

Bioavailability of amino acids, especially of tryptophan, in human milk and infant formulas

Elise Charton, Amélie Deglaire, Isabelle Luron Le Huërou-Luron

▶ To cite this version:

Elise Charton, Amélie Deglaire, Isabelle Luron Le Huërou-Luron. Bioavailability of amino acids, especially of tryptophan, in human milk and infant formulas. Journées Scientifiques ED EGAAL, Ecole Doctorale ED EGAAL, Jun 2021, Rennes, France. hal-03290326

HAL Id: hal-03290326 https://hal.inrae.fr/hal-03290326

Submitted on 19 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bioavailability of amino acids, especially of tryptophan, in human milk and infant formulas

Elise Charton (2nd year of thesis)

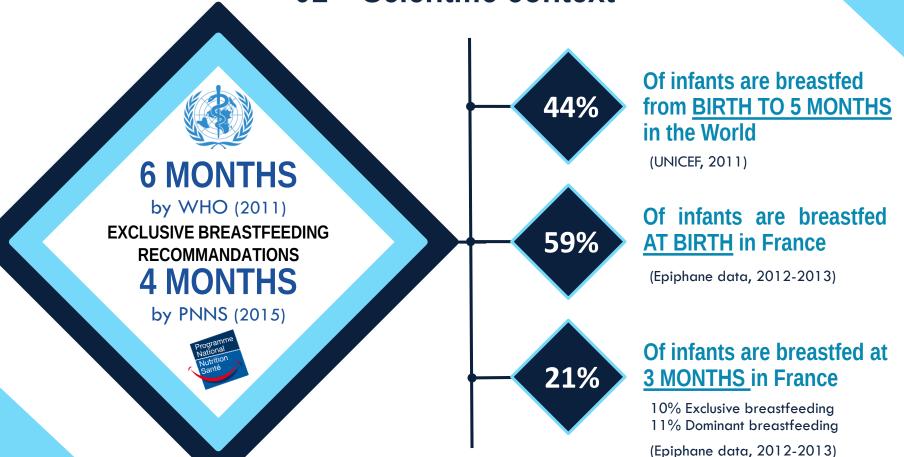
Thesis directors :

Amélie Deglaire (STLO)

Isabelle Luron (NuMeCan)

Didier Dupont (STLO)

SUMMARY


01 – Scientific context

02 – Objectives & strategy

03 – Results

04 - Perspectives

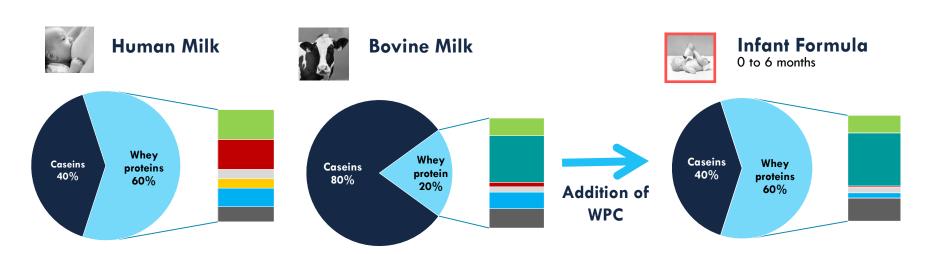
01 – Scientific context

a-lactalbumin

lactoferrin

lysozyme

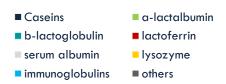
■ others


■ Caseins

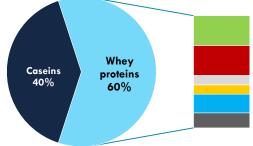
■ b-lactoglobulin
■ serum albumin

■ immunoglobulins

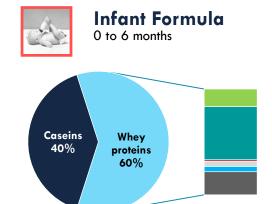
01 - Scientific context


How an Infant formula is made from Bovine milk?

WPC: Whey proteins concentrate


Data: Chatterton et al., 2003; Nasirpour et al., 2005

01 – Scientific context


How an Infant formula is made from Bovine milk?

0,8 - 1,2 g protein / 100 mL

→ 13,6 - 20,4 mg Trp/100 mL (min, max, WHO, 2017)

1,1 - 1,8 g protein / 100 mL

(Min – Max, based on Total Nitrogen x 6.25 (EU Regulation 2016/127))

→ ≤19,2 mg Trp/ 100 mL (min, EU Regulation 2016/127)

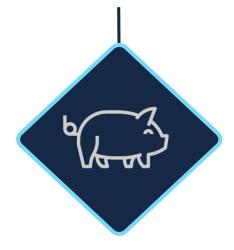
Trp, a limit for reducing protein content in IF (Lönnerdal & Lien, 2003)

01 – Scientific context

BIOAVAILABILITY: nutrient fraction <u>digested</u>, <u>absorbed</u> by intestinal mucosa and <u>available</u> for subsequent body metabolic functions \rightarrow True ileal digestibility is a good proxy (Fuller & Tomé, 2005)

DIGESTIBILITY CALCULATION:

Total N flow (g/g DMI) =
$$N_{ileum} \times \frac{Marker_{meal}}{Marker_{ileum}}$$


Apparent ileal digestibility: Apparent ileal digestibility (%) = $\frac{\text{Dietary N}_{\text{intake}} - \text{Total N flow}_{\text{ileum}} \times 100}{\text{Dietary N}_{\text{intake}}} \times 100$

Standardised digestibility (Rutherfurd et al., 2006):

02 – Objectives

Measure of AAs and Total Nitrogen ileal digestibility in human milk and IF

- In vivo experiment
- Digestibility calculation

Effect of Trp on infant development and diet effect

- Trp metabolites
- Intestinal and brain development

02 – Strategy

02 - Strategy

Ethical committee agreement needed for HM collection and Animal experiment

Model: Yucatan piglets (10 days old)
Meal intake: 345 g/kg BW/day
HM: n=9

IF: n=9

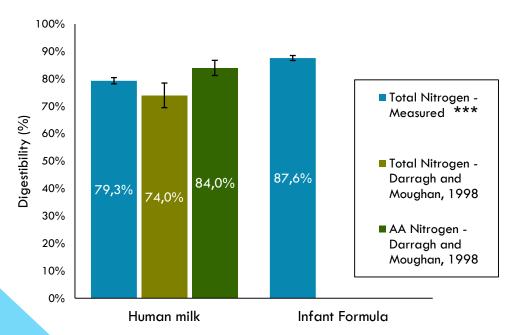
PF: n=6

*Human milk:

 $S1-S5 \rightarrow Pasteurized Human milk$

S6 \rightarrow Fresh Human milk

PIGLET GROWTH:


97,7 g/day for Adaptation diet 53,2 g/day for IF and HM groups

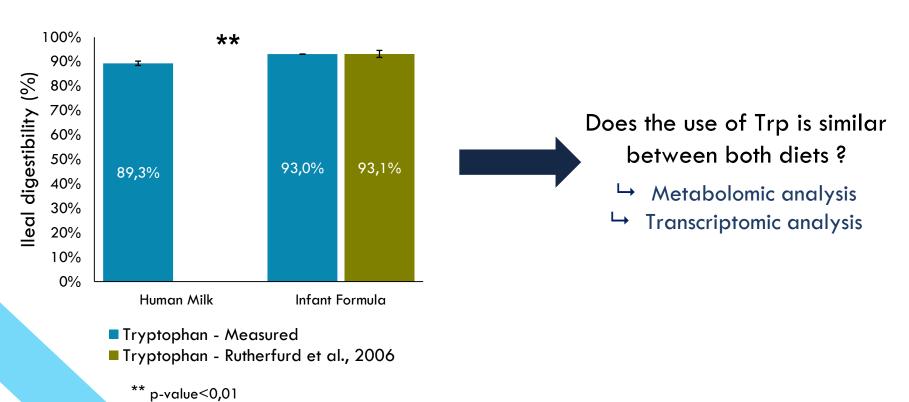
03 Results

Digestibility, Microbiota, Gutbrain axis

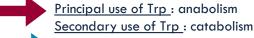
03 – Results: Ileal Digestibility – Total nitrogen

Total Nitrogen apparent digestibility

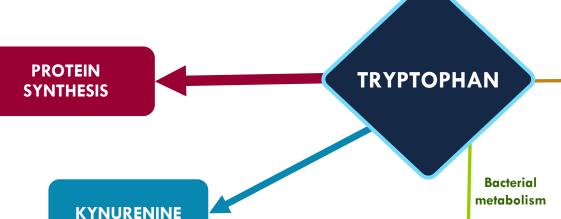
(NPN) on Apparent total Nitrogen digestibility


HM : **25**% Ntot | IF : **5**% Ntot

NPN is composed by:


- Urea
- Glucosamine
- Free Amino acids
- NH₃/creatin/ureic acid
- Peptides
- •

03 - Results: Ileal Digestibility - Tryptophan


Tryptophan Apparent Ileal digestibility

03 – Results: Ileal Digestibility – Tryptophan

- Major pathway
- Minor pathway

SEROTONIN

Neuronal development contribution (Heine, 1996)

Link between serotonin and behaviour regulation (Fernstrom, 2012; Young et al.,1985)

Effect of serotonin on sleep, food intake and digestion (Le Floc'h et al., 2011)

Pineal gland

Niacin (vit. B3)

→ NAD/NADP (metabolism co factor)

Acetoacetyl CoA

→ Acetyl CoA

role in energetic metabolism

→ glycolysis (Puy, 2017)

INDOLE

inflammation (Shimada et al., 2013)

Epithelial barreer integrity (Bansal et al., 2010; Shimada et al., 2013)

⚠ High concentration: A anxious and depressed behaviour (Hayatt MIR, 2018; Jaglin et al., 2018)

MELATONIN

sleep/-wake balance (Aparicio et al., 2013)

Behaviour (Le Floc'h et al., 2011)

Memory and learning (Macchi and Bruce, 2003)

Immune activity (Szczepanik, 2007)

Antioxydant properties (Heine, 1995)

Adaptation diet **FAECES** Alpha Diversity Measure

03 - Results: Microbiota

Alpha diversity / Shannon = Number of OTUs and evenness

F-P1 = Faecal collection during adaptation diet

F-P2 = Faecal collection at slaughtering

LM = Human Milk

C = Colon

PF = Protein Free

Groupe

F-P1 PPN

PPN = Infant formula

AFTER ADAPTATION DIET: in faeces, no differences between piglets

03 - Results: Microbiota

Adaptation Specific diet diet **FAECES FAECES** Alpha Diversity Measure

Alpha diversity / Shannon = Number of OTUs and evenness

F-P1 = Faecal collection during adaptation diet

F-P2 = Faecal collection at slaughtering

LM = Human Milk

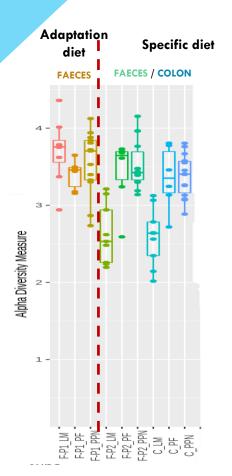
C = Colon

PF = Protein Free

Groupe

F-P1 PPN

F-P2_PPN


PPN = Infant formula

AFTER ADAPTATION DIET: in faeces, no differences between piglets

AFTER SPECIFIC DIET:

- In faeces (green):
 - Reduction of α -diversity for HM diet \rightarrow decrease of OTU number
 - Similar alpha-diversity for IF and PF diets

03 – Results : Microbiota

Alpha diversity / Shannon = Number of OTUs and evenness

F-P1 = Faecal collection during adaptation diet

F-P2 = Faecal collection at slaughtering

LM = Human Milk C = Colon PF = Protein Free I = Ileum

PPN = Infant formula

Groupe

F-P2 PPN

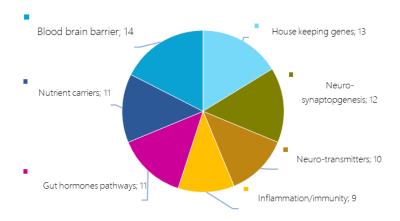
AFTER ADAPTATION DIET: in faeces, no differences between piglets

AFTER SPECIFIC DIET:

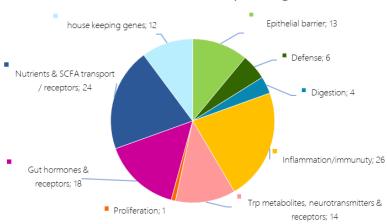
- In faeces (green):
 - Reduction of α -diversity for HM diet \rightarrow decrease of OTU number
 - Similar alpha-diversity for IF and PF diets
- In colon (blue):
 - Colon microbiota is similar to faecal microbiota
 - → Alpha-diversity decreases in breastfed infants and reduced at 6 age of month

(Ho et al., 2018; Ma et al., 2020)

04 – Perspective : Gut-Brain axis


Metabolomic analysis: Tryptophan metabolites analysis in the Riddet Institute (New-Zealand)

Transcriptomic analysis: SmartChip analysis on brain and on intestine


Study of the effect of the diet on gut-brain axis with Alexandre's help (Master 2 trainee)

- Both are designed
- Intestinal SmartChip is ongoing

Brain SmartChip (80 genes)

Intestinal SmartChip (120 genes)

Conclusion

Diet affect apparent digestibility

Differences in Ntot and Trp Apparent digestibility

Effect of diet on microbiota

Effect on intestine/brain development?

More research to do

Do you have any questions?