schurr 1999). They dislike strongly 289 

reduced plants or plant parts that are rich in phenols and ascorbic acid (Farkas et al. 1960). It is interesting that 290 

these insects often are vectors of viruses that require high pH.  291 

Also, a lower level of ROS and a higher antioxidant potential in the adult than in the larval midgut indicate stage 292 

specificity in the management of oxidative stress as reported for Leptinotarsa decemlineata (Coleoptera, 293 

Chrysomelidae), the Colorado Potato Beetle, which has a midgut with low pH of 5.38 to 6.30, and pe+pH of 294 
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5.93 to 6.95 (Krishnan et al. 2007). Phytophagous Lepidopteran larvae have a higher midgut pH, with a low Eh 295 

and pe+pH for a specialist such as Manduca sexta with a pH of 8.0 to 9.3, an Eh of -188 to -88 mV and a pe+pH 296 

of 5.8 to 6.8.  In contrast, generalists have a high Eh and pe+pH, for example, Lymantria dispar with a pH of 7.9 297 

to 8.2, an Eh: +214 to +238 mV and a pe+pH of 11.6 to 12.2. Another example is Papilio glaucus with a pH of 298 

9.8 to 10.1, an Eh of +17 to +57 mV and a pe+pH of 10.4 to 11.0 (Appel and Martin 1990). 299 

 300 

Regarding phytophagous insects, little is known about the Eh-pH levels of the plant parts they feed upon. 301 

Johnson and Felton (1996b) reported midgut Eh and pH values for 13 Lepidopteran, two Coleopteran, one 302 

Orthopteran and one Isopteran species feeding on natural host plants or plant-derived foods. Table 3 reports new 303 

information published in the literature. 304 

 305 

Table 3. Eh-pH physicochemical status of some phytophagous-saprophagous insect midguts (based on literature 306 

published following the review by Johnson and Felton 1996b). 307 

Insect species 
Order & 

Family 
Food source 

Midgut Redox 

(Eh: mV) 

Midgut 

pH 
References 

Leptinotarsa 

decemlineata 

Coleoptera; 

Chrysomelidae 

Leaves-

mesophylla 

Adults: -177 to 0 

Last instar larvae: 

+32 to +38 

Adults: 

5.37 - 6.4 

Last instar 

larvae: 

5.38 - 6.30 

(Krishnan et 

al. 2007, 

2009) 

Melolontha 

melolontha 

Coleoptera: 

Scarabaeidae 
Roots +220 to +340 7.9 - 8.2 

(Egert et al. 

2005) 

Pachnoda 

ephipppiata 

Coleoptera: 

Scarabaeidae 
Soil organic matter -190 to +180 8.4 - 10.7 

(Lemke et al. 

2003) 

Pachnoda 

marginata 

Coleoptera: 

Scarabaeidae 
Soil organic matter -200 to -100 9.5 – 11.7 

(Cazemier et 

al. 1997, 

2003) 

Penthetria 

holosericea 

Diptera: 

Bibionidae 
Soil organic matter +20 to +60 11 

(Šustr et al. 

2014) 

Agrotis ipsilon 
Lepidoptera; 

Noctuidae 
Stem-collar +171 to +250 9 - 9.75 

(Ellakwa 

2014) 

Spodoptera 

littoralis 

Lepidoptera; 

Noctuidae 

Leaves-

mesophylla 
-131 to +370 8.2 - 8.8 

(Krishnan and 

Kodrík 2006) 

Acrididae (23 

spp) 

Orthoptera; 

Acrididae 

Leaves-

mesophylla 
+179 to +327 5.90 - 7.33 

(Appel and 

Joern 1998) 

Reticulitermes 

flavipes 

Isoptera: 

Rhinotermitidae 
Soil organic matter +80 to +200 6.5 to 7.0 

(Ebert and 

Brune 1997) 

Cubitermes 

ugandensis 

Isoptera: 

Termitidae 
Soil organic matter +350 to 400 6.0 

(Kappler and 

Brune 2002) 

 308 

Similar information is not available for phloem-feeding species (e.g. aphids), since studies were conducted 309 

mainly for insects whose body size allows gut dissection (e.g. Lepidoptera, Orthoptera, and some Coleoptera, 310 

particularly Scarab beetles). Although Isoptera have a small body size there is interest in studying their digestive 311 

processes because they involve symbiotic microbiota (in the hindgut). Still, there are some reservations about the 312 

accuracy of Eh measurements for the latter (Eutick et al. 1976; Veivers et al. 1980; Brune et al. 1995). In 313 

addition, information is often lacking as to whether redox potentials indicated in these studies are Eh (according 314 

to the Standard Hydrogen Electrode) or potentials measured via the reference electrode (Ag-AgCl or calomel). 315 

Information on Eh-pH midgut conditions is also missing for species whose diet differs between immature and 316 

adult stages, e.g. chafer beetles (Pachnoda spp.), cockchafers (M. melolontha) or blackbeetles (O. nasicornis). L. 317 
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decemlineata is the only species studied for both adults and larvae even though they both feed on the same plant 318 

organs. Nevertheless, the positioning of this species on the Eh-pH map is consistent with that of E. varivestis 319 

(Murdock et al. 1987; Johnson and Felton 1996b; Krishnan et al. 2009). The positioning of the 23 species of 320 

Orthoptera is also consistent with that of L. migratoria (Bignell 1984; Johnson and Felton 1996b; Appel and 321 

Joern 1998).  322 

 323 

Overall, it is difficult to draw overarching conclusions of phytophagous-saprophytic insects based on their 324 

taxonomy, feeding-style or developmental stage (an exception is Colorado beetle chewing-biting larvae and 325 

adults). This is due either to a complete lack of information on piercing-sucking species, independent of adults or 326 

nymphs or a partial lack of information on chewing-biting species for which diet differs between immature and 327 

adult stages: chafer beetles (Pachnoda spp.) are soil saprophytes at the larval stage and aerial herbivores at the 328 

adult stage; cockchafers (M. melolontha) or blackbeetles (Oryctes nasicornis) are root-feeding or saprophytic as 329 

larvae but aerial herbivores as adults. For example, information on chewing-biting Lepidopteran caterpillars-330 

worms is available only for larvae (since adults generally do not feed on plant parts) while the information is 331 

available only for adults for chewing-biting grasshoppers. 332 

 333 

Gastropods and nematodes 334 

Charrier and Brune (2003) showed that two phyllophageous species of starved helicid snails (Gastropoda and 335 

Pulmonata), (Helix pomatia and Cornu aspersum, syn. Helix aspersa) had a pH increasing from the crop (an 336 

expanded portion of the alimentary tract used for the storage of food prior to digestion) to the distal intestine of 337 

pH 6.4 and 7.4, respectively. In the saprophagous Elona quimperiana, the pH along the gut axis remained acidic 338 

(5.1–6.6). Oxygen was not detected in the gut lumen of any of these species to highlight anaerobic conditions. 339 

This clearly illustrates that the morpho-anatomical differentiation of the intestinal tract corresponds to different 340 

physicochemical microenvironments. The increasing alkalinity along the gut should have repercussions for the 341 

microbial communities colonizing the intestine. Intestinal microbiota, in turn, may cause changes in the pH of 342 

the host tissue during anaerobiosis (Pörtner 1987; Charrier and Brune 2003). 343 

 344 

Nematodes perceive and respond to pH and redox potential gradients in the soil or rhizosphere (Hua et al. 2020). 345 

Detrimental nematodes seem to require oxidized conditions as suggested by the negative impact of reduced 346 

conditions during anaerobic soil disinfection (Di Gioia et al. 2016; Browne et al. 2018), the efficient antioxidant 347 

defense systems of spring barley in response to stress induced by Heterodera filipjevi (Labudda et al. 2020), the 348 

high nematicide activity of reduced organic acids (Oka 2010), or the requirement of peroxiredoxins from 349 

Meloidogyne incognita for its successful development (Dubreuil et al. 2011). Many plant pathogenic nematodes 350 

such as Heterodera glycines, Meloidogyne incognita or M. hapla, thrive at low (4.5 to 5.5) pH (Hua et al. 2020). 351 

The greatest numbers of Pratylenchus alleni colonized soybean roots at pH 6.0. Hoplolaimus galeatus and 352 

members of the Tylenchinae-Psilenchinae survived best at soil pH 6.0, while numbers of the Dorylaimidea were 353 

greatest at both pH 6.0 and 8.0. Non-stylet nematodes (Rhabditidae and Cephalobidae) were recovered in greater 354 

numbers from pH 8.0 soil (Burns 1971).  355 

 356 

Spatial and temporal variability of Eh and pH in plants: identification of Eh-pH niches 357 
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Studying the effect of plant age and leaf position on susceptibility to wheat stripe rust, Farber and Mundt (2017) 358 

suggested that the distribution of the rust could be driven more by differences in host susceptibility than by 359 

propagule dispersal. Benada (2017) hypothesized that Eh and pH are major players in plant physiology and 360 

pathogen resistance in order to explain the variable changes in resistance that occur during ontogeny of the host 361 

and environment that involve: i) the disease gradients on a plant, ii) the evolution of susceptibility of organs 362 

during ontogeny and growth, and iii) the difference in resistance of individual plant cells and relatively swift 363 

changes of its resistance within a couple of hours. From an evolutionary point of view, the circadian rhythmic 364 

cell is a hydro-electro-chemical oscillator driven or synchronized by sunlight with a temporal compartmentation 365 

of metabolism and a network of metabolic sequences to compensate for oxidative stress (Wagner et al. 2000). It 366 

is, therefore, not surprising to observe a strong spatial and temporal variability of Eh and pH in plants. 367 

 368 

Spatial variability of Eh and pH in plants 369 

Plants have five key nutrient tissues, namely the phloem, xylem, leaf apoplast, root apoplast, and cellular 370 

organelles that serve as nutrient reservoirs. Each of these are the target of certain pathogens and pests (Fatima 371 

and Senthil-Kumar 2015). The nutrient content in these tissues differ in types of minerals and carbon sources 372 

(sugars, amino- and organic acids, and organic alcohols) (Fatima and Senthil-Kumar 2015), all of which affect 373 

Eh or pH. Eh and pH have been recognized as important factors defining ecological niches for microorganisms 374 

(Köpke et al. 2005; Vartoukian et al. 2010; Cardinale 2011; Jones et al. 2015; Koch and Harnisch 2016). The 375 

difference in Eh-pH between roots and shoots, as well as between apoplast, xylem and phloem, can therefore be 376 

used to characterize Eh-pH niches.  377 

 378 

Eh-pH niches: Roots vs shoots or grains 379 

The assessment of redox state based on ratios of ASC/DHA (reduced vs. oxidized AsA) or GSH/GSSG (reduced 380 

vs. oxidized Glutathione) ratios logically shows that roots (i. e. non photosynthetic organs) are more oxidized 381 

than leaves (i.e. photosynthetic organs) in maize (Ahmad et al. 2016), soybean (Borella et al. 2019), sunflower 382 

(Ortega et al. 2017), onion (García et al. 2020) and poplar (Morabito and Guerrier 2000). Roots show 383 

tremendous variability in rhizospheric-apoplastic pH, especially in relation to nitrogen mineral nutrition.  There 384 

is strong acidification related to NH4
+
 absorption and pronounced alkalization related to NO3

-
 absorption 385 

(Marschner et al. 1986). Masiello et al. (2008) measured a higher carbon oxidation state in maize grains than in 386 

maize stover. Internal oxygen concentrations are lower within bulky storage organs such as fruits (apple, banana) 387 

or tubers than other tissues. This results in different oxygen gradients within growing potato tubers which have a 388 

very low oxygen level in the center of the tuber (Geigenberger 2003). 389 

 390 

Leaf Eh-pH also has high spatial variability. Husson et al. (2018a) plotted the spatial distribution of Eh and pH 391 

in rice plants and showed that average leaf pH decreased from younger leaves (located on the upper part of the 392 

canopy) to the older ones (located on the lower part of the canopy). The youngest leaves had the highest Eh 393 

values, which were negatively correlated with their length (the shorter the leaf, the higher the Eh value). The last 394 

fully expanded leaf had the lowest Eh, and Eh of mature leaves increased with leaf age, with the lowest leaves 395 

being the most oxidized (higher Eh). The tip of the leaves was also more acidic and in a reduced (lower pH and 396 

Eh) than the base. This corroborates the results of Benada (1967, 2017) who measured the lowest redox potential 397 
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in the second upper leaf of wheat and barley during stem elongation, while the lowest value was in the top leaf 398 

when the ear appeared in wheat. In dicotyledons such as bean (Phaseolus vulgaris), 3-days-old intact plantlets 399 

had greater antioxidant protection by antioxidant proteins (thioredoxin, glutathione reductase, peroxiredoxin) 400 

than 9-day-old individual cotyledons (Karmous et al. 2017). Overall, while the mean Eh-pH measured at leaf 401 

level or the redox state at leaf or root level provides useful information on plant health (Husson et al. 2018a), this 402 

knowledge does not provide information on intra-organ variability of Eh and pH. Nevertheless, such information 403 

is needed since the various types of pathogens or pests do not all colonize or feed on the same plant organs. 404 

 405 

Eh-pH niches within organs: phloem, xylem and apoplast 406 

Eh-pH conditions in phloem, xylem and apoplast are summarized in Table 4. The phloem is strongly buffered at 407 

high pH and low Eh. In contrast, the xylem pH is acidic but its Eh-pH varies relative to external conditions, 408 

especially soil Eh-pH. The apoplast is acidic and more oxidized but apoplast Eh-pH varies relative to tissue age 409 

and function (elongating tissues are more acidic) and is poorly buffered. 410 

 411 

Table 4. Homeostasis level, buffering capacity and processes involved in Eh-pH regulation in phloem, xylem and 412 

apoplast 413 

Location 
pH-

Eh 

Homeostasis 

Buffering 

capacity 

Physiological processes References 

Phloem 

pH 

7.5 to 8.5 

 

Strongly 

buffered 

 

 

5.0 to 6 in 

Citrus 

High pH needed for active transport system 

coupling sucrose translocation across the 

plasma membrane (phloem loading) to the 

proton motive force generated by the H
+
-

pumping ATPase 

Phloem loading of sucrose is pH-dependent, 

and is markedly inhibited at an apoplast pH of 

8 compared to pH5 

(Giaquinta 1977; Bush 

1992; Gerendás and 

Schurr 1999; Hijaz and 

Killiny 2014; Killiny 

2017; Cruz-Munoz et 

al. 2019) 

Eh 

Low Eh: 50-

90 mV 

50 to 150 mV 

lower than 

apoplast 

Strongly 

buffered 

Micro-

aerophilic 

Related to sucrose, amino acid and 

accumulation of Salicylic Acid (SA) 

Important transport conduit for mobile redox 

signals inducing SAR (SA, lipid-derived 

molecules, ascorbate, glutathione, ROS, 

Systemic Wound Response and Systemic 

Acquired Acclimation 

Low internal O2 in the vascular bundle. 

(Wright and Fisher 

1981; Fromm and 

Bauer 1994; Schmidke 

et al. 1999; Van 

Dongen et al. 2003; 

Van Bel and Gaupels 

2004; Hafke et al. 

2005; Rocher et al. 

2006; Gaupels et al. 

2017; Bendix and 

Lewis 2018) 

Xylem pH 

5.0-6.0 

 

Weakly 

buffered 

Strongly fluctuates with composition of 

dominant ions in the xylem sap, uptake of 

inorganic ions (especially nitrogen), external 

conditions (microclimatic factors) and stresses 

(Gloser et al. 2016; 

Pandit and Mukkherjee 

2016) 
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Eh 

Related to soil 

Eh and pH 

 

Weakly 

buffered 

Has a lower concentration of organic 

compounds (sugars, peptides and proteins) 

than the phloem. The difference between 

xylem pH and soil pH creates a difference in 

redox potential (50 to 200 mV) between 

xylem and soil (corresponding to the Nernst’s 

equation). For a xylem at pH6 when soil pH is 

lower than 6, the xylem Eh is lower than soil 

the Eh and when soil pH is higher than 6, 

xylem Eh is higher than soil Eh, with 

approximatively -60 mV pH 
-1

 

(Love et al. 2008; 

Pandit and Mukkherjee 

2016) 

Apoplast 

pH 

4.5-6.0 

Buffered 

Variable with 

tissues 

5.2 for rice, 

5.75 for barley 

Regulated through H
+
-ATPase pumps and 

influenced by photosynthesis. 

Result of a complex interaction between ion 

transport, H
+
-buffering, H

+
-consumption, and 

H
+
-production. pH regulation is energy costly 

Low apoplast pH in elongating tissues are 

associated with growth. Lower apoplastic pH 

compared to the cytosolic pH has a crucial 

control effect on redox properties of protein 

cysteine thiols and overall redox conditions. 

Palisade apoplast pH is higher than stomatal 

and epidermal apoplast pH 

(Grignon and Sentenac 

1991; Mühling et al. 

1995; Felle 2005; 

Geilfus and Mühling 

2011; Landraud et al. 

2013; Visnovitz et al. 

2013; Janku et al. 

2019) 

Eh 

100-250 mV 

 

50-150 mV 

higher than 

phloem 

 

Weakly 

buffered 

Predominantly determined by a high 

concentration of ASC; the production of ROS, 

an active process in the apoplast that is 

controlled by either a plasma membrane-

bound NADPH oxidase or a set of peroxidases 

in the cell wall; and large numbers of thiol 

groups present on the proteins of the plasma 

membrane with a potential capacity 10 orders 

of magnitude lower than the phloem capacity 

(Fromm and Bauer 

1994; Felle 2001; 

Hafke et al. 2005; 

Potters et al. 2010; 

Gjetting et al. 2012; 

Foyer and Noctor 

2013) 

 414 

 The low antioxidant efficiency in the apoplast allows ROS to easily accumulate and provides a condition for 415 

ROS signaling. Therefore, the apoplastic ROS-antioxidant homeostasis is actively engaged in the reception of, 416 

and reaction to, many biotic and abiotic stresses (Podgórska et al. 2017). Similarly, pH signals light intensity 417 

changes, drought, lack of oxygen, and the presence of symbiotic partners or microbial attackers (Felle 2001). 418 

The plant apoplast is the first site of direct contact with a pathogen and is thus an interface that mediates the first 419 

crosstalk between host and pathogens to perform a crucial role in initiation and coordination of many defense 420 

responses (Bolwell et al. 2001; Gupta et al. 2015). Any deviations from the basal cellular redox balance may 421 

induce responses that continuously readjust cellular functions; however, diversion of resources to stress 422 

responses may limit growth and may thus be detrimental to the plant. The ultimate outcome of these responses 423 

must therefore be tightly controlled by the redox signaling networks between organellar and apoplastic signaling 424 

systems (Sierla et al. 2013). This is also valid for pH that acts as a messenger in situations where pH changes are 425 

preconditions for certain processes, e.g., the gravity response, activation of certain transporters in stomatal 426 

movements, and possibly for growth in general (Felle 2001).  427 

 428 

Intra-cellular variability of Eh-pH 429 

Eh-pH conditions in the cell organelles are summarized in Table 5. Cell Eh-pH is strongly buffered to permit 430 

marked differences and interplay between organelles. 431 

 432 



 16 

Table 5. Homeostasis level, buffering capacity and processes involved in Eh-pH regulation in the cytoplasm, 433 

mitochondria and chloroplast 434 

Organelle pH-Eh 
Homeostasis 

level 
Physiological processes References 

Cytoplasm 

pH 

7.2-7.5 

Strongly 

buffered 

Proton pumps in the plasma membrane and 

tonoplast provide intracellular pH 

homeostasis and maintenance of a 

transmembrane proton gradient. Many 

plant functions (nutrient and sugar 

transport, cell elongation, organ 

development) are highly dependent on the 

ability of individual cells to control pH in 

the cytosol and in the apoplast.  

The cytosolic antioxidant system shields 

the nucleus from chloroplast ROS signals. 

Photosynthetic ROS signals and redox 

imbalances are buffered by cytosolic 

antioxidants. Whether they reach the 

nucleus depends on the rate of ROS-

formation and strength of the cytosolic 

antioxidant system 

(Felle 2001; 

Hinsinger et al. 

2003; Baier and 

Dietz 2005; 

Schwarzländer et 

al. 2008; Gjetting 

et al. 2012) 

Eh 

-320 mV  

to -312 mV 

Strongly 

buffered 

Organic acid metabolism equilibrates the 

redox potential in plant cells but also 

transfers redox equivalents between cell 

compartments supporting various 

metabolic processes 

(Schwarzländer et 

al. 2008; Jubany-

Mari et al. 2010; 

Igamberdiev and 

Bykova 2018) 

Mito-

chondria 

pH 

7.8-8 (matrix) 

Strongly 

buffered 

 The mitochondrial matrix and chloroplast 

stroma need to keep a relatively basic 

environment around pH 8 for optimization 

of biochemical reactions occurring in these 

two compartments  

The generation of a proton gradient across 

the inner mitochondrial membrane is an 

essential energy conservation event that 

couples the oxidation of carbohydrates and 

fat to the synthesis of ATP. There is a   

close metabolic interaction and redox 

exchange between chloroplasts and 

mitochondria 

(Schwarzländer et 

al. 2008; Santo-

Domingo and 

Demaurex 2012; 

Su and Lai 2017) 

Eh 

-360 to -310 

mV in 

unstressed 

plants  

Strongly 

buffered 

Mitochondria are at the center of redox 

dependent processes as they generate ROS 

that drive redox-sensitive events and 

respond to ROS-mediated changes in the 

cellular redox state 

(Schwarzländer et 

al. 2008; Handy 

and Loscalzo 

2012; Müller-

Schüssele et al. 

2020) 

Chloroplast 

pH 

7 in the dark 

to 7.8-8 in the 

light 

 The chloroplast is buffered at pH 8 for 

optimization of biochemical reactions 
(Su and Lai 2017) 

Eh 

-400 to -340 

<-300 to -240 

mV in the 

dark 

Very 

dynamic 

signaling 

compartment 

sensing 

perturbations 

at the 

The chloroplast stroma is highly reducing, 

thanks to large amounts of ascorbate, 

glutathione and other antioxidants.  

Interplay among apoplastic and 

chloroplastic redox signaling networks is a 

key mechanism in plant stress responses. 

Depending on the photo-oxidative strain, 

up to almost 100% of the 

photosynthetically transported electrons 

can be diverted into the antioxidant defense 

system that is involved in the synthesis of 

(Johnson 2003; 

Baier and Dietz 

2005; Noctor et al. 

2007; Sierla et al. 

2013; Dietz et al. 

2016; Foyer and 

Noctor 2016; 

Serrano et al. 

2016; Lu and Yao 

2018) 
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subcellular 

level and to 

integrate a 

multitude of 

intracellular 

signals 

important mediators of plant defense 

responses such as nitric oxide (NO), 

salicylic acid (SA), jasmonic acid (JA) and 

absicic acid (ABA), as well as secondary 

messengers including calcium and ROS. 

 435 

Cellular redox imbalances are usually induced by environmental changes that can be clearly observed in 436 

chloroplasts and mitochondria, which are also key players in the regulation of cytosolic and extracellular redox 437 

states (Tsang et al. 1991; Dietz 2003). Thus, the photosynthesizing chloroplast functions as a conditional source 438 

of important redox and ROS information, which is exploited to tune processes inside the chloroplast, cytosol and 439 

nucleus (Dietz et al. 2016). It is interesting that oxidizing conditions in the chloroplast correlate with a high 440 

reduction state (Baier and Dietz 2005).  441 

   442 

Temporal variability of Eh and pH in plants 443 

Photosynthesis is the primary reduction reaction by accumulating electrons and protons. All variations in 444 

photosynthetic activity (related to temperature, light, nutrition, etc.) affect the redox state and pH of the plant. 445 

Reduced photosynthesis leads to oxidation and alkalization while efficient photosynthesis in optimal conditions 446 

will lead to more acidic and reduced plants (Mühling et al. 1995; Mullineaux and Rausch 2005). Thus, both the 447 

ROS and antioxidant levels have diurnal changes. Abrupt variations in temperature and light intensity may lead 448 

to ROS accumulation due to disruption of the photosynthetic and respiratory electron transport chains (Kocsy et 449 

al. 2013). In rice leaves, Eh and pH (and thus, pe+pH) were high at the end of the night (absence of 450 

photosynthesis). Both Eh and pH decreased in the morning, reached a low plateau during the day and increased 451 

again at the end of the day (Husson et al. 2018a). This is consistent with: i ) hourly and seasonal variations in 452 

photosynthesis as reported by Bernacchi et al. (2006) who reported a raise in instantaneous carbon assimilation 453 

in the morning that reached a high plateau during the day but decreased at the end of the afternoon, and ii) the 454 

increase of petiole pH in grapevine during the day, as reported by Masoero and Cugnetto (2018).  455 

 456 

Annual, seasonal or irregular fluctuations in environmental conditions also alter the plant’s cellular redox state 457 

(Kocsy et al. 2013) and antioxidant responses (Ferreira and Domingos 2012). As for Eh, the pH of xylem sap 458 

from several species shows seasonal variations, being more acidic in the spring than in the rest of the year 459 

(Wilkinson 1999). 460 

 461 

Plant age is also an important factor in understanding Eh-pH variation. In the early stage of growth, germination 462 

is accompanied by extensive changes in the redox state of seeds. Proteins present in an oxidized form in dry 463 

seeds are converted into the reduced state following imbibition of water (Alkhalfioui et al. 2007) so that seed 464 

acidification coincides with germination (Footitt and Cohn 1992). With aging, peroxidation of lipid complexes 465 

present in seed reserves liberates fatty acids which, at the moment of germination, are transformed by lipolysis 466 

into alcohols, aldehydes and ketones (Norton and Harman 1985; Davet 2004). On rice, Husson et al. (2018a) 467 

showed that aging of organ (leaf) and at the plant level, was related to acidification and oxidation (increase in 468 

Eh) which was consistent with variations in chlorophyll content and net assimilation of CO2 in leaves at different 469 

ages (Backhausen and Scheibe 1999). 470 
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 471 

Genotypic variability of plant Eh-pH  472 

In analyzing almost two dozen species, Cornelissen et al. (2011) showed that leaf pH was a species-specific trait 473 

with interspecies differences of over 2 pH units. Masoero and Cugnetto (2018) also reported high variability of 474 

raw pH across 49 species. The grapevine, Vitis vinifera, appeared as the most acidic species (pH 3.68) while 475 

maize (4.84), potato (5.77), lettuce (5.97), basil (6.08), cauliflower (6.10) and pumpkin (6.38) were less acidic.  476 

Data regarding the differences in redox state-leaf Eh are limited but show differences between:  477 

i) species: Leaf redox potential was 80 mV higher in sunflower than in wheat (Benada 2017). Furthermore, 478 

the antioxidant content (both AsA and GSH) was higher in the rhizomes of anoxia tolerant Iris sp. 479 

compared with cereal roots that have a higher amount of oxidized DHA. Similarly, rice roots had a lower 480 

AsA/DHA ratio (meaning more oxidized conditions) than wheat with values of 0.3 and 0.7, respectively 481 

under aerobic conditions (Blokhina et al. 2000). Deciduous leaves had a higher carbon oxidation (Cox) 482 

state than coniferous leaves while goldenrod (Solidago canadensis L.) had a much lower Cox than red 483 

clover (Trifolium pretense; Masiello et al. 2008);  484 

ii)  varieties: In rice, Nerica 4 (Oryza sativa type japonica x O. glaberrima) variety grown under various 485 

conditions (fertilization, growing season) and at different ages had a lower Eh, pH and pe+pH in their last 486 

fully developed leaf than those of IRBLTA-2Pi (O. sativa sub. Indica; Husson et al. 2018a).  487 

 488 

Environment and plant Eh-pH  489 

Cellular redox homeostasis is affected by abiotic factors that can affect the ROS level (and their reaction 490 

products) at varying levels in the major energy organelles such as chloroplast and mitochondria (Das et al. 2015; 491 

Anjum et al. 2016). Oxidative stress may occur under high light intensities over long time periods, during 492 

drought, waterlogging, cellular toxicity (under soil contamination or air pollution) or mineral deficiency (Elstner 493 

and Osswald 1994). Leaf Eh is altered by external factors such as light, temperature, moisture, nutrition, etc. 494 

(Benada 2017). Based on all this, the following section reviews how plant Eh-pH can be affected by abiotic and 495 

biotic stresses. 496 

 497 

Abiotic stresses and plant Eh-pH  498 

Climatic conditions and plant Eh-pH  499 

A non-exhaustive list of reports that highlight how stresses related to low or high light intensity or temperature 500 

lead to plant oxidation (increase in Eh and pe+pH) and alkalization in relation to decreased photosynthesis is 501 

summarized in Table 6. 502 

 503 

Table 6. Effects of light intensity and temperature on plant Eh-pH  504 

Stress  Impact Mechanisms References 

Low or very 

high light 

intensity 

Eh Increased Eh 

Stomatal closure via abscisic acid 

pathway; reduced photosynthesis 

by reduced CO2 availability; 

reduced photorespiratory carbon 

metabolism; photosynthetic 

generation of biologically 

damaging molecules 

(Ort 2001; Benada 

2017; Maai et al. 

2019) 

pH Increased apoplast and Influence of photosynthesis on (Raghavendra et al. 
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xylem pH 

Decreased cytosol pH 

Increased vacuolar pH 

Plasmalemma H
+
-ATPase. 

Heat induced electrical signals. 

Variable between C3 and C4 plants 

and according to CO2 concentration 

1993; Mühling et 

al. 1995; Grams et 

al. 2009; Aubrey et 

al. 2011) 

Low or high 

temperature 

Eh 

Increased Eh 

(+8 to 10 mV in A. 

thaliana cytosol and 

nuclei after 5 days at 

42°C vs 22°C) 

Disruption of cellular homeostasis 

and photosynthesis; increase in 

photorespiration; overproduction of 

ROS; decrease in chlorophyll 

content; photoinhibition; 

interference with carbohydrate 

metabolism; stomatal closure, 

inhibition of Rubisco activity 

(Allen and Ort 

2001; Noctor et al. 

2007; 

Hemantaranjan et 

al. 2014; Awasthi et 

al. 2015; Benada 

2017; Soengas et al. 

2018; Babbar et al. 

2021) 

pH Increased pH 

Reduced photosynthesis by extreme 

temperatures. 

Increase in leaf pH with decreasing 

temperature 

(pH= 5.1 at 35°C increasing to 6 at 

10°C) 

(Masoero and 

Cugnetto 2018) 

 505 

Extreme water conditions usually lead to increased Eh and pH, except for roots under waterlogged conditions 506 

that result in asphyxia (Table 7). Drought and waterlogging also strongly impact plant nutrition through 507 

alteration of soil-rhizosphere Eh-pH that determines the form and solubility of major elements and 508 

micronutrients (Husson 2013). 509 

 510 

Table 7. Effects of drought and waterlogging-submersion on plant Eh-pH  511 

Stress  Impact Mechanisms References 

Drought 

Eh 
Strong 

oxidation 

GSSG/GSH increased 2.6-fold in maize 

leaves and 2.3 in roots after 12 days of 

drought. 

Decreased photosynthetic rate increased 

production of superoxide anion and 

hydrogen peroxide by twofold 

In Arabidopsis thaliana, cytosolic Eh was 

significantly raised from -312 mV to -302 

mV after 11 days of water stress, although 

cytosolic Eh is strongly buffered 

(Jubany-Mari et 

al. 2010; Li et al. 

2014; Ahmad et 

al. 2016) 

pH 

Usually, 

increase in 

plant pH. 

Variable 

with plant 

species 

Leaf and root pH increase in some drying 

plants by unknown processes; however, 

a leaf pH decrease is reported for 

grapevine, Arabidopsis thaliana, Pisum 

sativum and Trifolium repens and poplar. 

There is a nonlinear relationship between 

leaf xylem sap pH and soil water content 

in Brassica napus and Raphanus sativus, 

but no change in Helianthus annuus 

(Wilkinson and 

Davies 1997; 

Bahrun et al. 

2002; Gloser et 

al. 2016; Secchi 

and Zwieniecki 

2016; Masoero 

and Cugnetto 

2018) 

Electrical 

Conductivity 

(EC) 

Increase in 

xylem EC 

Accumulation of sugars in the xylem 

apoplast observed under water stress 

conditions is controlled by xylem pH and 

lower xylem pH is related to loss of xylem 

transport function to eventually result in 

accumulation of sugars, thus raising xylem 

EC 

(Secchi and 

Zwieniecki 2016) 

Waterlogging 

Submersion 
Root Eh 

Strong 

reduction 

Asphyxia 

Reduced oxygen (O2) availability in plant 

roots creates a barrier for gas diffusion 

into plant cells, inhibiting free gas 

(Thomson and 

Greenway 1991; 

Blokhina et al. 
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exchange for photosynthesis and 

respiration and induces changes in plant 

water relations. 

Reduction in aerobic respiration. 

Depletion of AsA and GSH and lowering 

of the redox status of root cells, stronger in 

the root stele since aerenchyma can 

provide O2 for respiration in the cortex. 

 

2000; Vozáry et 

al. 2008) 

Leaf Eh 
Increase, 

oxidation 

A decline in net photosynthesis decreases  

stomatal conductance, transpiration, and 

the intercellular partial pressure of CO2 in 

leaves. 

Production of nitric oxide (NO), hydrogen 

peroxide (H2O2) or other ROS. 

Alteration of ascorbate-glutathione related 

parameters during anoxia but restored 

during re-oxygenation 

(Igamberdiev et 

al. 2005; Salazar 

et al. 2015; 

Paradiso et al. 

2016) 

pH 

Decrease in 

cytoplasmic 

pH Increase 

in apoplastic 

pH 

 

Energy crisis, tolerance of which varies 

from plant to plant. 

Switch to anaerobic respiration. 

Production of lactate and ethanol by 

glycolysis. 

Rapid acidification of the cytoplasm (half 

a pH unit), depending on H
+
 pump activity 

and lactate production. 

Acidosis can cause cell death. 

Apoplastic alkalization decreases the 

proton motive force thus reduces the 

transport mediation of energy-rich 

compounds 

(Felle 2006) 

 512 

Edaphic conditions and plant Eh-pH 513 

Overall, leaf pH proved to be species-specific but remarkably constant for a given species grown on soils at pH 514 

ranging from 3.67 to 6.51 (Cornelissen et al. 2011). Both high and low soil-rhizospheric pH led to oxidation of 515 

wheat leaves (Bhuyan et al. 2019). pH regulation mobilizes numerous H
+
-pumps all of which employ the same 516 

universal physical principles of converting redox energy into proton pumping (Thomma et al. 2011). Thus, 517 

leaves of wheat seedlings grown under extremely acidic or strongly alkaline-stress showed strong oxidative 518 

damage compared with the control at pH 7.0. A sharp increase in H2O2 content (134 and 90%) and in 519 

malondialdehyde - a stress indicator produced from lipid peroxidation (199% and 194%) - were observed at both 520 

an extremely acidic (pH 4.0) and strongly alkaline pH (pH 8.5), respectively (Bhuyan et al. 2019). Leaves of rice 521 

grown under aerobic conditions (high soil Eh, low soil pH, no water stress) had a higher Eh (20mV higher) and 522 

lower pH (-0.2 to -0.4 pH units) compared with those of plants grown under anaerobic conditions (low soil Eh 523 

and high soil pH; Husson et al. 2018a). High soil pH leads to higher xylem Eh than soil Eh while low pH leads 524 

to lower xylem Eh than soil Eh. At constant soil Eh, high soil pH leads to xylem oxidation (Love et al. 2008). 525 

 526 

Salt stress is a major plant stress that also leads to oxidation and alkalization. There is a rapid increase in H2O2 527 

and superoxide radical in Indian mustard (Brassica juncea) under severe salt stress conditions where an 528 

oxidative burst occurred within 30 mn and increased membrane damage up to 2.8, 7.8 and 9.0 fold, within 30 529 

minutes, 2 and 24 hours after stress induction, respectively (Ranjit et al. 2016). The decline in maize leaf growth 530 

under salt stress was due to an inhibition of H
+
-pumping activity and increase in apoplastic pH of leaves (Pitann 531 



 21 

et al. 2009). In Vicia faba, alkalization was acropetally moved to the leaves after first arriving in the older leaves 532 

where it spread systemically throughout the entire apoplast, starting from the leaf base towards the tip. The 533 

alkalization then increased ABA in the leaf apoplast and guard cells (Geilfus 2017). Apoplast pH affected 534 

functionality by reducing the stomatal pore size in Vicia faba during the onset of Cl
-
 salinity via effects on ABA. 535 

Based on this mode of action, it was hypothesized that, under conditions of soil salinity, Cl
-
-inducible 536 

alkalization of the leaf apoplast reduces the transpiration rate and, thus, reduces the uptake of Na+ and Cl
-
 from 537 

the soil solution (Geilfus 2017).  538 

 539 

Aluminum (Al) is a major plant growth-limiting factor in acid soils (Melakerberhan et al. 1995). The primary 540 

site of Al accumulation and toxicity is the root meristem. Al triggers lipid peroxidation and ROS production in 541 

roots, inhibits respiration and depletes ATP (Yamamoto et al. 2003). In barley, alleviation of aluminum toxicity 542 

by hydrogen sulfide was related to elevated ATPase and suppressed oxidative stress (Dawood et al. 2012). 543 

Several other toxic elements are known to lead to plant oxidation, including cadmium (leading to formation of 544 

callose in phloem cells), zinc, mercury, and antimony (Cuypers et al. 2001; Benitez-Alfonso et al. 2011; 545 

Sobrino-plata et al. 2014; Ortega et al. 2017).  546 

In general, high levels of metal ions such as Co, Cu, Fe, Mn, Mo, Ni,and Zn, and trace levels of toxic metals (Pb, 547 

Cd, Hg, As, Cr, Ag, Al, Cs, Sr, U) have been reported to negatively affect plant growth, metabolism, 548 

development, and overall productivity, due mainly to accelerated ROS formation and, to a lower extent, through 549 

other reactions (Anjum et al. 2014). High soil pe+pH also increases Cd availability from increased bacterial 550 

activity (Wang et al. 2020). Finally, GSH is a key antioxidant for the plant to cope with mercury and cadmium 551 

stress (Sobrino-plata et al. 2014). Likewise, the ascorbic acid (AsA) redox system efficiently protects the plant 552 

and plays a key role in metal-metalloid stress tolerance (Chen et al. 2017b). A deficiency of GSH and AsA leads 553 

to susceptibility to toxic elements such as Cadmium (Jozefczak et al. 2015). 554 

 555 

Mineral nutrition and plant Eh-pH 556 

Mineral nutrition impacts plant photosynthesis and, as a consequence, plant Eh-pH. Any kind of N, P or K 557 

deficiency leads to plant oxidation. While N deficiency results in alkalization, P or K deficiency results in 558 

acidification (Table 8). The concentration of amino acids and sugars in the apoplast of leaf and stem tissue may 559 

increase with Ca, B, Zn or K deficiency (Huber et al. 2011), which leads to an increase in EC. Furthermore, Si 560 

content decreases with excess applications of N, which can also affect disease tolerance (Gupta et al. 2017). 561 

Besides the availability of N, the form in which it is absorbed by the plant influences soil Eh-pH and has a 562 

dramatic impact on plant physiology (Marschner et al. 1986).  563 

 564 

Table 8. Impact of mineral nutrition (N, P, K) on plant Eh-pH  565 

Element Variable Effect of deficiency Physiological processes References 

N 

pH 

Increases root and 

shoot xylem pH by 

0.2-0.3 units 

N deprivation decreases whole plant 

transpiration which can potentially close 

stomata 

(Dodd et al. 2003; 

Huber and 

Thompson 2007) 

Eh 
Oxidation and altered 

antioxidant responses 

Deprivation leads to changes in phenolic 

metabolism and oxidative status 

Varying patterns of superoxide dismutase 

isoforms. 

(Huber and 

Thompson 2007; 

Kováčik and 

Bačkor 2007) 

P pH Acidification  Promotion of root elongation by (Anuradha and 



 22 

acidification; pH control of anthocyanins  Narayanan 1991; 

Chen et al. 2013) 

Eh 
Oxidation and altered 

antioxidant responses 

Alterations in photosynthetic physiology, 

including reductions in CO2 assimilation 

rates, down-regulation of photosynthesis-

related genes and photoinhibition at the 

photo-system II level. Photo-oxidative 

stress is characterized by an increased 

production of ROS in chloroplasts 

(Kováčik and 

Bačkor 2007) 

(Hernández and 

Munné-Bosch 

2015) 

K 

pH Acidification 
K is an alkalizing element, and high K 

nutrition leads to higher plant pH 
(Ward 1960) 

Eh 
Oxidation and altered 

antioxidant responses 

K enhances antioxidant defense in plants 

and protects them from oxidative stress 

Accumulation of soluble sugars in K-

deficient plants in both leaves and roots 

(Kováčik and 

Bačkor 2007; 

Amtmann et al. 

2008; 

Hasanuzzaman et 

al. 2018) 

 566 

The form of nitrogen absorbed by the plant and the solubility of essential elements are related not only to the 567 

type of fertilizer applied but also to soil Eh-pH conditions. The main form of N absorbed is mainly determined 568 

by pe+pH with a balance between both forms being reached close to pe+pH=14 (Husson 2013). Drought limits 569 

biological activity and thus leads to a raise in soil Eh and pe+pH, with a strong negative impact on Fe and Mn 570 

solubility, and increased nitrification. For example, a four-fold reduction in nitrate reductase activity was 571 

observed following 6 days of severe drought (Li et al. 2014). In contrast, submersion causes a strong and rapid 572 

decrease in soil Eh, with a slight raise in pH, leading to low pe+pH, thus to reduced, soluble Fe and Mn, and to 573 

ammonification (Ponnamperuma 1972; Cottes 2019). Thus, the dominant form of mineral nitrogen in soil is 574 

nitrate in dry-oxidized-alkaline soils and ammonium in waterlogged-reduced-acidic soils.  575 

  576 

Nitrate absorption strongly alkalizes plant roots and shoot (apoplast) while ammonium absorption leads to strong 577 

acidification, with a strong impact on other nutrients solubility-absorption. Absorption of nitrate is an active 578 

process that increases root respiration to reduce Eh in the rhizosphere while leading to shoot oxidation (Table 9).  579 

 580 

Table 9. Impact of N-form of nutrition (NH4
+ 

vs NO3
-
) on plant Eh-pH  581 

Form Va

ria

ble 

Impact on plant Processes Impact on 

other 

nutrient 

availability 

References 

NO3
-
 pH  Strong alkalization 

of the roots- 

rhizosphere (up to 

+2 pH units) 

Alkalization of 

shoots, leaf apoplast 

Release by roots of OH
-
 to 

compensate for the negative charge 

absorbed with NO3
-
  

Strongly basic hydroxides resulting 

from assimilation of NO3
-
 in the 

leaf 

Decrease in 

Fe, Mn, Bo, 

Cu, Zn, Ca 

and P 

solubility -

absorption 

(Marschner et 

al. 1986; 

Marschner 

1995; Foyer 

and Noctor 

2013; Elmer 

and Datnoff 

2014; Singh 

and Schulze 

2015; Geilfus 

2017; Sun et 

al. 2020) 

Eh  Roots-rhizosphere 

reduction  

 

Shoots oxidation  

Activation of pumps for active N 

absorption increases root 

respiration (oxygen consumption).  

Reduction of NO3
-
 to NH4

+
 requires 

8 electrons, and 8 to16 ATP. Nitrate 

as N-source generates higher 

energetic cost (+5 to 12%) for 

assimilation, reduction to amino 

acid and pH control, as compared to 
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ammonium nutrition. 

NO3
- 
increases photorespiration 

NH4
+
 pH  Strong acidification 

of the roots- 

rhizosphere (up to -2 

pH units) 

Acidification of 

shoots, leaf apoplast 

Release by roots of H
+
 to 

compensate for the positive charge 

absorbed with NH4
+
  

 

Decreases in 

P, K, S, Ca, 

Mg and Mo 

solubility-

absorption 

NH4
+
 

absorption is 

antagonist to 

cations as 

Ca
2+

, Mg
2+

 or 

Mn
2+

 

(Marschner et 

al. 1986; 

Marschner 

1995; Zou and 

Zhang 2003; 

Li et al. 2013; 

Elmer and 

Datnoff 2014; 

Singh and 

Schulze 2015) 

Eh  Reduction of the 

shoots 

 

Oxidation of the 

roots 

Absorption of strongly reduced 

NH4
+
, reduced energetic cost for 

protein formation 

Activation of ATP-H
+
 pumps for 

pH regulation, consuming electrons 

 582 

Biotic stresses and plant Eh-pH 583 

As with abiotic stresses, biotic stresses usually lead to apoplast alkalization and oxidation. Infection by viruses, 584 

bacteria or fungi impact photosynthetic activity in various ways. The generation of ROS (an oxidative burst) in 585 

response to microbial pathogen attack is a ubiquitous early part of the resistance mechanisms of plant cells.  586 

ROS, especially hydrogen peroxide (H2O2), seem to play a dual role in plant defense by eliciting localized death-587 

limitation of host plant cells and pathogens and by acting as a diffusible signal for the induction of antioxidant 588 

and pathogenesis-related genes in adjacent plant tissues (Hernández et al. 2016). A second component of the 589 

resistance mechanism is extracellular alkalization, occurring as a result of the Ca
2+

 and proton influxes, and the 590 

K
+
 efflux common to most elicitation systems as one of the earliest virus responses (Bolwell et al. 2002). 591 

In an advanced stage of viral infection, photosynthetic rates of diseased plants only attain 75 to 80 % of those of 592 

the healthy plants, on a leaf area basis. This reduced photosynthesis can be related to loss of chloroplast 593 

(chlorosis, as in viral and bacterial infection), loss of leaf area (destruction as in the case of necrotrophic fungi or 594 

bacteria), occlusion of the vascular system, or stomata closure (Goodman et al. 1967; Hernández et al. 2016). 595 

Plants infected by fungi, bacteria or viruses also display a common response, namely an increase in respiration, 596 

one of the most general physiological phenomena of diseased plants (Goodman et al. 1967).  597 

Similarly, an oxidative response also occurs following an attack by herbivores as H. zea (Bi and Felton 1995). A 598 

general disturbance of redox balance is induced in tissues also by aphid feeding, including the accumulation of 599 

oxidases and phenolic substrates and loss of reducing activity and protein (Jiang and Miles 1993). Overall, 600 

following insect attacks, ROS accumulate in apoplastic as well as in symplastic regions. Apoplastic burst of ROS 601 

acts as a first barrier against subsequent attack by pathogens and herbivores (War et al. 2012). A systemic 602 

suppression of photosynthesis is often associated with caterpillar herbivory where oxidative modifications are 603 

observed (Thivierge et al. 2010), e.g. oxidation of ascorbic acid (Goggin et al. 2010). Aphids also oxidize plant 604 

phenolic monomers that act as their deterrent, into inert polymers (Jiang 1996). Finally, wounded plants secrete 605 

sap with a characteristic acidic pH of 5.0 to 5.8 and high content of different phenolic compounds such as lignin 606 

and flavonoid precursors. Plants typically respond to wounding, including that caused by sucking insects, by 607 

mobilizing and oxidizing phenolic compounds (Miles and Oertli 1993; Hwang et al. 2017). 608 

  609 

Eh-pH homeostasis: a unifying perspective on Genotype x Environment x Management x Pest 610 

(G x E x M x P) interactions 611 
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We consider Eh-pH homeostasis as a unifying process that attempts to shed light on the multiple processes 612 

related to plant-pest interactions. A model of these interactions is proposed based on the assumption that plants 613 

become susceptible to pests when imbalanced Eh-pH conditions in their compartments match the specific Eh-pH 614 

ranges at which the various pests can thrive, usually in oxidized plants (high pe+pH). Once attacked, a major 615 

defense reaction of plants is a localized oxidation of the pathogen or wounds. 616 

Hence, this “redox” model (Fig. 2) correlates: i) the Eh-pH conditions of the plants in their various 617 

compartments (roots, shoots, stems, grains, fruits and apoplast, xylem, phloem, cell, and organelles) which are 618 

the result of genotype, age, management practices and the various stresses related to the abiotic and biotic 619 

environments, their intensity and their duration; ii) the specific conditions at which specific pests can thrive 620 

depending on the pest type, their reproductive cycle, metabolism and living style (soil-borne vs air-borne, 621 

biotrophic-hemi-biotrophic-necrotrophic, intracellular-extracellular, chewing-sucking, etc.). 622 

 623 

 624 

 625 
Fig. 2: Model of GxExMxP interactions in a “Redox” perspective. Environment and management practices 626 

impact soil Eh-pH (water and air in interaction with soil structure, carbon, biological activity and clay). 627 

Environment (management practices) and soil Eh-pH induce oxidative stresses in plants, which together with 628 

genotype affect plant Eh-pH in the various plant compartments through interactions between ROS, RNS, 629 

hormones and antioxidants. These antioxidants can be primed or inversely exhausted in relation to type, 630 

duration and intensity of the various stresses. In this model, plants become susceptible when imbalanced Eh-pH 631 

conditions in plant compartments match the specific Eh-pH conditions at which the various pests can thrive. 632 

  633 

The effects of the multiple and complex abiotic and biotic factors and their interactions can be integrated into 634 

these simple parameters to provide a powerful tool for analyzing GxExMxP interactions in a temporal and 635 

spatialized perspective.  636 

 637 
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Can spatio-temporal variability in plant Eh-pH explain locations-periods of plant susceptibility-tolerance-638 

resistance to various pests? 639 

 640 

The “Eh-pH zones”, where the various types of pests can thrive in space (relation to the various plant parts) and 641 

time is summarized in Fig. 3. 642 

 643 

 644 

 645 
Fig. 3. Eh-pH map of indicative zones where the main groups of pests can thrive, corresponding to oxidized 646 

plants. Adapted from section 2 (Tables 1 and 2) and section 3. Viruses develop in alkaline phloem and possibly 647 

xylem, as do most bacteria. Inversely, most fungi prefer the acidic and more oxidized apoplast. Oomycetes often 648 

thrive in moderately oxidized apoplast, usually at higher pH than their fungal counterparts. Insects have 649 

different preferences, according to their feeding mode: xylem or phloem sucking insect at higher pH and lower 650 

Eh compared with biting-chewing insects; larvae at lower pe+pH and higher pH compared with adults. These 651 

are only tendencies for the main groups of pathogens and pests, as optimal Eh-pH conditions are specific. 652 

Although some pathogens are ubiquistic, able to develop in a large range of Eh-pH conditions, most pathogens 653 

can develop only in a specific, narrow Eh-pH range (Rabotnova and Schwartz 1962).    654 

 655 

The spatial variations in plant Eh-pH correlate well with, and may explain the spatial distribution of pests within 656 

plant organs as illustrated by four examples: i) the initial development of fungi (fungal wilt pathogens) in the 657 

apoplast (more acidic and oxidized than the vascular system), and where many soil-borne fungi are necrotrophic 658 

(developing in the more acidic-oxidized conditions of the roots) while most of the biotrophic pathogens, such as 659 

rusts and powdery mildews, occur on the above-ground portions of the plants that are less acidic and oxidized 660 

than the roots (Raaijmakers et al. 2009); ii) the preferential development of many Gram-positive bacteria, 661 

Eh 

(mV)

500

300

200

100

400

0

600

pH
75 6 843 9 10

pe=7

pe=3.5

pe=0

pe+pH=7

pe+pH=10.5

pe+pH=14
pe=10.5

Necrotrophic

Biotrophic

Insects

Viruses

BacteriaOomycetes

Fungi

Roots

Shoots

Roots

Shoots

Oxidized 

apoplast
Oxidized 

Xylem

Oxidized 
phloem

Stressed plants

Aged

plants

Young 

plants

Healthy plants
Balanced

phloem

Balanced xylem

Balanced apoplast



 26 

including phytoplasma and proteobacteria, in the alkaline phloem and in the xylem, which rapidly become 662 

alkaline upon various stresses (Bové and Garnier 2003; Padan et al. 2005), iii) the invasion of plants by obligate 663 

intracellulars, e.g. viruses, through the alkaline and reduced phloem (Hipper et al. 2013); and iv) the feeding 664 

habits of insect vectors of these pathogens, which are xylem (bacteria) or phloem (viruses and bacteria), such as 665 

sucking insects (Garnier et al. 2001; Wielkopolan and Obre 2016).  666 

 667 

Similarly, the spatial distribution of pests, between organs, is correlated to Eh-pH niches. Examples are: i) the 668 

resistance to wheat stripe rust (Puccinia striiformis f. sp. tritici,) within same-aged plants was lower on the 669 

uppermost leaf than in the second leaf, while it was even higher in the third leaf [These leaves are not the same 670 

‘age’] (Farber and Mundt 2017), in accordance with higher Eh levels in the young and not fully developed 671 

leaves; ii) the highest infection by Rice Yellow Mottle Virus in the flag leaf (oxidized, alkaline; Joseph et al. 672 

2011), iii) the  higher resistance of rice to bacterial blast (Xanthomonas campestris pv. oryzae), in old, mature 673 

leaves compared with young leaves (with low Eh and high pH (Koch and Mew 1991); and iv) the highest 674 

resistance to thrips (Frankliniella occidentalis) of the youngest fully opened Capsicum leaves compared to older 675 

leaves (van Haperen et al. 2019). 676 

 677 

Temporal variations in plant Eh-pH are also correlated to timing of susceptibility-tolerance-resistance, and Eh-678 

pH alteration with age could be involved in the processes implied in ontogenic resistance at plant or organ level. 679 

Some aged plants naturally develop acidic and less reduced conditions, which could explain the acquired 680 

immunity of plants against bacterial diseases (thriving in alkaline and moderately reduced conditions) with 681 

aging. This has been described with Xanthomonas campestris in rice (Koch and Mew 1991) and in Arabidopsis 682 

thaliana (Hess et al. 2005), which requires intercellular accumulation of SA. Interestingly, in tomato, age-related 683 

resistance to Phytophthora infestans has been related to ethylene (ET) and SA (Shah et al. 2015). Plant-leaf 684 

aging is related to acidification that matches with the higher susceptibility of young rice plant-leaves to viruses 685 

(thriving in alkaline conditions), as exemplified for Rice Yellow Mottle Virus (Joseph et al. 2011). Likewise, 686 

young grapevine leaves present a high Grapevine Fanleaf Virus level during the whole vegetative period while 687 

mature leaves, tendrils and flower-berry clusters do so only at the beginning of the vegetative period (Krebelj et 688 

al. 2015). In contrast, the decreasing susceptibility of grapevine leaves to Erysiphe graminis while aging 689 

(Calonnec et al. 2018) could be related to lower Eh in the fully developed leaves (Husson et al. 2018a). This is 690 

also true for the increasing susceptibility of aging rice plants to Helminthosporium oryzae and Magnaporthe 691 

oryzae (formerly Pyricularia oryzae; Padmanabhan and Ganguly 1954). Temporal variability in plant Eh-pH 692 

may also explain that Capsicum plants start to develop resistance to thrips (Frankliniella occidentalis) once they 693 

are between 4- to 8-weeks-old (van Haperen et al. 2019). Likewise, cabbage plants aging from 3 to 9 weeks 694 

increased pre-imaginal mortality of the moth, Plutella xylostella, (Lepidoptera) and reduced its larval 695 

development rate, pupal weight and fecundity (Campos et al. 2003). Finally, an Eh-pH perspective on 696 

modulation of plant immunity by light, circadian rhythm and temperature could also be valuable by providing 697 

insights into the important role of circadian rhythm in the plant defense system against pests (Hua 2013; Lu et al. 698 

2017). 699 

 700 

Can genotypic differences in plant Eh-pH explain susceptibility, tolerance or resistance to pests? 701 
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As for spatio-temporal variations, genotypic variability in plant Eh-pH is correlated to and may explain 702 

differential susceptibility to the various types of pests. Under this Eh-pH perspective, it can be hypothesized that 703 

any pathosystem is related to specific plant Eh-pH values. Masoero and Cugnetto (2018) reported a 704 

predisposition towards fungal infection when the pH was more acidic, with grapevine (pH 3.69) and apple (pH 705 

5.04) as model plant species. They also reported a tendency towards bacterial infection when the pH was less 706 

acidic, as exemplified for pear (pH 5.52). The high propensity of tomato to bacterial and viral diseases (Blancard 707 

2012) might also be related to its high pH (5.46), in addition to a strong increase in xylem pH under extreme 708 

water conditions (i. e. up to 7.0 and 8.0 under flooding and drought, respectively; Wilkinson 1999; Jackson et al. 709 

2003). The differences in Eh-pH values among plant species might also explain why aerial hemibiotrophic and 710 

biotrophic fungi are specialized to a limited number of hosts, with similar Eh-pH conditions. For instance, the 711 

hemibiotrophic M. oryzae is limited to rice, a few other cereals including wheat (Debona et al. 2012), or wild 712 

grasses such as Leersia hexandra, Echinochloa crusgalli, or Brachiaria mutica (Jashvantlal 2008). This 713 

pathogen does not develop, for instance, on cruciferous species such as rapeseed (Brassica napus) that has 714 

different Eh-pH conditions. In contrast, the causal agents of phoma stem canker of rapeseed (Leptosphaeria 715 

maculans and L. biglobosa), major biotrophic fungi, are limited to brassicas and do not develop on cereals 716 

(Rouxel and Balesdent 2005). Furthermore, the low Eh in rice might explain why this plant is not infected by 717 

Sclerotinia sclerotiorum, a, necrotrophic and damaging plant pathogen that can infect 383 species in 225 718 

taxonomic genera and 64 plant families (Purdy 1979). 719 

A second hypothesis can also be proposed that, besides the specific recognition processes depending on host and 720 

plant pathogen genotypes, varietal resistance, tolerance and susceptibility to pests is related to differences in 721 

basal Eh-pH and genetic capacity of the variety to sustain a balanced Eh-pH. For instance, the rice variety Nerica 722 

4 sustains a low Eh and pH and is resistant to several strains of the rice blast pathogen while the more oxidized 723 

rice variety IRBLTA-2Pi was highly susceptible to some strains of the pathogen (Fukuta et al. 2019). Similarly, 724 

greater varietal resistance of wheat to the blast pathogen was related to a more efficient antioxidative system in 725 

the removal of excess ROS generated during the infection process of M. oryzae, limiting cellular damage caused 726 

by the fungus (Debona et al. 2012).  727 

However, it should be clearly stated that these are only major trends observed, which should not be generalized 728 

without caution. They are based on “mean” plant Eh-pH conditions, diffferences between varieties can be as 729 

important as differences between species, and local conditions in the different plant compartments also have to 730 

be considered, and related to specific pathogens or pests and their requirements. 731 

 732 

Can Eh-pH imbalance related to abiotic stresses explain plant susceptibility, tolerance and resistance 733 

to pests? 734 

A common feature in the response to all stresses is the onset of oxidative stress through the production of ROS 735 

(Carvalho et al. 2015; Sewelam et al. 2016). One of the earliest responses of plants to pathogens, wounding, 736 

drought, extremes of temperature or physical and chemical shocks is the accumulation of ROS such as 737 

superoxide, hydroxyl radicals, hydrogen peroxide, singlet oxygen, etc. The oxidative stress that often ensues 738 

with and following infection is a widespread phenomenon. It is extensively observed in plants exposed to most, 739 

if not all, biotic and abiotic stresses (Shao et al. 2008). Plants synthesize a large pool of antioxidants such as 740 

ascorbate, tocopherol, and proteinaceous thiols (thioredoxin, peroxiredoxin and glutaredoxin) that interact with 741 
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ROS to maintain redox homeostasis (Kapoor et al. 2015). Thus, during stress, the requirements for energy 742 

increases with the intensity of respiration from exergonic processes, and plant’s entropy also increases 743 

(Dragičević 2015). As a consequence, most abiotic stresses generally result in oxidation with an exception being 744 

in roots during waterlogging-flooding.  Similarly, abiotic stresses, most often, lead to apoplast alkalization. This 745 

systemic pH increase may be a secondary effect without functional implications that results from ion movements 746 

or proton-pump regulation. There is increasing evidence that apoplast alkalization is part of a mechanism to 747 

withstand stress (Geilfus 2017).  748 

 749 

 A schematic summary highlighting the impacts of major abiotic stresses on plant Eh-pH homeostasis is 750 

presented in Figure 4 with zones indicating where the main pest groups can thrive optimally. It is important to 751 

recognize that waterlogging, drought (Fig. 4a) and salinity (Fig. 4b) stresses are most directly encountered by 752 

roots although the effects may be manifest throughout the plant (Bostock et al. 2014). This is also the case when 753 

soil imbalances occur (pH, Eh, mineral deficiency, toxic elements etc.). In contrast, light, temperature (Fig. 4a) 754 

and air pollution are most directly encountered by aerial parts. This Fig. 4 illustrates how plants could become 755 

susceptible to various diseases following abiotic stresses in relationship to oxidation, or inversely, why 756 

waterlogging reduces diseases caused by fungi such as Fusarium poae (Martínez et al. 2019).  757 

  758 
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 761 
Fig. 4: Impact of abiotic stresses leading to unbalanced redox conditions in plant parts (pH-Eh map) in relation 762 

zones indicating optima where the main pest groups can thrive (adapted from Tables 1 and 2). 4a. Climatic 763 

stresses. 4b. Edaphic stresses. Edaphic stresses often lead to plant oxidation and increased plant susceptibility 764 

except for waterlogging that results in root asphyxia and, shoot oxidation or acidification. Low soil pH leads to 765 

further acidification in the rhizosphere, while high soil pH results in further alkalization of the rhizosphere. 766 

 767 

Variations of plant Eh-pH following stress has been correlated with increased susceptibility to various types of 768 

pests (Schoeneweiss 1975). Abiotic stresses can predispose plants to potentially aggressive hemi-biotrophic 769 

pathogens to result in severe disease despite very low levels of inoculum. Perhaps the most pronounced impact 770 

of abiotic stress is to facilitate diseases caused by opportunistic or facultative pathogens and those present in 771 

association with their hosts such as epiphytes or endophytes (Lamichhane 2015). An example is the root- and 772 

crown-infecting pathogens Pythium ultimum and Fusarium spp.; air-borne pathogens, such as Alternaria spp. 773 

and Botrytis cinerea; and many canker-causing pathogens of woody perennials (Bostock et al. 2014). For 774 

instance, summer heat is conducive to epidemics of cytospora canker of Alnus (Worrall et al. 2010). 775 

 776 

In contrast, abiotic stresses can also result in reduced incidence or severity of diseases caused by obligate or 777 

biotrophic, pathogens. Exceptions are diseases caused by some viruses, fungi, and nematodes (Bostock et al. 778 

2014). Thus, pathogen infection on already drought-stressed plants can either result in plant resistance to 779 

pathogens, through drought-induced activation of basal defense mechanisms or, inversely, can result in 780 

susceptibility due to a weakened basal defense (Bertrand 1976).  781 

To understand how abiotic stresses, including the edaphic ones, can either increase or decrease plant 782 

susceptibility to various pests, a dynamic approach is required and additional parameters must be considered, 783 

namely: i) the intensity and duration of the stress since abiotic stresses occurring prior to infection affect 784 

susceptibility of plants in different ways; ii) the synergistic occurrence of multiple stresses and their combined 785 
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effects (Lamichhane 2015); and iii) availability of anti-oxidant pools in the plant, their ability to counterbalance 786 

the oxidative stresses and their possible exhaustion.  787 

 788 

Predisposition, acclimation, priming effect, exhaustion and death in a “redox” perspective 789 

Stress may affect plant diseases through a range of effects on the pathogen, host, or the host-pathogen 790 

interaction. The concept of predisposition implies an effect on the host rather than on the pathogen (Sorauer 791 

1974). Stresses or nutrition that cause stomatal closure or formation of a thicker cuticle may prevent invasion by 792 

pathogens. In some cases, however, pathogens may enter a plant regardless of stress and affect disease 793 

development more than infection (Schoeneweiss 1975). Drought-induced pathogen resistance is presumably due 794 

to enhanced induction of antimicrobial and PR-proteins activated by drought. These compounds can protect 795 

plants during early stages of pathogen infection. Plant susceptibility to drought may be attributed to high levels 796 

of ABA in drought stressed plants since this hormone interferes with pathogen-induced plant defense signaling 797 

and thereby reduces the expression of defense-related genes (Ramegowda and Senthil-Kumar 2015). 798 

 799 

Bostock et al. (2014) developed a model of plant response to integrate the general adaptation syndrome with the 800 

concept of disease severity, disease duration and disease predisposition. In this model, there is an alarm stage 801 

following an abiotic stress event which corresponds to the maximum predisposition before the acclimation-802 

resistance stage (maximum resistance) to conclude with a final collapse, exhaustion and death stage. 803 

In an Eh-pH perspective (Fig. 5a), this could be seen as a first phase for the increase in ROS (and ABA) that is 804 

followed by the production of antioxidants and phytoalexins by the plants (acclimation stage, maximum 805 

resistance). The collapse stage could be regarded as the exhaustion of the antioxidant capacity of the plant that 806 

leads to a further increase in oxidation level. The collapse, exhaustion and death phase could, therefore, be split 807 

into two sub-phases: i) a high susceptibility phase that could still be reversible, especially to viruses and 808 

necrotrophic pathogens, that is related to strongly oxidized conditions upon exhaustion of antioxidants, and ii) a 809 

death phase related to irreversible oxidation. Furthermore, the high production of antioxidants following ROS 810 

activation after a moderate stress could have a priming effect to induce a greater capacity to respond to further 811 

stimulus, lowering the plant redox state, and, thus, preparing it for a rapid response in case of pest attacks. One 812 

hypothesis could be that plants that sustain a lower Eh level can more readily produce reduced primary and 813 

secondary metabolites such as phenolics, SA and phytoalexins or redox regulated molecules such as plant 814 

pathogenesis-related proteins (Fobert and Després 2005; Balmer et al. 2015). Indeed, compounds that induce 815 

priming are reported to promote stronger and faster responses to stress by modulating the oxidative environment 816 

and interacting with signaling pathways mediated by SA, JA and ET (González-Bosch 2018).  817 

 818 

Stress intensity, stress duration, multiple stresses and cumulating oxidative stresses  819 

Under natural conditions, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular 820 

signaling pathways governing adaptive responses to individual stresses can interact (Nguyen et al. 2016). A 821 

mechanism to study multiple-stress interactions (Bateman, 1978) recognizes that plant responses to a 822 

combination of stresses such as heat and drought may differ from those to individual stresses. Abiotic stress 823 

applications are likely to influence plant-pathogen interactions and vice versa (Prasch and Sonnewald 2015). For 824 

instance, when applied in combination, drought and herbivory had an additive effect on specific processes 825 
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involved in secondary metabolism and defense responses, including protease inhibitor activity (Nguyen et al. 826 

2016). Abiotic and biotic stress interactions can occur at multiple levels, depending on the type of stress 827 

(osmotic, ionic), growth characteristics, infection strategy of the pest (biotroph-necrotroph, mode of infection by 828 

direct penetration or through plant openings such as stomata, etc.) or infection stage of the host (Kissoudis et al. 829 

2014). 830 

 831 

Molecular and biochemical studies indicate that there are extensive overlaps in abiotic and biotic stress 832 

responses and there is some evidence for a universal stress response transcriptome for which a model involving 833 

the recruitment of ROS and phytohormones to sequentially engage defense responses has been proposed; 834 

however, it is unclear how the sequence is disrupted by predisposing stress events (Bostock et al. 2014). Plants 835 

use common pathways and components in the stress-response relationship. This phenomenon, which is known as 836 

cross-tolerance, allows plants to adapt or acclimate to a range of different stresses following exposure to one. 837 

Redox signals appear to have a central role in these common pathways (Pastori and Foyer 2002). 838 

 839 

 In their seminal review on enhancing crop resilience to combined abiotic and biotic stress, Kissoudis et al. 840 

(2014) showed that stress factors affect the homeostasis of chemical signals in the apoplasm such as Ca
2+

, ROS, 841 

and pH levels. A combination of abiotic stress with pathogen infection potentially derails hormone and systemic 842 

ROS homeostasis. Under multiple stresses, the intensity of one stress affects the plant’s responses to further 843 

stresses. For instance, plants exposed to mild drought stress activate the basal defense response that enables them 844 

to defend against pathogen infection. In contrast, severe drought causes leakage of cellular nutrients into the 845 

apoplast that facilitates successful pathogen infection (Ramegowda and Senthil-Kumar 2015).  846 

Considering both the oxidative stress and the regulation of antioxidant systems, Lushchak (2014) proposed four 847 

levels of an intensity-based classification of oxidative stress, namely: i) a basal oxidative level; ii) a low intensity 848 

oxidative stress, in which markers of ROS-induced and ROS-sensitive functions can be measured; iii) an 849 

intermediate intensity oxidative stress, and iv) a high intensity oxidative stress where markers of oxidatively 850 

modified components dominate. 851 

In the proposed hypothesis in this paper we integrate the various models and classifications through an Eh-pH 852 

perspective. Consideration of oxidative stresses in combination with plant responses (antioxidant systems in 853 

interaction with hormones) results in a dynamic and spatialized plant Eh-pH model (Fig. 5). In this model, low to 854 

moderate stress after an alarm stage (predisposition upon oxidation), leads to the production of antioxidants (in 855 

relation to ABA) and priming of plant defense mechanisms and decreased plant susceptibility in an acclimation 856 

stage in which SA, JA-ET induce SAR-ISR.  857 
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 858 

 859 
Fig. 5. Model of plant responses to abiotic and biotic stresses and disease predisposition by combining models 860 

from Bostock et al. (2014) and Lushchak (2014) in an Eh-pH perspective. 5a. Low to intermediate stress 861 

intensity of long duration. 5b. High stress intensity and multiple stresses. Production of antioxidants after a 862 

moderate stress induces an acclimation stage, but exhaustion of the antioxidant pool. Upon high intensity, 863 

multiple stresses or long stress duration leads to plant cell collapse and death. The stronger the abiotic stress or 864 

the higher the number of simultaneous stresses, the faster the exhaustion (the shorter the tolerance-resistance 865 

phase). The longer the stress or more consecutive stresses, the higher the risk of exhaustion of antioxidants. As 866 

long as ROS-induced and ROS sensitive functions can be sustained, oxidation-susceptibility can be reversed. 867 

Upon exhaustion of antioxidant pools, strong oxidation leads to irreversible collapse and death. 868 

 869 
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High intensity stress or multiple combined stresses lead to a rapid increase in oxidative stress and a rapid 870 

exhaustion of plant antioxidant pools and results in increased susceptibility to pests, without possibility of 871 

acclimation (Fig. 5b). Several observations suggest that there is a critical glutathione status below which the 872 

accumulation of pathogen-defense related molecules is inhibited and, consequently, disease resistance is 873 

impaired (Noctor et al. 2011). Similarly, consecutive multiple stresses, or prolonged single stress lead to 874 

progressive exhaustion of antioxidant capacity and increased plant oxidation to ultimately result in irreversible 875 

collapse and death.  876 

Photosynthesis, the primary mechanism for reduction, is also fundamental in restoring the antioxidant pools by 877 

regenerating NADPH (Reduced Nicotinamide Adenine Dinucleotide Phosphate; mid-point potential: Em 878 

NADP+/NADPH= -320 mV) which then results in regeneration of GSH (Em GSSG/GSH: -230 mV) and ASC 879 

(Em DHA/ASC: + 90 mV; Noctor 2006). Paradoxically, chloroplasts produce various forms of ROS, and 880 

photosynthesis also produces H2O2 in the peroxisomes because of photorespiration (Exposito-Rodriguez et al. 881 

2017). These ROS play an important role in signaling, but they also need to be scavenged to sustain redox 882 

homeostasis. Removal of H2O2 in chloroplasts occurs through ASC-dependent and TRX-dependent pathways 883 

(Foyer and Shigeoka 2011). One of the effects of oxidative stress is to decrease chlorophyll biosynthesis (Aarti 884 

et al. 2006) so that oxidative stresses generally decrease photosynthesis. Following exhaustion of antioxidant 885 

pools, redox imbalance negatively alters photosynthesis and thus alters the plant’s capacity to regenerate 886 

antioxidant pools. 887 

 888 

This model of Eh-pH homeostasis, as a central component of plant health, proposes a coherent perspective by 889 

deciphering the multiple interactions between abiotic stress and plant susceptibility, tolerance and resistance to 890 

pests. The model introduces a framework explaining how abiotic stresses can alter plant–pest interactions by 891 

enhancing host plant susceptibility or, inversely, by priming tolerance to pests in relation to antioxidant pools in 892 

the plant. This model may also be useful to decipher the poorly understood interactions among multiple biotic 893 

stresses acting simultaneously or, to the contrary, to understand how some pests may alter plant response to 894 

abiotic stresses (Pandey et al. 2017).  895 

 896 

Can Eh-pH imbalance related to biotic stress explain biotic-biotic interactions and cohorts of pests? 897 

Studies of plant–pathogen interactions have historically focused on simple models of infection involving single 898 

pathosystems. In contrast, in the wild, microbes are part of complex multispecies consortia-communities 899 

(Lamichhane and Venturi 2015). Plant infections often involve multiple species or genotypes and exhibit 900 

complexities that are not captured in individual pathosystems  (Abdullah et al. 2017). Simultaneous infection of 901 

a single plant by various pathogens has been recognized as an important modulator of host resistance and a 902 

driver of pathogen evolution (Tollenaere et al. 2017). Even commensal bacteria can enhance virulence of 903 

opportunistic pathogens via cross-metabolism. For example, Streptococcus gordonii enhances the bioavailability 904 

of oxygen during infection to allow Aggregatibacter actinomycetemcomitans to shift from a primarily 905 

fermentative to a respiratory metabolism that promotes its growth and persistence (Stacy et al. 2016). 906 

Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing 907 

ATP yields via central metabolism and creating a proton motive force (Stacy et al. 2016). Furthermore, host 908 
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plant nutrition can significantly influence the growth and condition of phytophagous insects that influence their 909 

susceptibility to pathogens (Shikano et al. 2010).  910 

 911 

The recognition of Eh-pH niches specific to each pest could help decipher the three main types of interactions in 912 

co-infection systems (Seabloom et al. 2015; Abdullah et al. 2017): i) competition, in which competing pathogens 913 

develop physical barriers or utilize toxins to exclude competitors as reported for Fusarium verticilloides and 914 

Ustilago maydis in maize (Jonkers et al. 2012). This may involve interactions between pests that have different 915 

Eh-pH optimum conditions with each one altering these conditions to enhance its fitness for its own benefit at 916 

the expense of the others; ii) cooperation, whereby pathogens beneficially interact, by providing mutual 917 

biochemical signals essential for pathogenesis. This could be regarded as pathogens having similar Eh-pH 918 

optimum conditions. Similar Eh-pH niches could potentially explain the many fungi-fungi, virus-virus and 919 

bacteria-bacteria synergistic interactions as reviewed by Lamichhane and Venturi (2015) or mixed infections for 920 

example as reported for Rice Yellow Mottle Virus and Xanthomonas oryzae in rice (Tollenaere et al. 2017); and 921 

iii) coexistence, whereby pathogens can stably coexist through niche specialization.  922 

 923 

Similarly, the Eh-pH perspective proposes a framework to explain how a pathogen can render a host: i) more 924 

vulnerable to other pathogen attacks, as is the case of Pseudomonas syringae predisposing plants to invasion by 925 

the necrotrophic ascomycetes Alternaria brassicicola or Albugo candida that allow subsequent infections by 926 

several opportunistic pathogens (Abdullah et al. 2017). This induced susceptibility by development of the first 927 

pathogen might be attributed to a further imbalance of Eh-pH in the various plant compartments (apoplast, 928 

xylem, phloem, intracellular); ii) more resistant through the induction of a systemic defense-signaling cascade 929 

that restores Eh-pH conditions unfavorable to pathogens that confers resistance to subsequent attacks, as 930 

exemplified by Pseudomonas fluorescens (Ongena et al. 2005).  931 

 932 

The Eh-pH homeostasis hypothesis could also help explain how above-ground infestation of whitefly (Bemisia 933 

tabaci) in peppers (Capscicum annuum) can induce below-ground resistance against the gram-negative Ralstonia 934 

solanacearum that develops in an aerobic, alkaline condition through SA-dependent signaling, that leads to an 935 

increase of root-associated gram+ bacteria (Yang et al. 2011). This perspective may also explain how a host 936 

plant’s nutritional status can significantly influence the growth and condition of phytophagous insects and, 937 

consequently, the susceptibility of the latter to pathogens (Shikano et al. 2010). Finally, this hypothesis might 938 

help clarify the ‘crosstalks’ among hormones involved in plant defense and help improve the model of SA-939 

mediated defense against biotrophs and JA-ET-mediated defense against necrotrophs. The latter model is 940 

currently regarded as being too simplistic since defense responses are thought to be fine-tuned not only to 941 

particular plant–pathogen combinations (Abdullah et al. 2017), but also to multiple biotic and abiotic stresses 942 

and co-infections. 943 

 944 

Revisiting mineral nutrition and plant-pest interactions with an Eh-pH perspective 945 

Interactions between mineral nutrition and plant pests include how nutrient supply alters pest prevalence and 946 

influences competitive interactions among coinfecting pathogens (Lacroix et al. 2014). However, several 947 

reviews (Datnoff et al. 2007; Huber and Haneklaus 2007; Amtmann et al. 2008; Dordas 2008; Spann and 948 
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Schumann 2010; Huber et al. 2011; Elmer and Datnoff 2014; Gupta et al. 2017; Shah 2017) highlight 949 

inconsistent and, in some cases, contradictory results because (i) no information was available whether the 950 

supply of these nutrients was low, optimal or excessive relative to plant needs; (ii) the form of N or other 951 

nutrients supplied (e.g., ammonium or nitrate which are metabolized differently) were not provided; and  iii) lack 952 

of consideration for differences in infection patterns between obligate and facultative parasites (Huber et al. 953 

2011). Other sources of inconsistency can be related to interactions between elements (co-application, 954 

antagonism, synergy), the time of application (Amtmann et al. 2008; Elmer and Datnoff 2014), the crop 955 

developmental stage at the time of nutrient application (Dordas 2008); soil type and general growing conditions, 956 

especially pH, and other possible plant stresses (water, temperature, biotic stress, etc.). Furthermore, the mode of 957 

entry of the pathogens, and the plant tissue involved first (leaf or root, apoplast, xylem or phloem) and the plant 958 

physiological stage at which they develop. Although the effect of these situations may be well known, they 959 

frequently are not considered in the published studies. Many of these studies attributed the form of N to pH 960 

conditions even though Eh conditions are as important as pH relative to N forms. For example, the NH4
+
 form is 961 

dominant at low pe+pH (<14) while NO3
-
 dominates at higher pe+pH (Husson, 2013). 962 

 963 

An Eh-pH perspective in relation to plant nutrition and entry point of pathogens that defines various types of 964 

pests and characterizes spatio-temporal variations in a plant’s susceptibility or resistance to them and feeding 965 

modes of pests, could shed light on these interacting processes and identify consistencies that are currently 966 

lacking. This section illustrates the importance of a spatialized and dynamic Eh-pH perspective by providing a 967 

few examples. 968 

 969 

N nutrition and plant-pest interactions in an Eh-pH perspective 970 

 Nitrogen availability for plants is one of the most important factors influencing disease development (Elmer and 971 

Datnoff 2014; Gupta et al. 2017); however, the mechanisms by which N affects disease development remains 972 

elusive and sometimes appears inconsistent (Gupta et al. 2017). Nitrogen-deficient plants may not provide the 973 

nutrient environment necessary for obligate pathogens, whereas nitrogen excess may inhibit the production of 974 

defense responses to other pathogens (Elmer and Datnoff 2014). Nitrogen is an essential component of amino 975 

acids, enzymes, hormones, phenolics, phytoalexins, and proteins. Interestingly, all of these molecules have direct 976 

effects on disease development (Elmer and Datnoff 2014; Gupta et al. 2017), and are involved in redox 977 

homeostasis. 978 

 979 

Most of the conflicting reports regarding the role of nitrogen in plant disease may be due to a failure in 980 

recognizing and reporting the form of nitrogen used in the experiments (Elmer and Datnoff 2014). In their 981 

review of nitrogen and plant diseases, Huber and Thompson (2007) highlighted that application of nitrogen 982 

under unspecified form resulted in an increased and decreased disease level in 20 and 22 cases, respectively. 983 

Similarly, NH4
+
-N application resulted in an increased and decreased disease level in 8 and 16 cases, 984 

respectively. Likewise, NO3
-
-N application led to an increased and decreased disease level in 11 and 9 cases, 985 

respectively. Earlier, Huber and Watson (1974), reported an increase and decrease in diseases level due to NH4
+
 986 

nutrition in 24 and 20 cases, respectively while they reported an increase and decrease in diseases due to NO3
- 
in 987 

20 and 24 cases, respectively.  988 
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A careful consideration about how the N-form impacts plant Eh-pH homeostasis in its different compartments 989 

provides an interesting perspective that helps disentangle the interactions between N-form of nutrition and pests 990 

and pathogens (Fig. 6).  991 

 992 

 993 

 994 
Fig. 6: Impact of N-form of nutrition, creating unbalanced redox conditions in plant parts (pH-Eh map) in 995 

relation to optimum zones where the main groups of pathogenic microorganisms and pests can thrive. NH4
+
 996 

absorption (red arrows) leads to plant acidification, reduction (decreased pe+pH) of shoots but oxidation of 997 

roots. NO3
-
 absorption (yellow arrows) leads to plant alkalization, with shoots oxidation and roots reduction 998 

(Table 9). More generally, absorption of cation leads to acidification and absorption of anion leads to 999 

alkalization, as biochemical and biophysical stat mechanisms maintain stat status in the plant. However, 1000 

nitrogen as a remarkadely stronger impact than other elements as NH4
+
 and NO3

-
 amount to 80% of the total 1001 

anions and cations assimilated by plants (Marschner 1995). 1002 

 1003 

By considering the type of pests and the part of the plant they infect first, we present clear patterns of disease 1004 

severity (Huber and Watson 1974) that are in accordance with local Eh-pH conditions induced by N-form of 1005 

nutrition:  1006 

 Soil-borne fungi that penetrate plants from the roots (Rhizoctonia spp., Fusarium spp., Armillaria spp., 1007 

Sclerotinia spp. spp., Helminthosporium spp., Cercosporella spp., Thielavopsis spp., etc.) are decreased 1008 

by nitrate and increased by ammonium (14 cases out of 16). This is in agreement with increased root 1009 

pH and decreased root Eh by nitrate nutrition given that these fungi thrive at low pH and high Eh, and 1010 

that ammonium nutrition leads to strong rhizosphere acidification. In contrast, soilborne fungi increased 1011 
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by nitrate nitrogen and actinomycetes such as Gaeumannomyces spp. and Streptomyces spp. are 1012 

reduced by ammonium. 1013 

 Fungi of aerial parts and xylem-apoplast (Poria = Stenocarpella spp., Verticillium spp.) are increased 1014 

by nitrate and decreased by ammonium (4 cases over 4). This is in accordance with lower Eh in aerial 1015 

parts of ammonium-fed plants. 1016 

 Soil-borne oomycetes are either decreased by nitrate and increased by ammonium (Aphanomyces spp., 1017 

Phytophthora spp.: 3 cases out of 3) or increased by nitrate and decreased by ammonium (Pythium spp.: 1018 

2 cases out of 2). This is in agreement with the facts that zoospore’s germination is optimal for this 1019 

pathogen at high pH of 7-8 (Davet 2004). Likewise, Aphanomyces spp. infection is the most severe at 1020 

low soil pH (<6.5; Payne et al. 1994). Finally, zoospores of Phytophthora palmivora are anodotactic 1021 

while those of Pythium aphanidermatum are cathodotactic (van West et al. 2002). 1022 

 Virus-like diseases are decreased by ammonium application (5 cases out of 6) while they are increased 1023 

under nitrate nutrition (2 cases out of 2). This confirms that the acidification and reduction of aerial 1024 

parts of the plant under ammonium nutrition, while many viruses require alkaline and oxidized 1025 

conditions. 1026 

 Foliar and vascular bacterial pathogens (Pseudomonas spp., Erwinia spp., Corynebacterium spp.) are 1027 

increased by nitrate application (4 cases out of 5) consistent with the increased pH related to nitrate 1028 

nutrition, where most pathogenic bacteria thrive at high pH.  1029 

 Nematode galls are increased by nitrate and decreased by ammonium nutrition (2 cases out of 2). This 1030 

confirms an increased root pH by nitrate fertilization (and inversely acidification by ammonium) and 1031 

that Heterodera glycines is favored by high pH (Pedersen et al. 2010). 1032 

 1033 

Similar conclusions can be drawn from the review by Huber and Thompson (2007). These authors reported 1034 

increased disease with nitrate and decrease with ammonium nutrition of air-borne fungi such as M. oryzae, 1035 

Alternaria macrospora, Monilinia vaccinia-corymbosi, etc., viruses and nematodes (Pratylenchus penetrans), 1036 

and a decrease with nitrate. Ammonium nutrition of soil-borne fungi (Fusarium spp., Rhizoctonia spp., etc.) had 1037 

the opposite effect. Thus, this dynamic and spatialized Eh-pH perspective can help decipher multiple contrasting 1038 

interactions. For instance, in winter wheat, foliar and ear disease severity were positively associated with plant N 1039 

uptake, use of mineral fertilizers, use of low leaf phenolic-flavonoid concentration, and short-straw variety 1040 

“Solstice” (overall consistant with oxidized growing conditions in plants). In contrast, severity of the same 1041 

diseases were negatively associated with the inputs of composted farm yard manure, leaf phenolic-flavonoid 1042 

concentrations, and use of the long-straw variety “Aszita” which is rich in the phenols and flavonoids that 1043 

maintain plants in a reduced condition (Rempelos et al. 2020). 1044 

 1045 

Nitrogen application also strongly affects insect damage. Plant nutritional quality and plant defenses that directly 1046 

act on herbivores are altered by nitrogen fertilization, and herbivorous insects can distinguish plants receiving 1047 

different nitrogen applications. Nitrogen fertilization results in higher occurrence and more crop damage from 1048 

herbivorous insects by reducing plant resistance, and also increases sucking pests in 55% of the studies (Shah 1049 

2017). This is in agreement with an increase in Eh and pH conditions in nitrate-fed plants. This Eh-pH 1050 
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homeostasis perspective could also be used to analyze the incidence of insect pests under mineral vs organic 1051 

fertilizations (Altieri and Nicholls 2003). 1052 

 1053 

Micronutrients and plant-pest interactions in a Eh-pH perspective 1054 

Manganese is a good illustration of the benefit in considering Eh-pH to decipher relations between mineral 1055 

nutrition and plant pests. Mn absorption is strongly influenced by soil-rhizosphere Eh-pH conditions, and is 1056 

soluble only in its reduced form (Mn
2+

), at low pe+pH. Mn has a tremendous impact on plant Eh-pH. Of central 1057 

importance are its structural, redox and electron transport roles in photosynthesis, which results in the splitting of 1058 

water and electron harvesting during the light reaction. Aside from Mn superoxide dismutase and a few Mn 1059 

containing enzymes, Mn functions primarily as an activator of enzymes, including dehydrogenases, transferases, 1060 

hydroxylases and decarboxylases (Thompson and Huber 2007).  1061 

 1062 

Due to its role in plant Eh-pH regulation, it is not surprising that Mn availability reduces diseases in 89% of the 1063 

cases (reviewed by Thompson and Huber (2007)). All the conditions leading to Mn reduction and, thus to its 1064 

increased availability, decreased the development and severity of pathogenic fungi such as Gaeumannomyces 1065 

graminis and M. oryzae. Interestingly, these pathogens possess the ability to oxidize Mn, and their virulence 1066 

depends on this capacity. Mn oxidation was, thus, highly correlated with fungal virulence and disease 1067 

development (Thompson and Huber 2007). The battle for Mn between host and bacterial pathogens, in relation 1068 

to oxidative stress, was, indeed, a major determinant defining the outcome of infections (Juttukonda and Skaar 1069 

2015). 1070 

 1071 

Other essential micronutrients in redox regulation have a strong impact on a large range of pests. Examples are 1072 

sulfur (Bloem et al. 2005), copper and boron, which were reported to decrease diseases in 93 and 91% of the 1073 

studied cases, respectively (Datnoff et al. 2007). 1074 

The first-row transition metals—manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu)—provide 1075 

the necessary redox and catalytic activity for many important biological processes (Ranieri et al. 2001; Bárcenas-1076 

Moreno et al. 2011; Gerwien et al. 2018). A process aptly named ‘nutritional immunity’ makes the host actively 1077 

sabotage and counteract metal uptake by microorganisms and it can also fight invaders by deploying toxic levels 1078 

of certain metals. Iron, Cu and Mn, for example, are intrinsically toxic via Fenton chemistry (generation of 1079 

oxygen radical species from hydrogen peroxide, catalyzed by the metal), leading to oxidative damage to the 1080 

microbes at high metal concentrations (Gerwien et al. 2018). Finally, silicon, which has been reported to play an 1081 

important role in resistance to fungal and bacterial diseases, and to herbivory (Epstein 1994; Fauteux et al. 2005; 1082 

Sakr 2016; Liu et al. 2017), is also known to improve antioxidant capacity and redox homeostasis (Manivannan 1083 

et al. 2018; Soundararajan et al. 2018). For example, silicon induces resistance of cassava to bacterial blight by 1084 

altering antioxidant enzyme activity (Njenga et al. 2017). 1085 

 1086 

Revisiting pathogenicity and virulence in an Eh-pH perspective 1087 

The Eh-pH perspective described herein provides a simple answer to the question “what makes commensal or 1088 

opportunistic microorganisms become pathogenic?” The answer is that “A commensal or opportunistic 1089 
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microorganism becomes pathogenic when it encounters or can develop Eh-pH niches favorable for its 1090 

development”.  1091 

This hypothesis is supported by the fact that pH has now been recognized as a key factor in reducing fungal 1092 

pathogenicity (Fernandes et al. 2017). In addition, cellular redox balance may serve as an inducer for the 1093 

defense-related genes, including pathogenesis-related proteins (Foyer 2005). Oxalic acid indirectly aids 1094 

Sclerotinia sclerotiorum pathogenicity by acting as a signaling molecule via manipulation of host ROS 1095 

(Williams et al. 2011). Furthermore, ROS and redox regulation are also involved in the perception of pests and 1096 

activation of plant defense. For instance, mitogen-activated protein kinase cascade, involved in pattern-triggered 1097 

and effector-triggered immunity, is activated and regulated by ROS (Bigeard et al. 2015; Liu and He 1098 

2017).Indeed, the Rice Yellow Mottle Virus-encoded viral suppressor of RNA silencing P1 is a protein with 1099 

redox-dependent flexibility (Gillet et al. 2013). 1100 

 1101 

It can also be hypothesized that the virulence of a pathogen is related to its ability to alter and sustain host plant 1102 

Eh-pH to its benefits despite the plant attempts to make it unfavorable, especially during the oxidative burst in 1103 

the hypersensitive response (Torres et al. 2006). This is observed with Sclerotinia sclerotorium and Botrytis 1104 

cinerea through oxalic acid production (Mbengue et al. 2016; Wang et al. 2016), or in bacteria through 1105 

production of thiol antioxidants such as GSH and detoxification enzymes that consume ROS (Reniere 2018). 1106 

Fungal pH modulations of the host environment regulate an arsenal of enzymes to increase fungal pathogenicity. 1107 

This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, 1108 

produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and 1109 

generate factors needed by the pathogen to effectively cope with the hostile environment within the host (Alkan 1110 

et al. 2013). The ability of the pathogen to actively increase or decrease its surrounding pH allows it to select the 1111 

specific virulence factor, out of its vast arsenal, to best fit a particular host (Prusky and Yakoby 2003).  1112 

 1113 

The evolution of pathogenicity towards novel hosts may be based on traits that were originally developed to 1114 

ensure survival in the microorganism’s original habitat, including former hosts (Van Baarlen et al. 2007). An Eh-1115 

pH perspective could help understand cross-kingdom host jumps or why and how pests can expand their host 1116 

range. This perspective can also provide new insights on the “disease triangle” that integrate pathogenicity, host 1117 

susceptibility, and environment. This can be done by stating that compatible interactions between a pathogen and 1118 

a host will only result in disease symptoms when environmental conditions are also fulfilled (Van Baarlen et al. 1119 

2007). This review suggests that Eh-pH are major determinants of environmental conditions impacting pest-host 1120 

interactions. 1121 

 1122 

Microorganisms thriving in slightly reduced and acidic conditions could be commensal or even beneficial to 1123 

plants in such situations; however, they may become detrimental when Eh-pH conditions change (especially 1124 

increase in pe+pH) to alter their interactions. This could be the case for Cyanobacteria which exhibit 1125 

characteristics of higher plants (photosynthetic organisms) as well as bacteria. These bacteria are able to reduce 1126 

the effect of salinity by producing extracellular polysaccharide or compatible solutions, increase rice seed 1127 

germination in drought situations, and remove pollutants (heavy metals and pesticides) from soil and water 1128 

(Singh et al. 2016). Faced with biotic stresses, cyanobacteria are capable of producing a diversity of chemical 1129 
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compounds efficiently in addition to releasing various enzymes, competing for rhizosphere space and activating 1130 

plant defense responses by interacting with plant roots. All these features represent an exploitable strategy 1131 

against pests in agriculture (Singh et al. 2016). In the event of soil oxidation, however, this group of bacteria can 1132 

contribute to iron starvation of plants because Cyanobacteria require large amounts of iron and have developed 1133 

very efficicent mechanisms for iron uptake. They are very competitive with plants for this essential nutrient 1134 

element (Kranzler et al. 2013). 1135 

  1136 

Revisiting energy allocation and growth or defense trade-off with an Eh-pH perspective 1137 

The plant immune system should be tunable because the immune response is costly, making unnecessary 1138 

activation a burden on plant fitness (Nobori and Tsuda 2019). An Eh-pH approach may provide a new 1139 

perspective on the growth versus defense trade-off in plants as reviewed by Huot et al. (2014). A model of plant 1140 

energy allocation under various conditions is proposed in Fig. 7, based on the Eh-pH perspective.  1141 

   1142 

 1143 

 1144 
Fig. 7. Hypothesized model of energy allocation to reproduction, growth, health and rhizodeposition as a 1145 

function of growing conditions. The energy investment distribution and aboveground-belowground interactions 1146 

in this Fig. vary with plant strategies. A1: Under optimal soil conditions, the high energy produced by very 1147 

efficient photosynthesis permits a balanced distribution of energy between vegetative growth, reproduction, 1148 

health and root exudation, with the latter “feeding” the soil microorganisms. High amounts of exudates are 1149 

released in the rhizosphere, but the high vegetative growth increases photosynthetic capacity, and thus energy 1150 

production in a very sustainable cycle. Energy rich plants (balanced pH, Eh and pe+pH) are not attractive to 1151 

pests and are able to sustain interactions unfavorable to pathogens since they accumulate secondary metabolites 1152 

and also are not attractive to insects. A2: When soil imbalance is (partially) compensated for by efficient 1153 

fertilization (especially through foliar application of elements in an accessible form), high photosynthesis can be 1154 
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achieved. In order to restore the necessary soil balance, plants allocate a higher percentage of photosynthetic 1155 

products to root exudation that selects and feeds a rich and balanced microflora. However, deficiency in various 1156 

nutrients, including micronutrients,  increases exudation of sugars, amino acids and phenolics (Cakmak and 1157 

Marschner 1988; Carvalhais et al. 2011), at the expense of resources needed by the plant for growth and 1158 

reproduction. B1: When photosynthesis is limited by various abiotic stresses (low light, extreme temperature, or 1159 

soil imbalance that leads to nutrient deficiency, toxicity, etc.), energy production is low. In the absence of a pest, 1160 

the available energy is mainly allocated to shoot and root growth and reproduction, with less, rhizodeposition to 1161 

alter soil conditions favorable for plant health. The low energy allocated to plant health leads to high pH or 1162 

high pe+pH and makes the plant attractive to pests and susceptible to pathogens. B2: Upon pest attack, the 1163 

energy available for the plant is further decreased due to the reduction of photosynthetic activity, reduction of 1164 

photosynthetic leaf tissues surrounding necrotic lesions, and reorientation of plant metabolism by the pathogen 1165 

(Bastiaans and Kropff 1993; Berger et al. 2007). The plant then allocates most of its energy towards pest 1166 

containment which limits its vegetative growth and, as a consequence, its photosynthetic capacity further. In a 1167 

vicious circle, lower photosynthesis increases plant Eh-pH imbalance to increasing its susceptibility to pests.  1168 

  1169 

This model is based on a series of observations. First, the spatial variability of Eh-pH in plants is consistent with 1170 

a new perspective of defense predicting that the allocation of defensive chemistry within a plant is a function of 1171 

tissue or organ value in terms of fitness. In other words, tissues with higher predicted value (young leaves with 1172 

high photosynthetic activity, thus lower Eh-pH, have significantly higher concentrations of defensive chemicals 1173 

compared to less valuable older tissues (McCall and Fordyce 2010). Second, ruderal plants growing on highly 1174 

disturbed soil, are anticipated to spend most of their energy in reproduction rather than in mutualism 1175 

(rhizodeposition). Competitor plants are expected to invest their energy mainly in growth but also in defense 1176 

(health) and mutualist microorganisms. At the end of the spectrum, stress tolerators growing in soil with low 1177 

disturbance are anticipated to primarily invest their energy in pest defense and feeding mutualist microorganisms 1178 

(De Deyn 2017). 1179 

 1180 

Under favorable soil conditions, the plant traits that govern carbon and nutrient exploitation generally dominate. 1181 

These traits include fast growth, low C:N root:shoot ratio, low secondary metabolite content, short lifespan, and 1182 

short litter residence time (De Deyn et al. 2008). Plants having such a strategy regarding acquisition, use and 1183 

conservation of nutrients, are regarded as exploitative plants (Guyonnet et al. 2018a). Where soil resources 1184 

(nutrients, water, oxygen, pH) limit growth, plant traits that govern carbon and nutrient conservation generally 1185 

dominate and are characterized by slow growth, high C:N root:shoot ratios, high secondary metabolite content, 1186 

long (organ) lifespan and long litter residence time (De Deyn et al. 2008). These species exude less carbon in the 1187 

rhizosphere but the exudate composition is different. Such species are regarded as conservative species. Under 1188 

stress conditions such as drought, exploitative species reduce their growth and root exudation faster than 1189 

conservative species to benefit from mycorrhizal symbiosis and increased fungal abundance. Upon long term-1190 

extreme stress, conservative species are expected to reduce their growth, exudation and transfer of C to microbes 1191 

and thereby impacting mycorrhizal symbiosis. Under similar conditions, exploitative species will respond by 1192 

root death, reduced growth and less root exudation and C transfer to microbes. On termination of stress, 1193 

conservative species, although they have unaltered exudate quality, will resume C transfer to microbes, re-1194 
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establish mycorrhizal symbiosis, and slowly regrow. Despite altered root exudate quality, exploitative species 1195 

will transfer high amounts of C to microbes, favor Plant Growth Promoting Rhizobacteria and recreate a high 1196 

bacterial abundance. This permits rapid mineralization of dead roots, microbes and native soil organic matter 1197 

that releases large amounts of N and accelerates regrowth (Williams and de Vries 2019). All this illustrates the 1198 

strong interplay between roots and the soil microbiome. 1199 

  1200 

Eh-pH in the rhizosphere: interplay between roots and microbiota  1201 

On the asssumption that homeostasis is a focal point of ecology and evolution (Giordano 2013), the concept of 1202 

Eh-pH homeostasis could bring an interesting perspective of soil-plant-microorganism interactions. In all 1203 

ecosystems, plants transform the surrounding soil to make and maintain a habitat more favorable for growth 1204 

(Marschner 1995). To this objective, plants shape the microbiome composition by selecting for specific 1205 

microorganisms from the total pool of microorganisms in the bulk soil. These are then assembled into 1206 

communities in the rhizosphere (Berg and Smalla 2009; Dini-Andreote and Elsas 2013). On the other hand, 1207 

bacteria have developed various adaptation strategies to thrive in different rhizosphere niches (Jacoby et al. 1208 

2017). Microbial communities in the rhizosphere of different plant species growing on the same soil are often 1209 

different, and some plant species can create similar communities in different types of soil. Even within species, 1210 

different genotypes can develop distinct microbial communities in their rhizosphere. This suggests that plants are 1211 

able to shape the composition of the microbiome in their rhizosphere (Berendsen et al. 2012), in such a way that 1212 

both microbial density and activity in the rhizosphere are much higher than in bulk soil (Paungfoo-Lonhienne et 1213 

al. 2010; Marschner 2011). Since root exudates play a key role in the establishment of plant-microorganisms 1214 

interactions (Guyonnet et al. 2018a; Nobori and Tsuda 2019), plants probably shape common microbial 1215 

communities as a result of these exudates (primary and secondary metabolites). Those that come from plant 1216 

photosynthates are rich nutrient sources and include carbohydrates, organic acids and amino acids (Paszkowski 1217 

2006). Soil pe+pH contributes significantly to determine soil enzyme activities and differences in microbial 1218 

composition and function (Wang et al. 2020). 1219 

 1220 

Parameters such as pH, redox, ionic strength, water potential, and the concentration of nutrients and organic 1221 

compounds are different in the rhizosphere compared to bulk soil (Jones et al. 2004). Under imbalanced soil 1222 

conditions, plants alter rhizosphere Eh-pH towards neutral conditions (Krasilʼnikov 1958; Hinsinger et al. 2003; 1223 

Husson 2013). They do this through root exudates, as a result of passive diffusion or release under active 1224 

processes for a specific purpose (Fischer et al. 1989; Jones et al. 2004). In both cases, plants rely strongly on 1225 

microorganisms to alter and buffer rhizopshere soil Eh-Ph. Microorganisms are: i) adapted to specific Eh-pH 1226 

conditions (and their fluctuations), ii) able to sense redox signals (redox-taxis), and iii) able to alter and adapt Eh 1227 

and pH of their surrounding environment to their requirements to a much greater extent than other living 1228 

organisms (Krasilʼnikov 1958; Rabotnova and Schwartz 1962; Alexandre and Zhulin 2001; Pidello 2014). 1229 

Indeed, soil bacteria are able to create networks with tiny electronic connections between electron donors and 1230 

acceptors which is critical to electron transfer via electrical currents (Li et al. 2017). These networks enable 1231 

microbial communities to rapidly eliminate electrons coming from their metabolic processes and transport them 1232 

to distant electron pumps (Ball 2007; Ntarlagiannis et al. 2007). Soil microorganisms largely govern redox 1233 

kinetics by producing enzymes that speed up redox reactions to release energy (Burgin et al. 2011; Gianfreda 1234 
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2015). Under well-structured and biologically active soils, water bounding can be expected, knowing that bound 1235 

water has a catalytic action and is known to facilitate electron and proton transfers (Ball 2008). These redox 1236 

reactions between connections are also facilitated through soil electrical conductivity which is related to nutrient 1237 

content, salinity, organic matter, pyrogenic carbon, cation exchange capacity, residual humidity, soil texture and 1238 

soil compaction (Husson 2013). Electrical currents have actually been measured between roots and arbuscular 1239 

mycorrhizae (Berbara et al. 1995).  1240 

 1241 

When facing biotic stresses, plants react by changing the chemistry of their root exudates to assemble health-1242 

promoting microbiomes (Rolfe et al. 2019). Besides, plant roots alter soil structure, aeration and humidity to 1243 

create microhabitats which can be seen as many Eh-pH niches (Krasilʼnikov 1958; Fischer et al. 1989) 1244 

compatible with microorganisms of various Eh-pH requirements. The joint activity of roots and microbes 1245 

promotes physico-chemical heterogeneity in the rhizosphere with its spatial and temporal diversity in the local 1246 

soil microhabitat (Dini-Andreote and Elsas 2013). While stochastic community assemblies dominate in 1247 

homogeneous environments, deterministic community assembly processes are the rule in heterogeneous 1248 

environments, hence, creating selective pressure for microorganisms (Dini-Andreote et al. 2015). 1249 

 1250 

Plant roots, microbes and earthworms determine soil aggregation, especially near the surface of their biopores, 1251 

either by enhancing aggregate diversity or by its homogenization. Roots lead to the formation of subpolyeders 1252 

and shrinkage-induced cracks due to water uptake while earthworms form tiny platy and sheared structures 1253 

because of their intermittently swollen body shape (Haas and Horn 2018). Close to the biopore surface (<1mm), 1254 

roots have an acidifying effect while earthworms have an alkalizing one. The interaction of both lead to neutral 1255 

to slightly acid pH and a neutral Eh at approximately 400 mV. Within the microaggregates, roots lead to higher 1256 

Eh (600 mV) while earthworm activity leads to a more neutral Eh around 400-450 mV (Haas and Horn 2018). In 1257 

return, microorganisms further alter and buffer Eh-pH conditions, especially in the rhizosphere which is a 1258 

hotspot of biological activity (Krasilʼnikov 1958). Hence, a direct effect of microorganisms is achieved through 1259 

the production of biofilms and indirectly through improvement of aggregation, stabilization of soil structure 1260 

(thanks to bacterial polysaccharide and fungal glycoprotein glues), increased water retention (thanks to 1261 

biological mesoporosity increase), and resistance against erosion that create a diversity of Eh-pH niches (Pidello 1262 

2014; Clocchiatti et al. 2020).  1263 

 1264 

Improved Eh-pH conditions and, consequently, enhanced plant nutrition and health, lead to increased 1265 

photosynthesis, plant production and root exudation to further favor microbial growth and diversity in a virtuous 1266 

cycle (Fig. 8). This entire process of soil transformation starts from seed germination: germinating seeds 1267 

profoundly modify their environment and their microbiota as they constitute important sources of nutritious 1268 

exudates, a great part of which is volatile. Exudate production increases with the quantity of reserve substances 1269 

stored in the seeds,; thus, it varies with seed size and is species-dependent (Davet 2004; Nelson 2018). 1270 

Production conditions, age of the seed and storage conditions can lead to physiological differences between two 1271 

genetically identical seed lots. Increased moisture content and storage temperature leads to oxidation, higher pH 1272 

and loss of viability (Nagel et al. 2019). 1273 

 1274 
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The ‘lifestyle’ of the plant needs to be considered in order to put all of this information into perspective. 1275 

Conservative species exude more amino acids, while exploitative species exude more primary metabolites 1276 

(sugar, organic acids) and this composition differential can be critical in regulating the plant’s microbiota 1277 

(Guyonnet et al. 2018b). By exuding more carbon into the rhizosphere, exploitative species attract more taxa in 1278 

root tissues and in the rhizoplane (Root-Adhering Soil, RAS), and they stimulate more taxa involved in Soil 1279 

Organic Matter (SOM) degradation by a “priming effect” mechanism. They select more specific SOM degraders, 1280 

exclude consumers in the RAS and root inhabiting bacteria than conservative species, and they increase 1281 

denitrifying activity in the RAS (Guyonnet et al. 2018b). Organic acids cause significantly greater increases than 1282 

sugars do in the detectable richness of the soil bacterial community and lead to larger shifts in the composition of 1283 

dominant taxa. The greater response of bacteria to organic acids may be due to the higher amounts of added 1284 

carbon, solubilization of soil organic matter or shifts in soil pH (Shi et al. 2011). Inversely, the root exudation 1285 

pattern and root respiration are altered by microorganisms such as mycorrhizae or bacteria (Jones et al. 2004; 1286 

Korenblum et al. 2020). 1287 

 1288 

These interactions occur at different time scales, at medium or long term in the process of soil aggregation and 1289 

weathering although they are also important at relatively short-term. Loss of C from the plant to the rhizosphere 1290 

is a rapid process: photosynthetically fixed C can be detected in the rhizosphere in less than 1 hour after 1291 

photosynthetic fixation and reaches maximum exudation rates after 3 h. Likewise, microbial turnover of root 1292 

exudates in the soil is very rapid, with a half-life of between 0.5 and 2 h for most sugars, amino acids and 1293 

organic acids (Jones et al. 2004).  1294 

 1295 

Endophytic microbes (mostly bacteria and fungi) present on asymptomatic plants have also been shown to: (i) 1296 

obtain nutrients in soils and transfer them to plants in the rhizophagy cycle and other nutrient-transfer symbioses; 1297 

(ii) increase plant growth and development; (iii) reduce oxidative stress of hosts; (iv) protect plants from 1298 

diseases; (v) deter feeding by herbivores; and (vi) suppress growth of competitor plant species (White et al. 1299 

2019). Plant roots can not only incorporate large organic molecules including proteins and DNA, but are also 1300 

able to take up non-pathogenic microorganisms into root cells where they are degraded and used as as a nutrient 1301 

source (Paungfoo-Lonhienne et al. 2010). This rhizophagy cycle is an oxidative process in plants for nutrient 1302 

extraction from symbiotic microbes (White et al. 2019). 1303 

 1304 

Root exudates drive the soil-borne legacy of aboveground pathogen infection (Yuan et al. (2018). After five 1305 

generations of Arabidopsis thaliana inoculated aboveground with Pseudomonas syringae pv tomato, the causal 1306 

agent of bacterial speck of tomato, bacterial communities of both rhizosphere and bulk soil were altered by the 1307 

infection of this bacterial pathogen. These changes were the result of greater exudation of amino acids, 1308 

nucleotides, and long-chain organic acids as well as the lower exudation of sugars, alcohols, and short-chain 1309 

organic acids. The sixth generation of A. thaliana was grown on the same pathogen-conditioned soil but was 1310 

uninfected by the bacterial pathogen. The sixth generation of the plant had increased levels of jasmonic acid (a 1311 

defense-regulating phytohormone), and improved disease resistance compared with plants grown on control-1312 

conditioned soil (five generations of A. thaliana uninfected by Pst). This clearly demonstrates the capacity of 1313 
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plants to favor beneficial rhizosphere communities via modification of plant exudation patterns in response to 1314 

exposure to aboveground pathogens to the benefit of subsequent plant generations (Yuan et al. 2018). 1315 

 1316 

The rhizosphere microbiome results from an interplay between soil and seed microbiota, beneficial and 1317 

pathogenic microorganisms colonizing aerial parts of plants, and root exudation; all of which appears to be 1318 

largely regulated by Eh and pH. Microorganisms play a key role in the numerous interactions between plant and 1319 

soil, but soil is in part derived from the activity of plants (Fig. 8) since they supply organic matter and play a 1320 

pivotal role in weathering rocks and minerals (Lambers et al. 2009).  1321 

 1322 

  1323 

 1324 
Fig. 8: Schematic presentation of the soil-plant-microorganism system showing the central role of 1325 

photosynthesis by plant that provides the “fuel” for soil system regeneration. On degraded soils (01), poor 1326 

structure and high Eh-pH fluctuations lead to low diversity of the soil microbiome, with pests dominating 1327 

beneficial organisms (02) to result in poor plant growth. As a consequence, plants have limited capacity and 1328 

energy to sustain an efficient pest or pathogen defense system, leading to poor plant health. Increasing 1329 

photosynthetic activity by various means leads to increased root exudation (03) that alters Eh-pH and allows the 1330 

development of a diversity of microorganisms in the rhizosphere and phyllosphere (04). The inputs of biomass 1331 

on the soil surface from decaying plant parts create a litter (05) that, promotes the development of active 1332 

macrofauna. Together with the active macrofauna, feeding on root exudates microorganisms in the rhizosphere 1333 

improve soil structure, plant nutrition and plant health (06). The improved soil structure and active microbiota 1334 

buffer the Eh-pH, both in soil and plants (07) to create a diversity of Eh-pH niches (08) and food supplies for 1335 

microorganisms. All of this activity favors the completion of major biogeochemical cycles and increases plant 1336 

defense against pests. Improved soil structure, plant nutrition and health (09) result in increased photosynthesis 1337 

and biomass production (10). Consequently, both root exudation (11) and biomass inputs on the soil surface 1338 

(12) are enhanced to further fuel the development of biological activity and biodiversity (13) while improving 1339 
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soil aggregation, plant nutrition and plant health in a virtuous cycle. Beneficial organisms largely dominate 1340 

pests, leading to suppressive soils (14).  1341 

 1342 

Are balanced and diverse Eh-pH niches hosting a highly diverse microbiome the key 1343 

determinant to soil suppressiveness? 1344 

Competitive interactions in soil microbial communities are regarded as the major driving factor of general soil 1345 

suppressiveness. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome 1346 

for available nutrients and microsites (Chapelle et al. 2016). In disease-suppressive soils, pathogen activity is 1347 

strongly restricted by specific rhizosphere microorganisms. For instance, the rhizosphere microbiome of sugar 1348 

beet seedlings grown in a soil suppressive to the fungal pathogen Rhizoctonia solani showed that 1349 

Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were significantly more 1350 

abundant in the rhizosphere upon fungal invasion and that stress-related genes (ppGpp metabolism and oxidative 1351 

stress) were upregulated in these bacterial families (Chapelle et al. 2016). It was postulated that the pathogenic 1352 

fungus induces directly or via the plant, stress responses in the rhizobacterial community that lead to shifts in 1353 

microbiome composition and to activation of antagonistic traits that restrict pathogen infection. Several root-1354 

colonizing microorganisms are known to improve the plants response to pathogens (Meisner and De Boer 2018). 1355 

Upon pest attack, plants are able to stimulate protective microorganisms and enhance microbial activity that 1356 

suppresses pests in the rhizosphere (Berendsen et al. 2012). Natural antibiotics are weapons in the microbial 1357 

warfare in the rhizosphere that are integral to plant health (Cha et al. 2016). Plant response to increased pathogen 1358 

abundance depends on the microbial community colonizing the root, which is affected by the amount and 1359 

composition of rhizodeposits. For example, iron-mobilizing coumarins exudated by A. thaliana shape their root 1360 

bacterial community by inhibiting the proliferation of a relatively abundant Pseudomonas species via a redox- 1361 

mediated mechanism (Voges et al. 2019). Redox-active phenazine compounds also play a role in the persistence 1362 

and survival of Pseudomonas spp. in the rhizosphere and, inversely, plant-beneficial phenazine-producing 1363 

Pseudomonas spp. are proficient biocontrol agents of many soilborne pathogens (Biessy and Filion 2018). 1364 

Melatonin, an amphiphilic antioxidant produced by cellular organisms able to scavenge both oxygenated and 1365 

nitrogenated compounds, may decrease the deleterious physiological effect of various abiotic stresses through 1366 

modulation of antioxidative enzymes and enhancement of organic acid anion exudation. In addition it may 1367 

differentially modify some bacterial and fungal communities (Pisoschi and Pop 2015; Zhang et al. 2017; 1368 

Madigan et al. 2019).  1369 

 1370 

Redox states affect substrate availability and energy transformation and, thus, play a crucial role in regulating 1371 

soil microbial abundance, diversity, and community structure (Song et al. 2008). Redox potential fluctuations are 1372 

common in soils, and microbial community acclimation or avoidance strategies for survival shape microbial 1373 

community diversity and biogeochemistry (DeAngelis et al. 2010). By characterizing redox-related soil 1374 

microbial communities along a river flood plain continuum, Song et al. (2008) observed that, microorganisms, in 1375 

general were highly abundant, diverse, and distributed more evenly in the oxic layers than the anoxic ones. The 1376 

lower diversity in the anoxic than the oxic soils was primarily attributed to differences in oxygen availability in 1377 

these soils. The decrease in abundance with increasing oxygen and substrate limitation, however, was 1378 

considerably more drastic than the decrease in diversity, suggesting that growth of soil microorganisms is more 1379 
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energy demanding than maintenance (Song et al. 2008). Although indigenous soil bacteria are highly adapted to 1380 

fluctuating redox regimens and generally possess physiological tolerance mechanisms allowing them to 1381 

withstand unfavorable redox periods, soil bacterial communities loose significant diversity under sustained or 1382 

frequent anoxic conditions (Pett-Ridge and Firestone 2005). pH is also a major driver of microorganism diversity 1383 

in soil, and appears to be more important than nutrients in shaping bacterial communities in agricultural soils, 1384 

including their ecological functions and biogeographic distribution (Wang et al. 2019). Fast changing Eh-pH 1385 

conditions are therefore expected to be detrimental to biological activity and diversity. Soil structure resulting 1386 

from the interactions of plant roots, associated macrofauna and microbial activity to strongly impact Eh-pH 1387 

dynamics, appears to be a key determinant of soil health.  1388 

 1389 

The loss of organic matter and degradation of soil structure due to soil tillage (Reicosky et al. 1997; Johannes et 1390 

al. 2017) lead to low buffering capacity and thus, strong fluctuations in soil Eh and pH (Husson 2013). Fiedler et 1391 

al. (2003) measured a pronounced decrease in soil Eh (-100 to -200 mV.h
-1

, -800 mV in 3 days) as a result of 1392 

water saturation following precipitation events, and an inverse raise in soil Eh in drying soils. Together with 1393 

mean soil Eh, strong fluctuations of soil pH occur with changes in soil humidity, especially upon saturation 1394 

(Tano et al. 2020). These fast-changing conditions strongly affect microbial populations and growth. Under 1395 

rapidly fluctuating conditions, microbial populations can be periodically activated and inactivated, which, in 1396 

turn, quickly alters the nature and rate of key biogeochemical transformations (Pett-Ridge and Firestone 2005). 1397 

Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, 1398 

energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes’ physiology 1399 

and through stability of the active microbial community (Schimel et al. 2007). Plants can not always adapt to 1400 

fast-changing Eh-pH conditions and, consequently, face multiple stresses that render them susceptible to 1401 

multiple pests and pathogens.  1402 

 1403 

Inversely, under well-structured soils that are rich in organic matter with active root systems, a large diversity of 1404 

Eh-pH niches can harbor a diverse and highly active biological community. This provides essential ecological 1405 

services that allow plants to sustain their Eh-pH homeostasis. For instance, plant- and root-associated 1406 

microorganisms enhance plant mineral nutrition and carbon cycling through redox alteration (Marschner 1995; 1407 

Schimel and Schaeffer 2012; Xi et al. 2016; Jacoby et al. 2017). The biogeochemical cycles of carbon, nitrogen, 1408 

sulfur, and phosphorus appear to be driven by the “FeIII–FeII redox wheel” in dynamic redox environments (Li 1409 

et al. 2012). Arbuscular mycorrhizal fungi improve redox homeostasis in rice through regulation of ROS 1410 

scavenging activities that help the host release glutathione (Li et al. 2020). Trichoderma species, are involved in 1411 

redox processes that confer resistance to redox stresses and facilitate redox homeostasis (Cardoza et al. 2010; 1412 

Singh et al. 2013). This beneficial effect is reduced by (oxidizing) abiotic stresses for Trichoderma harzianum-1413 

induced resistance to downy mildew in grapevine (Perazzolli et al. 2011). 1414 

 1415 

Well-structured soils that offer a large range of Eh-pH niches and host a highly diverse microbial community, 1416 

have been regarded as plant disease suppressive soils (Cook 2014; Löbmann et al. 2016). Oxygen gradients (in 1417 

space and time) lead to the assembly of a microbial community that is dominated by populations that are able to 1418 

endure in both aerobic and anaerobic conditions (Chen et al. 2017a). Effective oxygen consumption, combined 1419 
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with the formation of microaggregates, sustains the activity of oxygen-sensitive anaerobic enzymes and leads to 1420 

the direction of unsorted redox processes (i.e. not following the “redox tower” that would cause ecological 1421 

niches of prokaryotes that consume electron acceptors in a thermodynamically determined order), within and 1422 

between populations (Chen et al. 2017a). Various ecological services can be simultaneously ensured at any time 1423 

by the rich soil biodiversity in a balanced environment. 1424 

 1425 

Conclusions and future perspectives 1426 

Although causality cannot be demonstrated with the available literature, the literature does report many spatio-1427 

temporal correlations between Eh-pH conditions and plant susceptibility, tolerance and resistance to pests across 1428 

various stress conditions that could support our initial hypothesis that Eh-pH homeostasis is central to soil and 1429 

plant health. The Eh-pH homeostasis model is strengthened by the fact that this model: i) represents a unifying 1430 

paradigm that comprises a large range of processes in a very logical and consistent manner; ii) encompasses 1431 

various other models in crop protection (priming-exhaustion, optimal defense theory, susceptibility-tolerance-1432 

resistance, soil legacy, etc.); iii) enlightens our understanding of these processes without contradicting any 1433 

observation or current knowledge; and, finally iv) provides a useful perspective to disentangle G x E x M x P   1434 

interactions.  1435 

 1436 

The new perspective this model proposes could help: i) plant pathologists and entomologists understand plant-1437 

pathogen and plant-pest interactions, and develop new approaches to pest management; ii) epidemiologists and 1438 

modelers refine their models; iii) breeders improve and accelerate breeding for improved plant resistance, 1439 

adaptability and tolerance to various stresses, pests and pathogens; and enhance energy allocation between 1440 

growth and defense in selected varieties; iv) plant nutrition specialists design advanced fertilizers adapted to pH-1441 

Eh conditions of a given soil to meet the requirements of a given crop; and v) agronomists develop 1442 

agroecological crop protection (ACP; Deguine et al. 2017) or biodiversity-based agriculture by developing 1443 

ecosystem services provided by biological diversity based on a redesign of the farming system (Wezel et al. 1444 

2014; Duru et al. 2015). 1445 

  1446 

Overall, an Eh-pH perspective could become a very powerful tool to develop a “one health approach” 1447 

(Mackenzie and Jeggo 2019; Ratnadass and Deguine 2021) as the same parameters explain fundamental 1448 

processes and could be used to characterize the “health” of soils (Husson et al. 2018b), plants (Husson et al. 1449 

2018a), animals and humans. This is consistent with the increasing recognition of the importance of Eh and pH 1450 

homeostasis in health (Aoi and Marunaka 2014; Ursini et al. 2016; Kruk et al. 2019) and the role of microbiota 1451 

and pathobiota in healthy and unhealthy host immune responses (Littman and Pamer 2011). 1452 

 1453 

This review emphasizes the importance of jointly considering Eh and pH in further studies since most studies 1454 

conducted to date disconnect these two interacting parameters. In order to accomplish this, improved 1455 

measurement methods and other tools are needed to assess plant and soil Eh-pH conditions. These could include 1456 

spectrometric methods to overcome limitations of electrochemical ones for plants and the use of bio-indicators 1457 

as natural vegetation species to surmount problems related to the high spatio-temporal variability in soils. 1458 

 1459 
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