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Abstract

Reciprocal exchanges of DNA (crossovers) that occur during meiosis are mandatory to ensure the production of fertile gametes in

sexually reproducing species. They also contribute to shuffle parental alleles into new combinations thereby fueling genetic variation

and evolution. However, due to biological constraints, the recombination landscape is highly heterogeneous along the genome

which limits the range of allelic combinations and the adaptability of populations. An approach to better understand the constraints

on the recombination process is to study how it evolved in the past. In this work, we tackled this question by constructing recom-

bination profiles in four diverging bread wheat (Triticum aestivum L.) populations established from 371 landraces genotyped at

200,062 SNPs. We used linkage disequilibrium (LD) patterns to estimate in each population the past distribution of recombination

along the genome and characterize its fine-scale heterogeneity. At the megabase scale, recombination rates derived from LD

patterns were consistent with family-based estimates obtained from a population of 406 recombinant inbred lines. Among the

four populations, recombination landscapes were positively correlated between each other and shared a statistically significant

proportion of highly recombinant intervals. However, this comparison also highlighted that the similarity in recombination land-

scapes between populations was significantly decreasing with their genetic differentiation in most regions of the genome. This

observation was found to be robust to SNPs ascertainment and demography and suggests a relatively rapid evolution of factors

determining the fine-scale localization of recombination in bread wheat.
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Introduction

Meiotic recombination (or crossover; CO) is the obligate ge-

netic exchange between homologous chromosomes that

occurs during the production of gametes in sexually

reproducing species. Besides its role in ensuring proper segre-

gation of chromosomes in gametes, it also impacts evolution

by breaking linkage between advantageous and deleterious

alleles and by creating novel combinations of alleles (Barton
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1995; Charlesworth and Barton 1996; Otto 2009).

Recombination rates are highly variable between species and

also at different genomic scales. At the chromosomal level,

COs are not evenly distributed depending on either the size of

the chromosomes, the region of the chromosomes or on in-

terference. Interference was first observed in Drosophila (for

review, see Berchowitz and Copenhaver 2010) and is defined

as the impossibility for a type I CO (i.e., COs that are submitted

to interference contrary to type II COs that are not) to occur in

the vicinity of another CO from the same type. Type I COs are

thus more regularly spaced along chromosomes than

expected from random (Zickler and Kleckner 2015). Within

chromosomes, some regions are also deprived of COs, such

as centromeres of all species studied so far. Moreover, in many

species, distribution of COs is skewed toward telomeres

(Haenel et al. 2018). In wheat (Triticum aestivum L.), for ex-

ample, more than 80% of the recombination events occur in

the terminal regions of the chromosomes representing less

than 20% of the genome (Saintenac et al. 2009; Choulet et

al. 2014; Darrier et al. 2017; International Wheat Genome

Sequencing Consortium IWGSC 2018). The main hypothesis

is that the initiation of synapsis responsible for recombination

occur in the telomeric regions as shown in barley (Higgins et al.

2012; Dreissig et al. 2019). In species with small chromosomes

such as Arabidopsis thaliana or rice (Oryza sativa), recombina-

tion events are more evenly distributed along the chromo-

somes with the exception of the centromeres (Choi et al.

2013; Drouaud et al. 2013; Marand et al. 2019). In all studied

species, the number of COs per chromosome and per meiosis

is rarely superior to three (Mercier et al. 2015).

At a local scale, in most species including yeast, birds,

snakes, fishes, mammals, and plants, COs mainly occur in

small regions of a few kilobases (kb) called hotspots (Myers

et al. 2005; Mancera et al. 2008; Choi and Henderson 2015;

Singhal et al. 2015; Shanfelter et al. 2019; Schield et al. 2020).

In some mammals, these hotspots are determined by PRDM9,

an SET-domain protein with a zinc-finger array that binds DNA

(Boulton et al. 1997; Oliver et al. 2009; Baudat et al. 2010;

Myers et al. 2010). PRDM9 recognizes specific DNA motifs and

deposits an epigenetic landmark (histone H3 trimethylated on

lysine 4: H3K4me3) that is further recognized by the machin-

ery forming double-strand breaks that initiates COs

(Murakami et al. 2020). However, many if not most species

(e.g., birds, plants, yeast, snakes, and fishes) do not exhibit a

PRDM9 derived mechanism. Recombination hotspots are of-

ten found in accessible chromatin regions and mainly driven by

chromatin features (Auton et al. 2013; Choi and Henderson

2015; Singhal et al. 2015; Marand et al. 2017, 2019) although

intermediate situations exist (Schield et al. 2020).

The determinism of local recombination rate considering

the distribution of CO hotspots remains unknown for many

organisms. One approach to better understand this determin-

ism is to characterize the evolution of the recombination land-

scape and evidence its conservation or lack thereof. This can be

achieved by contrasting recombination landscapes in closely

related species (Stapley et al. 2017) or in differentiated popu-

lations of the same species (Kong et al. 2010; Salom�e et al.

2012; Petit et al. 2017). For example, in rice, less than 20% of

the CO hotspots are common between the two subspecies

Oryza sativa ssp. japonica and O. s. ssp. indica (Marand et al.

2019) although they diverged relatively recently

[440,000� 86,000years ago (YA); Ma and Bennetzen 2004;

Vitte et al. 2004; Zhu and Ge 2005; Tang et al. 2006]. Similarly,

in the cocoa-tree (Theobroma cacao), only little overlap of re-

combination hotspots was observed across ten diverging pop-

ulations, with less divergent populations showing higher level

of overlap (Schwarzkopf et al. 2020). Note that recombinations

tend to cluster in more distal regions in domesticated barley (H.

vulgare) compared with wild barley (Hordeum vulgare ssp.

spontaneum) (Dreissig et al. 2019) while domestication began

approximately 10,000 YA (Badr et al. 2000). A finer-scale anal-

ysis among subpopulations of wild barley revealed that recom-

bination rate varied according to environmental conditions

(temperature, aridity, solar radiation, annual precipitations),

suggesting that environmental factors might explain part of

these differences (Dreissig et al. 2019).

High-density genotyping SNP arrays as well as new gener-

ation sequencing (NGS) approaches now allow to analyze

large collections of wild/domesticated, ancient/modern pop-

ulations of both animals and plants. Such a large amount of

accurate data permits to better decipher the recombination

landscape from patterns of linkage disequilibrium (LD) (Li and

Stephens 2003; Auton and McVean 2007; Chan et al. 2012).

The advantages of using this approach stem from the large

number of meiosis that occurred during the evolution of sam-

pled populations compared with bi-parental or multi-parental

experimental populations. First, as LD-based recombination

inference is based on recombination happening in many dif-

ferent individuals it should consequently be less sensitive to

individual specific variation, which might occur in the pres-

ence of structural variation (e.g., Bauer et al. 2013; Rowan et

al. 2019). Second, LD-based recombination rate estimates are

more resolutive as genetic diversity is higher compared with

experimental segregating populations that typically involve

few parents. However, the drawback of this approach is

that the recombination landscapes obtained have to be inter-

preted cautiously as they can be affected by evolutionary

forces such as selection and demography that can also impact

local patterns of LD (Charlesworth and Charlesworth 2010;

Auton and McVean 2012; Choi and Henderson 2015).

Despite these limitations, the LD-based approach was suc-

cessfully applied at the whole-genome level in many species

including birds (Singhal et al. 2015; Smeds et al. 2016), yeast

(Tsai et al. 2010), Arabidopsis (Choi et al. 2013), rice (Marand et

al. 2019), and barley (Dreissig et al. 2019). In bread wheat this

approach was used to study recombination pattern on chromo-

some 3B (Darrier et al. 2017), the only chromosome presenting

a sufficiently high-standard reference sequence at that time

Danguy des D�eserts et al. GBE

2 Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab152 Advance Access publication 29 June 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/8/evab152/6311266 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 08 N

ovem
ber 2021



(Choulet et al. 2014; IWGSC 2014). The analysis of two collec-

tions representative of the Asian and European genetic pools

revealed a high similarity between their recombination profiles.

These LD-based profiles were also shown to be consistent with

a meiotic recombination profile derived from a bi-parental pop-

ulation (Chinese Spring � Renan; Choulet et al. 2014). This

result suggested that recombination rate estimation through

a LD-based approach could be even more informative and res-

olutive along the whole genome using the last gold-standard

reference sequence available (IWGSC 2018), as well as high-

density genotyping of large wheat collections.

The complexity and huge size (16 gigabases) of the wheat

genome have long hampered the development of high

throughput genomic tools as well as the establishment of a

whole-genome sequence. Bread wheat is an allo-hexaploid

species (AABBDD; 2n ¼ 6x ¼ 42) derived from two successive

interspecific crosses involving three diploid species (for details,

see https://www.wheatgenome.org/; IWGSC 2014, 2018): T.

monococcum ssp. urartu (AA genome), a yet-unknown species

related to the Sitopsis section (SS genome related to the wheat

BB genome) and Aegilops tauschii (DD genome). However,

international efforts combined with appropriate and original

strategies using chromosome sorting, chromosome-specific

BAC libraries, paired-end short-read sequencing and relevant

assembly approaches, led to the publication of a high-

standard, annotated, oriented and anchored sequence of the

wheat genome (IWGSC 2018). At the same time and despite

the presence of a high proportion of transposable elements

(85%; Wicker et al. 2018), high-density SNP arrays have been

successfully developed and used for marker-assisted selection

(Sun et al. 2020) and for the characterization of collections

(Winfield et al. 2016; Balfourier et al. 2019). In the study of

Balfourier et al. (2019), the genetic structuration of 4,506

bread wheat landraces and cultivars representative of the

worldwide diversity was described using the TaBW280K SNP

chip. These LD data offer the opportunity to extend previous

work on bread wheat by analyzing recombination along the

whole genome and across more populations. We compared

the ancestral recombination profiles of four populations with

the meiotic recombination observed in a biparental population

of recombinant inbred lines (RILs; Chinese Spring � Renan;

CsRe). We developed specific statistical models to evaluate

and minimize the influence of evolutionary forces on the com-

parison of recombination landscapes between populations.

Results

Bread Wheat Landraces Are Structured in Four Main
Populations

Establishing LD-based recombination maps requires samples

of unrelated chromosomes from a homogeneous popula-

tion. We extracted a subset of 371 landraces representative

of the worldwide diversity from Balfourier et al. (2019),

forming four distinct and mostly homogeneous genetic

populations (see Materials and Methods; fig. 1) that were

named according to the geographical origins of their mem-

bers: The West-European population (WE), composed of

127 accessions originating from France (52 accessions),

Spain (10), Germany (8) and from 30 other Western

European, Mediterranean countries and Iberian peninsula;

the East-European population (EE), composed of 70 acces-

sions originating from France (9), the Russian Federation (7),

Ukraine (5) and from 27 other Eastern European countries;

the West-Asian population (WA), composed of 97 acces-

sions originating from Afghanistan (8), Pakistan (8), Turkey

(8) and from 33 other of Caucasian and Central Asia coun-

tries and Indian peninsula; the East-Asian population (EA)

composed of 77 accessions originating from China (61),

Japan (7), the Republic of Korea (4) and from five other

South East Asian countries (supplementary file S1,

Supplementary Material online).

The genetic differentiation of the four populations con-

firmed an increasing genetic divergence along an Eurasian

gradient (fig. 1), consistent with isolation by distance, selec-

tion, and differentiation that occurred during the initial inde-

pendent spreads of bread wheat from the Cradle of

Agriculture and Wheat in the Fertile Crescent toward

Europe on the one hand and Asia on the other hand during

the Neolithic period (Balfourier et al. 2019). WE and EE are the

most related groups (FST ¼ 0.015), whereas WE and EA are

the more divergent ones (FST ¼ 0.085) and also the most

geographically distant. The WA population is the closest pop-

ulation to the tree root possibly because it includes accessions

that were collected not far from the center of domestication

of bread Wheat (Fertile Crescent: Turkey, Iraq, Iran; Caucasus

and Caspian Sea: Armenia, Georgia, Kazakhstan,

Turkmenistan). The EA population appears as a very differen-

tiated and homogenous population. WE and EE are less dif-

ferentiated because they separated more recently from each

other (Balfourier et al. 2019).

The genetic composition of the four populations appeared

quite distinct between populations but homogenous within

populations when described by the K¼ 4 admixture analysis

of Balfourier et al. (2019) (fig. 1). WE, EE, WA, and EA have

almost all their members belonging to the same specific dom-

inant group (respectively, named by Balfourier et al. (2019) as

North West European, South East European, Central Asian

and African and South East Asian groups) with a high mem-

bership coefficient: 0.74 on average for WE (standard devia-

tion ¼ 0.16), 0.81 for EE (60.16), 0.73 for WA (60.17), and

0.93 for EA (60.14). The WE and WA populations appear to

be more admixed than EE and EA at K¼ 8 (supplementary fig.

S1, Supplementary Material online). In order to analyze

groups that are large enough to estimate relevant statistics,

we split landraces into four populations, although there is

some sub-structuration within populations. This was moti-

vated by the fact that the model we used to estimate LD-
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based recombination rates was shown to be robust to mod-

erate levels of structuration (Li and Stephens 2003).

Recombination Patterns Are Broadly Conserved across
Populations

Robust Meiotic Recombination Map of a Population of RILs

In order to obtain a view of recombination patterns that is not

influenced by evolutionary forces, we established a meiotic

recombination map from recombination events observed in a

population of 406 F6 RILs (termed CsRe in the following). This

population is derived from a cross between two bread wheat

varieties: Chinese Spring and Renan belonging, respectively,

to the EA and WE gene pools. The CsRe population was pre-

viously genotyped for the same set of SNPs as the landraces

(Rimbert et al. 2018). Recombination rates in CsRe were de-

rived from the observed proportion of recombinants in each

of the 79,543 intervals defined by SNPs that were polymor-

phic in the cross. The distribution of recombinants in these

intervals led to extremely contrasted situations. On one hand,

60% of these intervals harbored no recombinant among the

406 offspring. On the other hand, a few recombinants were

observed in very small intervals. Using a frequentist statistical

approach to estimate recombination rates from these obser-

vations produces extreme differences in recombination rates

that are highly influenced by the limited sample size available.

In order to produce more reliable estimates that better ac-

count for sample size and uncertainty, we fitted a Bayesian

Poisson Gamma model on the observed recombinant counts

(see Materials and Methods). With this model, the estimates

of recombination rates in the RIL population ranged from al-

most 0 to 78 cM/Mb among intervals. Compared with the

frequentist estimates that ranged up to 2,806 cM/Mb this

approach has the advantage of shrinking extreme values

that are unrealistic and solely due to the limited number of

RILs available. Consistent with the Bayesian model correcting

for the effect of sample size, the correlation between fre-

quentist and Bayesian estimates increases with the number

of observed recombinants per intervals (supplementary fig.

S2, Supplementary Material online), that is, the two

approaches converge to the same inference when the data

is informative enough.

Validation of LD-Based Recombination Maps on CsRe
Meiotic Recombination Map

LD-based recombination maps were inferred from patterns of

LD between polymorphic SNPs for each landrace population

independently using PHASE (Li and Stephens 2003; Crawford

et al. 2004). As LD is strongly related to meiotic recombination

but can also result from evolutionary forces, those maps were

FIG. 1.—Bread wheat landrace genetic divergence and structuration. Population tree: Neighbor Joining tree built with pairwise Reynold distance matrix

computed on SNP alleles and rooted by HAPFLK software (Bonhomme et al. 2010; Fariello et al. 2013). WE, West Europe; EE, East Europe; WA, West Asia;

EA, East Asia. Fst matrix (%) Weir and Cockerham pairwise FST computed with simple matching distance of haplotypic alleles. Population structure:

Admixture coefficients for K¼4 from Balfourier et al. (2019) using STRUCTURE software and haplotypic alleles.
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compared with the meiotic CsRe recombination map de-

scribed above.

Before estimating LD-based recombination rates, SNPs

were filtered out on Minor Allele Frequency with a minimum

value of 3% within each population, yielding to 170,509 SNPs

for WE, 161,137 for EE, 171,901 for WA, and 131,585 for

EA. The average marker density was 11 SNPs/Mb with most of

the SNPs located at telomeres (25 SNPs/Mb) whereas centro-

meres were depleted in SNPs (3 SNPs/Mb, supplementary fig.

S3, Supplementary Material online). SNP density was almost

three times higher on the A and B genomes compared with

the D genome (respectively, 14, 14, and 5 SNPs/Mb). This is

consistent with the lower rate of polymorphism of the wheat

D genome (IWGSC 2018).

Both LD-based and meiotic recombination profiles showed

the same global patterns at the chromosome scale (fig. 2;

supplementary file S2, Supplementary Material online). In

both approaches, the telomeric regions R1 and R3 of chro-

mosomes showed recombination rates (average LD-based re-

combination rate in WE ¼ 1e�2/kb; average CsRe Bayesian

recombination rate ¼ 0.8 cM/Mb) around ten times higher

than the pericentromeric regions R2a and R2b (2e�3/kb;

0.1cM/Mb) and one hundred times higher than the centro-

meric regions C (2e�4/kb; 0.01 cM/Mb). Recombination rates

on the D genome (5e�3/kb; 0.3 cM/Mb) were around 25%

higher than recombination rates in the A and B genomes

(both 4e�3/kb; 0.2 cM/Mb). The chromosomes from the D-

genome are 20% shorter than those from the A or B

genomes (IWGSC 2018) while they receive the same number

of crossovers (supplementary fig. S5, Supplementary Material

online), leading to high global recombination rates. IWGSC

(2018) study also showed that the D-genome was twice-less

polymorphic than the A or B genomes (18%, 40%, and 41%

for the D, A, and B genomes, respectively; IWGSC 2018). It

has been demonstrated in maize, sorghum and Arabidopsis

that recombination rates are higher in chromosome regions

showing higher similarity because a lower genetic diversity

facilitates homologous pairing and recombination during mei-

osis (Rodgers-Melnick et al. 2015; Bouchet et al. 2017; Serra

et al. 2018). We can therefore speculate that the high recom-

bination rates we observe on the D-chromosomes are due to

their reduced physical size associated with a low diversity fa-

voring recombination.

The genome-wide correlation of LD-based recombination

profiles and CsRe Bayesian meiotic recombination profile was

quite high for the four populations (�0.7, table 1) but slightly

higher for European populations [pairwise significant differ-

ences according Zou’s test (Zou 2007), R cocor package].

These high correlations between CsRe meiotic recombination

profile and LD-based recombination profiles are explained by

the strong partitioning of the recombination profile along

chromosomes present in all bread wheat populations, that

is, low recombination rates in centromeres and high recom-

bination rates in telomeres. As computing correlation

FIG. 2.—Meiotic and LD-based recombination profiles in 4 Mb windows along chromosome 3B in the CsRe segregating population (left) and in the four

West European (WE), East European (EE), West Asian (WA), and East Asian (EA) populations (right). Each color corresponds to genomic regions defined by

Choulet et al. (2014): highly recombining telomeres R1 (magenta) and R3 (red); low recombining pericentromeres R2a (dark green) and R2b (light green);

and centromere C (blue) where recombination rates are close to 0. LD-based recombination profiles at log10 scale are present in supplementary figure S4,

Supplementary Material online.
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coefficient using whole-genome recombination profile artifi-

cially inflates the value of correlation, we rather performed

correlation within each genomic region. The within-region

correlation coefficients were lower, but still significantly pos-

itive (1AR1–7DR3, fig. 3; supplementary file S3,

Supplementary Material online). In telomeres R1 and R3 and

pericentromeres R2a and R2b, the average correlation ranged

between 0.50 in EA and 0.58 in WE (table 1), with an average

of 0.56 across all populations.

The recombination rates in centromeric regions showed

much lower consistency: The correlation of centromeric LD-

based recombination rates and CsRe recombination rates

ranged from 0.19 in EA to 0.32 in WE. Considering the low

correlation but also the low SNP density and the fact that

centromere sequence assemblies are challenging because of

the presence of numerous repeated sequences such as trans-

posons and retro-transposons (IWGSC 2018; Wicker et al.

2018), centromeres were no longer included in the analyses.

Among the genomic regions considered, 7DR3 exhibited a

strikingly low and negative correlation between LD-based and

meiotic recombination rates in all populations (��0.19, fig.

3). This result is due to a low recombination rate in part of this

region in the CsRe biparental genetic map that is not observed

in LD-based maps (supplementary fig. S6, Supplementary

Material online). This low recombination rate can be explained

by the fact that Renan (one parent of the CsRe biparental

population) carries an inter-specific introgression of 28 Mb

on chromosome 7D around the eyespot resistance gene

Pch1 coming from Aegilops ventricosa (tetraploid species;

DDNN) (Maia 1967). This introgression does not recombine

in the CsRe cross as this was previously evidenced in another

background (Worland et al. 1988). Interestingly the Renan

line carries another 20 Mb introgression from Aegilops ventri-

cosa in 2AR1 region around the Lr37/Sr38/Yr17 resistance

gene cluster. However, in this region, contrary to 7DR3, the

LD patterns are also consistent with a locally low recombining

segment in landraces at position of introgression. Because the

introgression in region 2AR1 suppresses recombination in an

already low recombining segment, this explains why the cor-

relation coefficient with LD-based profiles does not stand out

particularly (supplementary fig. S6, Supplementary Material

online).

Both CsRe and LD-based maps show a high heterogeneity

in the distribution of recombination rates along chromo-

somes: On average 36% (6 1%) of physical distance repre-

sents 80% of genetic distance in all our populations. To

further study the distribution of chromosome sites cumulating

historical crossovers, we defined highly recombining intervals

(HRIs) in the four landrace populations as intervals with an LD-

based recombination rate exceeding four-times the back-

ground recombination rate (k� 4, see Materials and

Methods). Combining all four populations, this resulted in

8,713 HRIs (among how many intervals?), with a median de-

viation to background recombination rate k¼ 6.5 (range

k¼ 4 to k¼ 511). Note that we avoid here the term LD-

based recombination hotspot as functional hotspots typically

span much smaller genomic regions (size < 5 kb; Marand

et al. 2019) than our defined HRIs (median size ¼ 20 kb).

Therefore, we cannot be sure that an HRI harbors a single

recombination hotspot. The repartition of HRIs along the ge-

nome was heterogeneous. Most HRIs (73%) were located in

telomeric R1 or R3 regions, and the other HRIs (27%) in

pericentromeric R2a or R2b regions. As HRIs corresponded

to, respectively, 2% and 1% of intervals in those regions,

telomeres were significantly enriched in HRIs compared with

pericentromeres (significant chi-square test, P-value <

2.2e�16). These HRIs represented 15% of LD-based genetic

distance (from 12% in EA to 18% in WA) and around 9% of

the physical distance (from 6% in EA to 10% in WE). On

average, in all genomic regions, the 8,713 HRIs tend to highly

co-localize with open-chromatin features compared with

non-HRIs intervals. For example, the proportion of HRIs over-

lapping genes was 80%, but this proportion dramatically de-

creased to 53% when considering non-HRIs intervals

(supplementary fig. S7, Supplementary Material online). The

density of HRIs is also positively associated with the CsRe mei-

otic recombination rate averaged in 4 Mb windows in each

genomic region R1, R2a, R2b, and R3 (P-value < 2.2e�16).

The proportion of CsRe crossovers overlapping HRIs ranged

from 20% in EA to 37% in WE. Most HRIs (82%) overlapped

at least one CsRe crossover.

Despite high similarities between LD-based and meiotic

recombination profiles within genomic region, there is still

the possibility that LD-based recombination rates might be

locally influenced by evolutionary forces, such as positive se-

lection, as shown by Petit et al. (2017) in sheep for example.

To evaluate the potential effects of positive selection on the

LD-based maps, we studied whether a set of genes known to

be involved in domestication [e.g., brittle rachis (Brt), tena-

cious glume (Tg), homoeologous pairing (Ph), or nonfree-

threshing character (Q)] or recent crop improvement (Pont

et al. 2019) were found in regions outliers for the q/CsRe

Table 1

Correlation of the LD-Based Recombination Profiles of the Four Populations of Landraces with CsRe Bayesian Meiotic Recombination Profile

WE EE WA EA

Genome-wide corr. with CsRe 0.76 0.75 0.74 0.70

Average on 84 genomic regions (R1, R2a, R2b, R3 of chr 1A�7D) 0.586 0.22 0.556 0.28 0.556 0.27 0.506 0.29

Average on 21 C regions (chr 1A�7D) 0.326 0.33 0.306 0.34 0.206 0.34 0.196 0.36

NOTE.—Recombination rates were averaged in 4-Mb windows.
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ratio. The results showed no evidence of reduced recombina-

tion around these genes (supplementary fig. S8,

Supplementary Material online). Although this does not rule

out potential effects on other genes or through other selec-

tion pressures (e.g., background selection), it indicates that

strong selective sweeps do not seem to affect recombination

inference and justify converting LD-based maps on the mei-

otic recombination scale (cM/Mb). Considering that LD-based

recombination rates are proportional to meiotic ones, they

can be rescaled by computing the scaling factor from the

CsRe Bayesian average recombination rate in each genomic

region (supplementary protocol S1, Supplementary Material

online). This produced scaled LD-based maps specific to each

landrace population (supplementary file S4, Supplementary

Material online).

Significant Differences between LD-Based Population-
Specific Recombination Maps

Our results reveal that the average LD-based recombination

rates vary in a 2-fold range between populations: WE has the

highest rate and EA the lowest (WE: q¼ 0.004/kb; WA:

q¼ 0.004/kb; EE q¼ 0.003/kb; EA: q¼ 0.002/kb; excluding

centromeres). This ranking between populations could be

explained by genetic diversity levels (fig. 1) as well as by dif-

ferent average meiotic recombination rates. The fact that WE

and WA are more admixed populations than EE and EA fa-

vored a more important contribution of diversity levels

compared with a real difference on average recombination

intensity. To eliminate the systematic effect of diversity and

demography on recombination rate estimates, we chose to

compare the population recombination profiles in terms of

the deviation from their local background recombination

rates. Specifically, the Li and Stephens’s model (2003) esti-

mates an interval specific recombination parameter (k) that

measures the relative rate of recombination of an interval

compared with its neighbors in a 2 cM window (see

Materials and Methods). We therefore expect population-

specific effects (other than local variation in recombination)

to affect the background recombination rate but not the rel-

ative intensities of intervals measured by the parameter k.

The similarity of k profiles along the genome was evaluated

by fitting a linear mixed model on the variations oflog10 kð Þ
within each genomic region, specifying a varian-

ce�covariance matrix with different or common correlation

coefficients for each pair of populations. In almost all genomic

regions (79 out of 84), a lowest BIC was obtained for the

model with correlation coefficients that are different between

pairs of population(see Materials and Methods). This indicates

that local variations of recombination rates are significantly

different between populations.

The average correlation of local variations of recombination

rates across genomic regions was twice higher for the highest

correlated pair WE–EE (0.476 0.11) than for the lowest one

EE–EA (0.206 0.11), with an average value of 0.32 (fig. 4).

The unevenness of the distribution of genetic distance along

FIG. 3.—Similarity between LD-based recombination rates and CsRe meiotic recombination rates. Left: Genome-wide relationship between the CsRe

biparental population meiotic recombination rates and the LD-based recombination profile of a Western European (WE) bread wheat population. Dots

represent the recombination rates averaged within 4Mb windows. Graphs R1, R2a, C, R2b, and R3 gather recombination rates within the five chromosomic

regions defined by Choulet et al. (2014) (R1 and R3 are telomeric regions, R2a and R2b are pericentromeric regions, and C are centromeric regions) of all of

the 21 chromosomes (1A, 1B, 1D . . . 7A, 7B, 7D) of bread wheat. Right: Correlation of LD-based and CsRe recombination rates for each landrace population

within each genomic region (1AR1. . .7DR3). Dots represent correlation coefficients of recombination profiles (once averaged within 4 Mb windows) per

genomic region and population. Small colored numbers indicate the number of correlation coefficients per boxplot. In principle, each boxplot should contain

21 dots (as many as chromosomes). However, two R1 genomic regions smaller than 20 Mb are not included (4DR1 and 7BR1), because of low robustness of

their correlation coefficients (computed on less than five data points). Stars (* and x) represent genomic regions including well documented introgressions in

CsRe population.
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chromosomes between two different populations was mea-

sured using a Gini coefficient (Gini 1936). We compared the

distribution of recombination in one population with the ge-

netic map of the other. A Gini coefficient of 0 corresponds to

a uniform distribution and a coefficient of 1 corresponds to

the case where the distribution is a single point mass. In our

case, a Gini coefficient of 0 corresponds to identical recombi-

nation profiles and the more divergent the distribution in re-

combination profiles is, the higher Gini coefficient is. The

pairwise Gini coefficients increased along the Eurasian gradi-

ent, with lower values for closely related population (around

0.43 for WE–EE) and higher values in distant populations

(0.77 for WE–EA), meaning that similarity in distribution of

LD-based genetic distance along chromosomes decreases

along the Eurasian gradient (supplementary fig. S9,

Supplementary Material online).

In light of these significant differences in the local reparti-

tion of recombination events, we investigated whether this

could be explained by difference in the localization of cross-

over hotspots by comparing that of the HRIs (see above). We

first defined “hot windows” as genomic regions that harbor

an HRI in at least one population. Figure 5A represents the

proportion of the 5,881 resulting hot windows including HRIs

that are population specific (HRI in one population only) or

shared by two, three or all four populations. Around 66% of

these windows are population-specific and 34% are shared

by two populations or more. The proportion of hot windows

shared by three or four population drops to 12% and 2%,

respectively. Location of shared HRIs along the genome fol-

lowed the density of HRIs per genomic region. Most (76%)

shared windows were located in telomeric regions R1 and R3

and the rest (24%) in pericentromeric regions R2a and R2b

(chi-square test P-value ¼ 0.06). To check if such an overlap

across populations can be explained by chance alone, we

compared the observed repartition of hot windows with a

simulated distribution obtained by a random assignment of

HRIs corresponding to the null hypothesis of the absence of

HRI population sharing (see Materials and Methods). The pro-

portion of common hot windows under this random assign-

ment is represented by gray boxplots in figure 5A. The

observed proportion (colored points) was always significantly

different to the expected proportion under random assign-

ment of HRIs. On average, 95% of hot windows are

population-specific if assigned randomly, much more than

the 66% we observed. In addition, four-population overlaps

were rare in the simulations (8.1% of our simulations) and

when they happened, they concerned only one or two win-

dows whereas we found 139 windows where HRIs are shared

between the four landrace populations. HRIs shared by more

populations tend to be more intense. For example, 55% of

WE HRIs (k� 4) colocalize with HRIs of other populations (k
� 4), but this proportion rises to 78% when subsampling WE

HRIs with a higher threshold of k� 20. The intensity of re-

combination in a hot window increases when it is shared by

more populations: The median of k is 10.7, 8.1, and 6.9 when

shared by 4, 3, and 2 populations, respectively, and is only 5.9

for population-specific hot windows. This approach to com-

pare HRIs between populations depends on the threshold to

claim HRIs and our ability to detect them, which can vary

between populations. To make up for these effects, we

looked at the recombination intensity (k) observed in one

population around HRIs detected in another population (sup-

plementary file S5, Supplementary Material online). Figure 5B

presents this average recombination intensity for HRIs

detected in each of the four populations. It shows that the

local intensity at an HRI position in the other populations is

almost twice the background intensity defined as the intensity

measured at 100 kb from the HRI center (average k at HRI

positions: 29%; average background k: 13%). This further

shows that HRIs tend to be shared across populations. We

evaluated whether this sharing could be explained by assem-

bly errors that would lead to inflated recombination rates in all

populations. Indeed, we found that 13% of hot windows

shared by the four populations were associated with scaffold

boundaries, which is a higher probability than expected by

chance (odds ratio ¼ 8.1, P-value < 2e�16). In addition, the

probability for a hot window to be associated with scaffold

boundaries decreased with the level of sharing (odds ratio

ranges from 1.3 for population-specific hot windows, 2.2

for hot windows shared by only two populations, 3.7 when

shared only by 3 populations and 8.1 for hot windows shared

by 4 populations, P-values < 0.03). However, these enrich-

ments are not sufficient to explain the patterns of sharing

described above. Hence, a significant amount of sharing of

HRIs could be due to an underlying partial conservation of

recombination hotspots.

FIG. 4.—Relationship between pairwise correlation of LD-based re-

combination intensity k and FST. Each boxplot contains 84 correlation

coefficients corresponding to the 84 genomic regions (1AR1. . .7DR3, ex-

cluding centromeres). Letters indicate whether two pairs have significant

different average correlations (Bonferroni corrected P-value < 0.05).
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Further examination of the increase in recombination inten-

sity in figure 5B reveals that HRI intensities tend to be more

similar when populations are more related. For example,

around WE HRIs, the recombination intensity increases in all

populations, but slightly less in EA which is the most geneti-

cally distant population to WE. To study this further, we stud-

ied quantitatively the relationships between the similarity in

recombination profiles and the genetic divergence of popula-

tions. To do so, we fitted a linear regression to estimate the

effect of the local differentiation index (FST) on the similarity of

recombination profiles (measured by their correlation) for all

genomic regions (R1, R2a, R2b, and R3) on all chromosomes

(1A to 7D) (fig. 6). We found that most FST effects (slopes)

were negative, revealing a striking pattern where the similarity

in recombination intensity decreases proportionally with ge-

netic divergence: Almost all genomic regions (67 among 84)

had a negative slope estimate significantly different from 0

and others genomic regions (15 among 84) had negative

but nonsignificant slope estimates different from 0. Note

that the similarity in recombination profiles is based on the

relative local recombination intensity (parameter k) that should

not be affected by the evolutionary history of populations. FST

were calculated from haplotypes rather than single SNPs to

avoid an ascertainment effect. But results based on FST calcu-

lated from SNPs showed the same pattern (supplementary fig.

S10, Supplementary Material online). To further evaluate if the

decreasing similarity of recombination patterns could be

explained by the varying proportion of shared polymorphisms

between population pairs, that is, SNPs ascertainment, we

carried out all our analyses on a subset of 100,381 SNPs

that are polymorphic in all four populations. We found that

the decreasing similarity of recombination intensities with ge-

netic divergence still hold using this common SNP data set

(supplementary fig. S11, Supplementary Material online),

even if the absolute values of slope estimates were smaller

(supplementary fig. S12, Supplementary Material online).

We also found no effect of prior distribution parameters in

PHASE and sample size on inferences of recombination profile

intensity (supplementary protocol S2 and figs. S13�S15,

Supplementary Material online). Finally, these results demon-

strate that the similarity in recombination profiles of bread

wheat populations is strongly negatively associated with their

genetic divergence and highlight that recombination land-

scapes in bread wheat have been evolving during the estab-

lishment of the current genetic structure of wheat

populations.

To test whether meiotic genes could be associated to the

divergence in the recombination profiles of populations, we

assessed if pairwise genetic differentiation between popula-

tions at these genes (measured by FST) was particularly

FIG. 5.—Conservation of highly recombining intervals (HRIs) across landrace populations. (A) Proportion of colocalizing HR (colored points) and simulated

colocalizing values under random assignment of HRIs (gray boxplots). (B) LD-based recombination intensity in each of the four populations WE, EE, WA, and

EA around HRIs specific to one population.
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associated to the pairwise correlation of recombination pro-

files between populations. We computed FST around 54

genes known to be involved in the meiosis process (supple-

mentary protocol S3 and file S6, Supplementary Material on-

line) and fitted a specific regression of the FST around the gene

on the genome-wide correlation of recombination profiles

(i.e., medians in fig. 4 boxplots, one measure per pair of

population, identical for every gene and every genomic re-

gion). As the basal level of differentiation depends on the

genomic region (fig. 6), we tested whether meiotic genes

showed an increased level of differentiation compared with

their own genomic region (i.e., a significant negative slope).

To control for region-specific effects, meiotic genes were con-

trasted to “control genes” not involved in meiosis and in the

FIG. 6.—Relationships between correlation of local recombination intensity and FST per genomic region. (A) Relationship per genomic region. The slopes

values are estimated by linear regression and gives the FST effects on the correlation of recombination profiles. (B) Ranked slope estimates (colored points) and

their 95% confidence interval (gray bar). Blue color represents slopes with a confidence interval overlapping 0 and red color confidence interval not

overlapping 0.
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same genomic region. The number of control genes per ge-

nomic region ranged from 9 in 7AC to 733 in 5AR3 regions

(median number: 223). Overall, meiotic genes did not show a

significantly different slope compared with control genes (P-

value¼ 0.97). Only asy4, located in the 4AR3 genomic region,

showed a significantly more negative slope than control genes

in its genomic region (False Discovery Rate< 0.01%) (supple-

mentary fig. S16, Supplementary Material online).

Discussion

Fine Scale Genome-Wide Recombination Landscape of
Bread Wheat

In our study, we estimated LD-based recombination rates for

the first time at the whole-genome scale in bread wheat.

Previous studies were done at local scale only (Darrier et al.

2017) but suggested that this approach could be applied

genome-wide. We used four diverging populations of land-

races representative of the four main worldwide genetic

groups (Balfourier et al. 2019). For all maps, 80% of the ge-

netic distance was found in 36% (61%) of the physical dis-

tance. This is less concentrated than what was previously

observed on single chromosome 3B (80% in less than 20%;

Saintenac et al. 2009; Darrier et al. 2017). This discrepancy is

likely due, on one hand to the higher SNP density in previous

studies on chromosome 3B that allowed to precisely delimit

recombination hotspots on this particular chromosome, and

on the other hand likely because classical frequentist esti-

mates of recombination rates in biparental maps let most of

the genome depleted of recombination. However, and as

expected, historical crossovers tend to accumulate in distal

sub-telomeric regions of the chromosomes (namely R1 and

R3 regions). In most organisms, pairing initiation between

homologues occurs in many places along the chromosomes

but tends to be favored by a meiosis-specific organization

called “bouquet” where telomeres are gathered on the inter-

nal nuclear envelope at the Leptotene stage, just before syn-

apsis (Zickler and Kleckner 2015). The bouquet would then

facilitate alignment between homologues and pairing would

be simultaneously favored through the repair of double-

strand breaks including crossovers (Zickler and Kleckner

1998; reviewed in Scherthan 2001 or Harper et al. 2004). In

bread wheat, distal crossovers would then be predominant

because of the bouquet and be limited in R2a and R2b regions

because of interference (Saintenac et al. 2009).

At a fine scale, LD-based maps revealed that 1–2% of inter-

vals of telomeric and pericentromeric regions (depending on the

population) exhibited especially high recombination rate (HRIs),

suggesting that these intervals overlapped recombination hot-

spots. The accumulation of crossovers in recombination hot-

spots was already observed in bread wheat (Saintenac et al.

2011; Darrier et al. 2017) and seems to be a common phenom-

enon across many species (for a review see Stapley et al. 2017).

Recombination hotspots are usually found to be associated with

open-chromatin signatures (for a review, see Dluzewska et al.

2018). In previous study in bread wheat, recombination hot-

spots were found to locate nearby gene promotors and termi-

nators. Our results are consistent with this finding, as most

(80%) of our HRIs are located nearby gene features.

LD-based Recombination Maps Correlate Well with the
Biparental Genetic Map

In principle, LD-based recombination maps should be suited

to study the similarity of recombination profiles of diverging

populations. In our study, they allowed to compare recombi-

nation rates of four populations with about twice more SNPs

than the densest genetic maps currently available

(131� 170k SNPs in EA and WA, respectively, versus 80k

SNPs in Rimbert et al. 2018; 55k markers in Liu et al. 2020;

50k SNPs in Jordan et al. 2018). Moreover, LD-based maps are

representative of a whole population and less susceptible to

individual specific variation, for example, introgressions which

are known to prevent local formation of COs between the

introgressed chromatid and the native chromatid.

Introgressions from wild relative species are frequent in bread

wheat species, representing from 4% to 32% of bread wheat

genome (Zhou et al. 2020).

The limitation of LD-based maps relies on the fact that they

can be affected by evolutionary patterns, which in turn can

hinder their usefulness to study the evolution of recombination

rate. Indeed, to the extent that evolutionary forces and past

demographic events (bottlenecks, population expansions, hid-

den structuration) affect LD patterns they can also affect re-

combination rate estimates (Chan et al. 2012; Dapper and

Payseur, 2018). To measure to which extent LD-based recom-

bination rates differ from meiotic ones, we compared LD-

based maps with the CsRe meiotic map. This revealed that,

genome-wide, the correlation between the two approaches

was very high (�0.7; table 1). Although part of this correlation

is explained by the large differences in recombination rate

between chromosomal regions (R1, R2a, R2b, R3, and C),

our results also indicate a substantial high correlation within

each of these regions. The correlation between LD-based and

the CsRe genetic map ranged from 0.50 on average in EA,

0.55 in WA and EE and 0.58 in WE at 4 Mb per genomic

region considering all populations but only telomeres and peri-

centromeres (table 1). This value is consistent with correlation

values obtained in the literature for other plant species. For

example, the correlation between LD-based and meiotic re-

combination map was found to be 0.3 in rice (Marand et al.

2019), 0.81 in barley (Dreissig et al. 2019), and 0.44–0.55 in

Arabidopsis (Choi et al. 2013). Besides, the correlation values

we report are likely to be underestimates of the true values. To

compute these correlations, we used estimates of recombina-

tion rates. Like any statistical estimates they come with mea-

surement errors of the true parameters. Hence the correlation
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between estimates, providing these errors are independent,

are necessarily smaller than the true correlation (Fisher 1915).

Apart from this statistical effect, we could also explain some of

the differences between LD-based maps and the meiotic map

by genomic rearrangements (introgressions on chromosome

7D and 2A in Renan) that are specific to the CsRe population:

In these regions, the CsRe recombination profile is not repre-

sentative of the landraces recombination profiles.

The overall similarity between the meiotic map and LD-

based maps shows that LD-based recombination patterns of-

fer a robust representation of the distribution of recombina-

tion along the bread wheat genome.

Robustness of LD-Based Recombination Maps

Despite good concordance with the meiotic map, LD-based

recombination maps can still be locally affected by demo-

graphic effects, and thus result in bias when interpreting dif-

ferences or similarities between populations. For example,

Kim and Nielsen (2004) and Chan et al. (2012) showed that

selective hard-sweeps can produce LD patterns that mimic

those of recombination hotspots. Dapper and Payseur

(2018) showed that demographic events can decrease the

power to detect hotspots leading to an under estimation of

the colocalization of LD-based recombination hotspots when

using LDhat (Auton and McVean 2007). Here, we used

PHASE (Li and Stephens 2003; Crawford et al. 2004), a soft-

ware to infer recombination rates from LD patterns that

implements a quite different methodological approach than

LDhat but it is possible that its inference is also affected by

such effects. In particular, there were twice many HRIs

detected in WE (2,739) and WA (2,743) than in EE (1,968)

and EA (1,253), representing a significant variation from 1%

of intervals in EA (122,490 SNPs once centromeres removed)

to 2% of intervals in WE (161,953 SNPs once centromeres

removed) (significant chi-square test, P-value < 2.2e�16).

Although this varying number of HRIs per population could

result from a variation in recombination patterns, it is likely

also due to differences in the power to detect HRIs in each

population which would be consistent with results from

Dapper and Payseur (2018). Indeed, as the proportion of

HRIs per population follows the levels of admixture and

SNPs density (both higher for WE and WA than for EE and

EA), this favors a possible contribution of a different detection

power to the variation of HRIs per population. However, we

did not observe any atypical LD-based estimate for intervals

located nearby genes known to be involved in domestication

(e.g., brittle rachis, tenacious glume, homoeologous pairing

or nonfree-threshing character) or in recent crop improve-

ment. To further reduce the potential influence of demo-

graphic forces on our inference, we performed the

comparison between population maps, not on LD-based re-

combination rates themselves (q) but on the relative rate (k) of

recombination in an interval compared with its neighbors in

windows of 2 centi-Morgans. Using relative rates should clean

our inference from any local effect of demographic forces,

especially selection that could tend to be more shared be-

tween closely related populations than distant ones.

Results were not much affected by SNPs ascertainment or

the method used to calculate the FST index. The decreasing

similarity of recombination rates with genetic differentiation

still hold when estimating LD-based recombination rates on a

population specific SNPs data set or a common SNPs data set.

The co-localization of HRIs was also not influenced by the

SNPs data set (supplementary fig. S17, Supplementary

Material online). The estimation of FST index, using either

haplotypic or SNPs alleles, provided also consistent results.

Overall, these results strongly support the idea that the de-

crease of similarity in LD-based recombination profiles is not

an artifact of demographic forces or biases due to SNPs as-

certainment but that the underlying recombination profile is

linked to the divergence of populations.

Evolution of the Recombination Landscape in Bread Wheat

Our results are consistent with previous reports. Gardiner et

al. (2019) showed that closely related bread wheat parental

lines lead to RIL populations with more similar crossover pro-

files. Darrier et al. (2017) compared LD-based recombination

profiles of a European and an Asian population, the two main

ancestral bread wheat genetic pools, on two scaffolds of 1.2

and 2.5 Mb on chromosome 3B. They found that LD-based

recombination profiles are broadly conserved, but highlighted

that hot intervals in LD-based recombination profiles were not

necessarily shared between these two European and Asian

populations. Similar results were observed in other plant spe-

cies such as rice (Oryza sativa; Marand et al. 2019) and cocoa-

tree (Theobroma cacao; Schwarzkopf et al. 2020). Other plant

studies hint at a possible decreasing similarity of fine-scale

recombination profiles over evolutionary time measured by

FST, such as maize (Zea mais, Rodgers-Melnick et al. 2015),

poplar (Populus species, Wang et al. 2014, 2016), cotton

(Gosypium hirsutum, Shen et al. 2019), and barley

(Hordeum vulgare, Dreissig et al. 2019).

Several hypotheses can be formulated to explain the differ-

ences in recombination profiles between populations. First,

this can be due to environmental effects. This is the case in

barley, where recombination rates vary along the genome

and are affected by environmental conditions as well as by

domestication (Dreissig et al. 2019). For example, high tem-

peratures are known to affect meiosis and above 35 �C, this

may lead to complete failure and severe sterility (Loidl 1989;

Higgins et al. 2012). Interestingly, within a range of

22� 30 �C, highest temperatures may modify the recombi-

nation profile. In barley, it was shown that at 30 �C, distal

recombination events are reduced whereas interstitial events

became more frequent revealing thus a slight shift and a

modification of the global recombination profile (Higgins et
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al. 2012). However, in our case, this hypothesis is not the most

likely as we were using populations from the same hemi-

sphere and latitudes, with landraces from different countries.

Environment is thus certainly very different between all the

origins of our landraces and temperature should vary a lot in

each location and is not stable enough to affect durably and

maintain a different recombination profile between the four

populations. Moreover, it was recently shown that increased

temperature up to 28 �C for 3 weeks during wheat meiosis

has only a limited impact on recombination distribution

(Coulton et al. 2020).

Secondly, differences in recombination profiles can be

explained by differences in the chromatin accessibility land-

scape during meiosis between populations. Many studies

showed that chromatin status is the main feature that drives

recombination in plants. DNA is partitioned in blocks of het-

erochromatin and euchromatin which are dispersed along the

chromosomes. In bread wheat, heterochromatin preferen-

tially locates in pericentromeric regions whereas

euchromatin-rich DNA is more frequent in distal subtelomeric

regions of the chromosomes (IWGSC 2018). In Arabidopsis, it

was shown that crossovers are enriched in euchromatin and

mainly occur close to gene promoters and terminators (Choi

et al. 2013; Drouaud et al. 2013). Meiotic recombination pro-

file in this species is also shaped by H2A.Z nucleosome occu-

pancy, DNA methylation or epigenetic marks such as Histone

3 Lysine 9 di-methylation (H3K9me2; Choi et al. 2013;

Underwood et al. 2018). This led to our second hypothesis

that chromatin status has evolved between our four popula-

tions, rather than an evolution of the recombination deter-

minism itself. Divergence in chromatin status could be

explained by genetic drift on one hand or by selection pres-

sure around different genomic regions depending on geo-

graphical area on the other hand. This selection pressure

could therefore contribute to the deposition of histone land-

marks to regulate gene activity such as H3K4me3, H3K9ac,

and H3K27ac that are associated with transcriptional activa-

tion (Roth et al. 2001; Howe et al. 2017) or on the contrary

H3K27me3 and H3K9me3 associated with transcriptional

suppression (Saksouk et al. 2015). Interestingly, in some

mammals, recombination is directed by the zinc-finger pro-

tein PRDM9 that possesses a set domain that catalyzes the

trimethylation of lysine 4 of H3 to produce H3K4me3 (for

review see Grey et al. 2017). Similar mechanisms involving

histone 3 modifications such as methylation or acetylation

that could affect recombination profile afterward are thus

likely in plants. We tested differentiation of 54 meiotic genes

along evolution of recombination profile. In average, these 54

meiotic genes did not show a higher or lower differentiation

level than control genes of their own genomic region. Only

ASY4 located in 4AR3 genomic region, showed a significant

higher level of differentiation than control genes. In

Arabidopsis, the asy4 protein is involved in the formation of

the axis between the two sister chromatids (Chambon et al.

2018). Mutation of Atasy4 significantly reduces the number

of crossovers and induces a shift toward the distal parts of the

chromosomes. This could explain why we found this gene

associated with a difference in recombination rates between

populations.

Another factor that may explain the difference of recom-

bination patterns between the populations could be the nat-

ural introgression of alien DNA fragments from wheat

relatives during the evolution process. Introgressions from

wild-species have been widely used and more than 50 alien

germplasms have been used to improve wheat varieties

(Wulff and Moscou 2014). For example, Renan possesses

two introgressed fragments from Aegilops ventricosa confer-

ring resistance to leaf, yellow, and stem rusts (Lr37/Yr17/Sr38)

on chromosome 2A (2A/2N translocation) and to eye-spot

(Pch1) on chromosome 7D (7D/7Dv translocation; Maia

1967; Helguera et al. 2003). These introgressions repress re-

combination (Worland et al. 1988) and this resulted in a poor

correlation between CsRe genetic map and our LD-based

maps for genomic region 7DR3 in our analysis. It was recently

shown that natural or artificial introgressions of wheat wild-

relatives DNA contributed to up to 710 and 1580 Mb in wheat

landraces and varieties, respectively (Cheng et al. 2019), and

represent from 4% to 32% of bread wheat varieties genome

(Zhou et al. 2020). A similar analysis used exome capture to

evaluate introgression in 890 hexaploid and tetraploid wheats

(He et al. 2019). The results also suggest that introgressions of

DNA fragments from wheat relatives contributed significantly

to improve the diversity of current wheat cultivars. Because

natural introgressions are frequent in wheat landraces and

because they contribute to modify the recombination profile,

we could hypothesize that these introgressions are different in

our four collections, which would result in different recombi-

nation profiles as well. Only an extensive sequencing of our

accessions would allow to bring the answer.

Conclusion

This study demonstrates the evolution of the recombination

profile at a genome-wide scale in closely related wheat pop-

ulations with increasing genetic divergence. Based on recom-

bination landscapes robust to demographic events, the

comparison of the four landrace populations revealed a clear

signal of a decreasing similarity between fine-scale recombi-

nation landscapes with increasing genetic divergence.

Specifically, we found 1) that HRIs were more shared between

closely related populations, 2) recombination intensities at

HRIs detected in one population decreased in the other pop-

ulations with their genetic divergence, and 3) the correlation

of recombination landscapes between pairs of population

decreases with their local genetic differentiation as measured

by FST. Our results, interpreted in the light of previous findings

in bread wheat and other species, clearly shows that recom-

bination landscapes in wheat change with genetic divergence
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between populations. Being based on closely related popula-

tions that recently diverged (no more than 10,000 YA), this

study further shows that this divergence can be quite fast.

Reasons for this divergence remain to be found but our results

can hint at some possibilities. Further analyses are needed to

settle this question, which should greatly help developing

original approaches useful for wheat improvement and

breeding.

Materials and Methods

Plant Material

A collection of 632 bread wheat landraces (Balfourier et al.

2019) was genotyped on the TaBW410k SNPs including 280k

SNPs from the Axiom Affymetrix TaBW280k SNPs array

(Rimbert et al. 2018). Besides, a population of 406 F6 RILs

derived from the cross between the Asian variety Chinese

Spring and the European variety Renan (CsRe), were also

genotyped on the TaBW280k SNPs array (Rimbert et al.

2018). After quality filtering including control of missing

data rate (10% maximum), heterozygosity rate (5% maxi-

mum), excluding off-target variants, 578 landraces genotyped

with 200,062 SNPs were kept for the population-based anal-

ysis and 79,564 polymorphic SNPs were successfully mapped

on the CsRe population.

The physical positions of SNPs on the 21 bread wheat

chromosomes were determined using Basic Local Alignment

Search Tool (Blast; Altschul et al. 1990) of context sequences

on the International Wheat Genome Sequencing Consortium

RefSeq v1.0 genome assembly (IWGSC 2018). Position of

high confidence genes, exon, 50-UTR and 30-UTR were

extracted from RefSeq V1.0 annotation.

Robust Estimation of the Meiotic Recombination Profile

Due to the relatively low number of meiosis sampled in the

CsRe data, a Bayesian model inspired from Petit et al. (2017)

was used to obtain robust estimates of recombination rates.

We modelled the probability distribution of the recombination

rates observed in RILs (Ci ) given the number of observed re-

combination events (yi ) as:

P Ci j yið Þ ¼ Pðyi jCiÞ PðCiÞ
PðyiÞ

.

The likelihood Pðyi jCiÞ is modelled as a Poisson distribu-

tion, its parameter being the expected number of recombina-

tion events in an interval and computed as:

EðyiÞ ¼ Ci � Li �M, where Li is the physical size (in mega-

bases, Mb) of the interval and M the total number of RILs.

Thus, the likelihood of the recombination rate Ci is:

PðyijCiÞ � PoissonðCi � Li �MÞ

.

To specify a prior distribution of PðCiÞ, we considered that

the wheat recombination landscape varies widely along a

chromosome. According to the nomenclature of Choulet et

al. 2014, each of the wheat chromosomes can be segmented

into five chromosomic regions associated with different global

recombination rates and genomic content: Two highly recom-

bining telomeric regions (R1 and R3), two low-recombining

pericentromeric regions (R2a and R2b) and one centromeric

region (C) where recombination is almost completely sup-

pressed. The small arm of each chromosome is composed

of R1 and R2a whereas the long arm is composed of R2b

and R3. The physical size of these regions ranges between

10 Mb for the smallest telomere and 321 Mb for the largest

pericentromere (supplementary file S7, Supplementary

Material online). To account for the specific range of recom-

bination rate variation in each region in our model, the prior

distribution of the recombination rates in each of these

regions was a specific Gamma distribution:

P CiðrÞ
� �

� Uðar;brÞ;

where r denotes the region, ar/br gives the mean of the

Gamma distribution and ar=b
2
r gives the variance. The

Gamma distribution being a conjugate prior to the Poisson

distribution, the posterior distribution of Ci is also a Gamma

distribution:

PðCijyiÞ � Uðyi þ ar; M Li þ brÞ

.

The posterior mean of Ci (in M/Mb) is then:

C
bay
iðrÞ ¼

yi þ ar

M Li þ br

.

The parameters ar and br of the prior Gamma distribution

were set using an empirical Bayes approach (i.e., estimating

prior distribution directly from data), independently for each

of the five r regions (supplementary fig. S18, Supplementary

Material online). A Gamma distribution was fitted (R MASS

package, Venables and Ripley 2002) over the distribution of

frequentist recombination rates observed in RILs. This latter

was computed as

C freq
i ¼ yi

M Li

.

Note that null recombination rates were replaced by the

lowest non-null estimate of recombination rates of the region

to allow fitting the Gamma distribution. We derived the mei-

otic recombination rates from the RILs recombination rates
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using the Haldane and Waddington formula (Haldane and

Waddington 1931) and the Morgan mapping function (cM

¼ frequency of recombinants � 100). Indeed, the size of

intervals (median ¼ 5 kb) were small enough to consider

that interference is very strong within and thus one recombi-

nation in one individual result from only one crossover (and

not from coincidence of several crossovers). We thus obtained

the Bayesian meiotic recombination rate cbay
CsRe i (cM/Mb).

Considering Uncertainty in Crossover Locations

For estimation of recombination rates, it was necessary to

count the number of recombinants in CsRe intervals (yi).

Missing data on genomic segments with no parental allele

switch at segment extremities were imputed. A crossover

was counted at each parental allele switch, yielding 26,239

crossovers. Due to the presence of missing data in RILs gen-

otypes, a number of switches did not occur between pairs of

immediately adjacent markers. In such cases, the crossover

cannot be assigned with certainty to a single interval of two

successive SNPs. For example, an RIL genotype AA/–/BB iden-

tifies a switch between the first and third marker but cannot

discriminate a recombination in the first versus the second

interval. In such cases, we accounted for the uncertainty in

crossover location following the sampling procedure of Petit

et al. (2017). Briefly, each crossover is overlapped by a set of

one or more intervals. A sampling procedure assigned each

crossover to a particular interval with a probability computed

as the size of the interval divided by the size of the crossover

area (physical distance between the two closest SNPs showing

different parental alleles). Repeating 1,000 times the sampling

procedure yields 1,000 estimates of yi per interval, which can

then be converted into recombination rates and averaged.

LD-Based Recombination Profiles of Four Diverging
Populations of Landraces from Patterns of LD

Identification of Four Diverging Populations of Landraces
Representative of Bread Wheat Worldwide Diversity

We defined four populations from a data set of 632 landraces

representative of worldwide genetic diversity of bread wheat

and previously described in Balfourier et al. (2019). The con-

stitution of populations followed a three steps procedure that

we briefly described (more details in supplementary protocol

S4 and figs. S1 and S19, Supplementary Material online):

i. From Balfourier et al. (2019) K¼ 4 admixture analysis of

the 632 landraces, we kept only 534 low admixed land-

races to maximize differentiation between future four

populations.

ii. The 534 landraces were gathered into 4 groups using a

hierarchical clustering on the pairwise distance matrix esti-

mated in Balfourier et al. (2019). The four populations were

named as West Europe (WE), East Europe (EE), West Asia

(WA), and East Asia (EA) from the geographical origin of

their members. The pairwise matrix distance gave the pro-

portion of mismatched haplotypic alleles along the ge-

nome, computed using 8,741 haplotypic blocks

containing up to 20 alleles per block (figure 1 of

Balfourier et al. [2019]).

iii. We discarded closely related individuals within each popu-

lation to avoid over representing family specific recombi-

nation events. Pairs of individuals exhibiting a very low

genetic difference were discarded, keeping a total of 371

landraces.

Evolutionary Distance between Populations Measured by
FST

Pairwise differentiation indexes (FST) of the four populations

were computed within each genomic region (chromosomal

region within a chromosome, e.g., 1AR1) using alleles of

8,741 haplotypic blocks (Weir and Cockerham distance, R

hierfstat package, function pairwise. WCfst, Goudet and

Jombart 2015) or SNPs (Reynolds distance, HAPFLK software,

Bonhomme et al. 2010; Fariello et al. 2013) (supplementary

file S8, Supplementary Material online).

Inferences of LD-Based Recombination Rates from LD
Patterns

LD-based recombination rates were estimated using PHASE

software V2.1.1 (Li and Stephens 2003; Crawford et al. 2004;

Stephens and Scheet 2005). PHASE inputs were successive

windows of SNPs along the genome, constituted of one cen-

tral part and two flanking parts overlapping the previous and

the next windows to avoid border effect in PHASE inferences.

Central and flanking parts spanned on average 1 cM and 0.5

cM, respectively, based on the CsRe genetic map (supplemen-

tary protocol S5, Supplementary Material online). PHASE was

run for each window with default options, except for two

parameters of the Markov Chain Monte Carlo (MCMC), fol-

lowing recommendations of the documentation on estimat-

ing recombination rates. The number of sampling iterations

was increased to obtain larger posterior samples (option -X10)

and the algorithm was run ten times independently (option –

x10) to better explore combinations of parameters and keep

the run with the best goodness of fit. The sampling stage of

the MCMC yielded 1,000 samples of the posterior distribution

of:

• The background recombination rate of the window w: qw

• The ratio ki between the background recombination rate of

the window qw and the LD - based recombination rate in

each interval i of two successive SNPs qi so that qi ¼ ki�
qwðiÞ where w(i) identifies the window which interval i

belongs to. The parameter ki can be seen as a measure

of local recombination intensity compared with genomic

background (inflation or deflation).
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PHASE samples jointly qw and ki in their posterior distribu-

tion at each iteration, so their product yields 1,000 samples of

the posterior distribution of LD-based recombination rate qi (/

kb) (supplementary file S9, Supplementary Material online).

We assessed the sensibility of PHASE results to prior distribu-

tion parameters and population sample size and we found

that our inference was robust to modifications of the prior

distribution or the down-sampling of the WE population (sup-

plementary protocol S2, Supplementary Material online).

Correlation of LD-Based Recombination Profiles

To compare LD-based recombination profiles, it was neces-

sary to obtain a common set of intervals across the four pop-

ulations (WE, EE, WA, EA), as polymorphic SNPs sets were

different. We defined smaller intervals formed of successive

markers that were polymorphic in at least one population

(supplementary fig. S20, Supplementary Material online).

For each population, the recombination estimates in smaller

intervals were considered to be the same as the estimates

belonging to population specific intervals overlapping them,

assuming that recombination rates are constant within inter-

vals. We removed intervals not overlapped by all populations

on chromosome extremities. This process yielded a complete

factorial data set of 194,409 intervals with no missing data

and a set of 1,000 values sampled from the posterior distri-

bution for each parameter qpi and kpi per interval i and per

population p. The similarity between LD-based recombination

profiles was measured by correlating thelog10 of median of

kpi (noted log10 kpi

� �
) of all intervals between different pop-

ulations. The median of posterior distribution of kpi was cho-

sen as it is robust to outliers in the posterior distribution, as

recommended (Li and Stephens 2003) and using the log scale

is natural when comparing intensities across groups. To obtain

correlation coefficients, a linear model including a full unstruc-

tured variance�covariance matrix was fitted on log10 kpi

� �
, so

that each population had its own range of variation of local

recombination intensity and each pair of population has a

specific covariance parameter:

Ypi ¼ log10 kpi

� �

Ypi ¼ lþ Epi

E
!
�MVN(0,In 	 R4�4Þ, where R4�4 is a variance�covariance

matrix from which we extract correlation coefficients.

The model was applied independently to each genomic

region (from 1AR1 to 7DR3, except centromeric regions,

results in supplementary file S10, Supplementary Material on-

line). The total number of intervals n per genomic region

ranged from 154 to 8,131. The differences of recombination

intensity profiles across the four populations of landraces

were assessed by model comparison. We compared the

Bayesian Information Criterion (BIC) of a model with a full

variance�covariance matrix with a simpler model with a var-

iance�covariance matrix including only one correlation pa-

rameter for all pairs of populations. The complex model was

deemed to be a better model if its BIC was inferior to the BIC

of the simpler model. The models were fitted with ASReml-R

V3 (Butler et al. 2009).

Colocalization of HRIs between Populations

Intervals with a LD-based recombination rate exceeding four-

times or more the background recombination rate (k� 4)

figuring as outliers in k distribution (supplementary fig. S21

and file S11, Supplementary Material online), were defined as

HRIs and adjacent HRIs within a population were merged. Due

to strong heterogeneity of HRI’s size, we discarded too small

or too wide HRIs (supplementary protocol S6, Supplementary

Material online). For each HRI in each population, the over-

lapping HRIs in other populations were recorded. A set of HRIs

intervals was considered as co-localizing in two, three or four

populations if all HRIs overlapped each other (i.e., they formed

a clique in network terminology). Note that this implies that a

wide HRI can potentially be involved in more than one clique.

For each group of colocalizing HRIs (each clique), we defined a

hot window as the smallest common overlapped area (sup-

plementary file S12, Supplementary Material online).

Population specific HRIs, that is, HRIs which did not overlap

any other HRIs, also formed hot windows whose frontiers

were defined by the upper and lower limit of HRIs. Each

hot window thus included HRIs of one, two, three or four

populations. The proportion of HRIs shared by two popula-

tions or more (e.g., WE and EE) was computed as the number

of hot windows including HRIs of each population (hot win-

dows including both WE’s HR and EE’s HR) divided by total

number of hot windows (including either WE, EE, WA or EA’s

HRIs) (supplementary fig. S22, Supplementary Material on-

line). Dividing by the total number of hot windows is more

convenient to compare the proportion of HRIs population-

specific, or shared by two, three or four populations.

To test for the hypothesis that the observed proportion of

HRIs shared by populations is due to chance, an empirical

range of plausible values of co-localization due to chance

was estimated by simulation. In 1,000 simulations, each HRI

of each population was assigned to a random interval within

the genomic region it belongs (1AR1 to 7DR3) and the pro-

portion of shared hot windows was computed (supplemen-

tary file S13, Supplementary Material online).

Comparison of the LD-Based Recombination Rates and the
CsRe Meiotic Recombination Rates

The comparison between meiotic (CsRe) and LD-based re-

combination rates were done on windows of 4 Mb (�1 cM

on average, wide enough to accurately estimate intrinsic re-

combination rate) along the genome. Meiotic recombination

rates were estimated using the Bayesian model described
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above, the attribution of crossover to windows being done

using the (Petit et al. 2017) approach (see above). To compute

the LD-based recombination rate in 4 Mb windows, the total

LD-based genetic distance per window of 4 Mb was divided

by the total physical distance and averaged over the 1,000

samples of the posterior distribution:

qpw4Mb
¼ 1

1;000

X1;000

j¼1

P
i�w4Mb

ðqpij � LiÞP
i�w4Mb

Li

with i the interval and j one posterior distribution value among

1,000 (supplementary file S14, Supplementary Material

online).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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