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Consistency of the frequency polygon estimators of

density mode for strongly mixing processes

Ahmad Younso

Department of mathematical statistics, Faculty of sciences, Damascus and Tishreen
universities/Syria

Abstract

We consider a simple estimator of the density mode using the frequency polygon
estimate. We investigate strong consistency of the estimator for strong mixing
sequence of real variables under mild assumptions. We study the almost sure
rate of convergence and we show that the estimator can achieve optimal al-
most sure rates of convergence for appropriate choices of the bin widths. The
asymptotic normality of the simple estimator is given and a simulation study
is performed. Our asymptotic results are obtained without any di�erentiability
condition assumed on the density around the mode.

Keywords: Frequency polygon; Mode estimate; Mixing condition;
Consistency; Rate of convergence.

1. Introduction

The problem of estimating the modes of a density function has generated a
considerable amount of interest in many areas. For example, in unsupervised
problems where modes are used as measure of typicality of a set of data. In
particular, in modern applications, mode estimation is often used in clustering,
with the modes representing cluster centers. There is an extensive literature
on mode estimation in the independent case, see the key references: (Parzen,
1962), (Konakov, 1973), (Samanta, 1973), (Devroye, 1979), (Romano, 1988) and
the references therein. The common approaches consist of estimating the den-
sity mode by maximizing an estimate of the unknown density (usually a kernel
estimate) on Rd or R. (Abraham et al., 2004, 2003) deal with a simple esti-
mate of the mode by maximizing the kernel density estimate on data. More
recently, (Dasgupta and Kpotufe, 2014) investigate the k-NN mode estimation.
Most of the existing works are concerned with the consistency and asymptotic
normality of the estimators and rates achievable by various approaches. De-
spite the easy computation, there is only a very few literature dedicated to
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the frequency polygon as density estimator. This estimator is constructed by
connecting with straight lines the mid-bin values of a histogram, for a com-
prehensive overview, see (Scott, 1985) in the independent case and (Carbon
et al., 1997) and (X.Yang, 2015) in the dependent case. (Scott, 1985) shows
that the frequency polygon estimate has rates of convergence similar to those
of non-negative kernel estimators with respect to the criterion of integrated
mean squared error. (Carbon et al., 1997) and (X.Yang, 2015) extend the re-
sults of (Scott, 1985) to the weakly dependent case and investigate the uniform
strong consistency. It is important to note that all the asymptotic results on
the frequency polygon estimator of density are obtained on the real line. In
this paper, we consider the problem of estimating the mode of an unknown
unimodal density by maximizing the frequency polygon estimate of the density.
Let {Xi : i ≥ 1} be a sequence of identically distributed random variables de-
�ned on a probability space (Ω,F ,P) and taking values in R. Suppose X1 has
a density f which is unknown. Denote by θ the unknown mode of f . Con-
sider a partition ... < x−2 < x−1 < x0 < x1 < x2 < ... of the real line into
equal intervals In,j ≡ [(j − 1)bn, jbn[ of length bn, where bn, the bin width, is a
strictly positive number decreasing to 0 as n → ∞, and j = 0,±1,±2, ... . Let
Jn,j = [(j − 1/2)bn, (j + 1/2)bn[ and consider the two adjacent histogram bins
In,j and In,j+1. Consider a set of observations Sn = {X1, ..., Xn} and denote
the number of observations falling in the intervals In,j and In,j+1 respectively
by νn,j and νn,j+1. Therefore, νn,k =

∑n
i=1 Yi,k with

Yi,k =

{
1, if Xi ∈ In,k
0, otherwise,

(1.1)

for k = j or j + 1. Then, the values of the histogram in these previous bins are
given by

fn,k = νn,k/(nbn),

for k = j or j+1. Thus, the frequency polygon estimator of the density function
f , for each x ∈ Jn,j , is de�ned by

fn(x) =

(
1

2
+ j − x

bn

)
fn,j +

(
1

2
− j +

x

bn

)
fn,j+1. (1.2)

We �rst let the estimate θn of the mode θ be de�ned as

θn ∈ arg max
R

fn. (1.3)

The estimate θn is classi�ed as indirect estimate since we �rst estimate f by fn,
then θn is taken to be any point of R for which (1.3) is satis�ed . When fn is the
kernel estimator, θn is considered by many authors in the independent case, see
for example (Parzen, 1962), (Konakov, 1973), (Samanta, 1973), (Devroye, 1979),
(Romano, 1988) and (Shi et al., 2009). More recently, (Hwang and Shin, 2016)
consider it in the ψ-weakly dependent case. As noticed by (Devroye, 1979), the
estimate de�ned by (1.3) is of small practical value because a time-consuming
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search is necessary. Also, classical search methods perform satisfactorily only
when fn is su�ciently �regular� (continuous, unimodal, etc). An estimate of the
mode which eliminates these problems is originally de�ned by (Devroye, 1979)
and then considered by (Abraham et al., 2004, 2003). This later estimator
estimates the mode by maximizing the density estimate on data. When fn is
the frequency polygon estimator, we let the estimate θ̂n of the mode θ be de�ned
as

θ̂n ∈ arg max
Sn

fn. (1.4)

i.e.,
θ̂n ∈ {x ∈ Sn : fn(x) = max

i=1,...,n
fn(Xi)}.

The estimate (1.4) is classi�ed as direct (simple or sample) estimate since there

is a simple recipe to obtain the estimate θ̂n from the data (see (Scott, 1992) for
another de�nition of the sample mode). Since the sample points are naturally
concentrated in high-density areas, the set Sn can be regarded as the most natu-
ral (random) grid for approximating the mode. Clearly, the sharper the density
around the mode, the more the data will concentrate around it, and the better
θ̂n will perform. Our aim is to show some consistency and asymptotic results
concerning the estimates (1.3) and (1.4) under a classical mixing condition.

2. Notations and assumptions

We �rst introduce some notations. A sequence {Xi : i ≥ 1} is said to be
α-mixing (or strongly mixing) if

α(n) = sup
k≥1

sup
A∈Fk

1 ,B∈F∞k+n

|P(A ∩B)− P(A)P(B)| ↓ 0, as n→∞, (2.1)

where Fk1 and F∞k+n are the sub σ-algebras generated by {Xi, i = 1, ..., k} and
{Xi, i = k+n, ...}, respectively. The α-mixing coe�cient is one of the most gen-
eral mixing coe�cients (see (Bradley, 2005) for further details). It is often used
to obtain asymptotic results for some estimators in nonparametric functional
estimation. We suppose that

α(n) = O(n−ρ), for ρ > 0. (2.2)

This means that α(n) tends to 0 at polynomial rate. Observe that if α(n) = 0
for all n ∈ N∗, the two sub σ-algebras Fk1 and F∞k+n are independent for each
k ∈ N∗, and this implies that {Xi : i ≥ 1} is a sequence of independent random
variables. We consider for some ε > 0, the level set

A(ε) = {x ∈ R : f(x) > f(θ)− ε}

which will play crucial rule throughout. Clearly, θ ∈ A(ε) for any ε > 0. We
denote by diam A(ε) the diameter of A(ε) and

V (δ) = {x ∈ R : |x− θ| < δ}.
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We shall assume that there exists δ0 > 0 such that f is continuous on V ≡ V (δ0).
Without loss of generality, we assume throughout the paper that δ0 is small
enough to ensure infV f > 0. Finally, for any set B, its complement is denoted by
Bc. Before we state the main results, we need the following basic assumptions.

H1. As n→∞, bn → 0 and nbn/ log n→∞.

H2. For any i 6= j, the joint density fi,j(x, y) of (Xi, Xj) exists and satis�es

sup
(x,y)∈R2

|fi,j(x, y)− f(x)f(y)| < M, for some M > 0.

H3. for any δ > 0, supx∈V (δ)c f(x) < f(θ).

H4. As ε→ 0, diam A(ε)→ 0.

H5. There exists a constant C > 0 such that |f(x)− f(x′)| ≤ C|x− x′| for all
x, x′ ∈ R.

H6. E|X1|2/T <∞ for some T > 0.

H7. There exists L > 0 and β > 0 such that diam A(ε) ≤ Lεβ for ε ≤ ε0 where
ε0 > 0 is small enough.

Note that hypotheses H1-H2 are mild regularity assumptions that are used by
(X.Yang, 2015) to establish the strong uniform consistency of the frequency
polygon estimator of the density. H3 is in line with the assumption that f is
unimodal. H4 is introduced to avoid high density areas arbitrarily far from
θ. It is used by (Abraham et al., 2003, 2004) to obtain strong consistency
and asymptotic normality of the simple kernel estimator of the mode in the
independent case. Assumptions H5-H6 are used by (X.Yang, 2015) to establish
the optimal rate of convergence for the density estimator. Assumptions H6 is
used by (Abraham et al., 2003) to investigate the rate of convergence for the
simple kernel estimator of the mode in the independent case. If H7 holds, we
say that the density f admits a peak index β. This peak index measures the
sharpness of the density around the mode. Roughly, the sharper the density
around θ, the larger the peak index is. For example, β = 1/2 corresponds to
the family of normal densities and β = 1 corresponds to the family of Laplace
densities (see (Abraham et al., 2003) for further details).

3. Preliminaries

For the proofs of main results, we need to state the following lemmas.

Lemma 3.1. If H4 is satis�ed, then, for any δ > 0, supV (δ)c f < f(θ).

Lemma 3.2. For any ε > 0 and δ > 0, we have P (X ∈ A(ε) ∩ V (δ)) > 0.

For the proofs of above two lemmas, we refer the reader to (Abraham et al.,
2003).
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Lemma 3.3. If H4 and (2.1) are veri�ed then, a.s., for any δ > 0,

max
Sn∩V (δ)

f −→ f(θ) as n→∞. (3.1)

Note that the result of Lemma 3.3 is shown without any condition on α(n).
Extension of Lemma 3.3 to the general multivariate case is immediate. The
general version of Lemma 3.3 extends the result of (Abraham et al., 2003) to
the α-mixing case.

4. Main results

In this section, we will state the main results. The following theorem shows the
almost sure convergence of the indirect estimator (1.3).

Theorem 4.1. Suppose that H1-H3 and (2.2) are satis�ed for some ρ > 2. If
there exists ξ > 0 such that as n→∞,

nb−2n (nbn/ log n)−ρ/2+1/2 log n(log log n)1+ξ −→ 0, (4.1)

then as n→∞,
θn −→ θ a.s.

The following theorem shows the almost sure convergence of the direct estimator.

Theorem 4.2. Suppose that H1-H4, (2.2) and (4.1) are satis�ed for some
ρ > 2. Then, as n→∞,

θ̂n −→ θ a.s.

Note that condition (4.1) is the same as the one used by (X.Yang, 2015) to obtain
the uniform consistency of fn(x) on R. It is important to note that the results
of Theorems 4.1 and 4.2 are obtained without assuming any di�erentiability
condition on the density f around the mode θ. Similar result for the simple
estimator of the mode issued by kernel method is obtained by (Abraham et al.,
2003) under the independence assumption.
Now, we consider the almost sure rate of convergence for the estimate (1.3) in
the following theorem.

Theorem 4.3. Suppose that H1-H7 and (2.2) are satis�ed for some ρ > 2. If
there exists ξ > 0 such that as n→∞,

nT+1b−2n (nbn/ log n)−ρ/2+1/2 log n(log log n)1+ξ −→ 0, (4.2)

where T > 0 is the constant de�ned in H6, then,∣∣∣θ̂n − θ∣∣∣ = O
(
ψβn
)

a.s.,

where ψn = max{bn, (log n/(nbn))1/2} and β is the peak index.
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Remark. Condition (4.2) is the same as the one used by (X.Yang, 2015) to
obtain the uniform consistency rate of fn(x) on R. Theorem 4.3 indicates that
the sharper the density around θ the faster the rate is. For example, if β = 1,
the rate of convergence achieved by the simple estimator of the mode is the
same as that of the density estimator while it is slower when β < 1 . For
β = 1, the rate of Theorem 4.3 is optimal ψn = O

(
1/n1/5

)
for a setting of

bn ∼ 1/n1/5 which is the optimal bin width derived in (Carbon et al., 1997). It
is obtained for ρ > 21/6. It is the same optimal rate obtained by (Dasgupta
and Kpotufe, 2014) for the K-NN mode estimator and faster than the rate
O
(
(log n)2/5/n1/5

)
established by (Abraham et al., 2003) for the simple kernel

estimator. However, if we set bn ∼
(
n−1 log n

)1/3
, then ψn = O

(
n−1 log n

)1/3
which is the optimal rate of convergence for the density estimator in the i.i.d.
case (see (Tran, 1994)). This rate can be achieved if ρ > 7.
The proof of the following proposition is immediate by the fact that the expec-
tation E is a positive linear operator.

Proposition 4.1. We have∣∣∣θ̂n − E(θ̂n)
∣∣∣ = O (bn) a.s.

The proof of the following corollary is immediate from Theorem 4.3.

Corollary 4.1. Suppose that H1-H7, (4.2) and (2.2) are satis�ed for some
ρ > 2. Then,

E
{∣∣∣θ̂n − θ∣∣∣} = O

(
ψβn
)
.

Theorem 4.4. Suppose that H2-H7, (4.1) and (2.2) are satis�ed for some
ρ > 2. If as n→∞,

ϕ(n) := n1+τ/2b−τ/2n (nbn)−τ(2τρ−1) −→ 0, (4.3)

for some 0 < τ < 1/2, then if θ̂n ∈ Jn,j, a.s. and θ ∈ Jn,j0 ,√
n

bn

(
θ̂n − E(θ̂n)

)
(fn,j+1 − fn,j)/σn(θ)

D−→ N (0, 1),

with σ2
n(θ) =

(
1
2 +

(
2j0 − θ

bn

)2)
f(θ) and

D−→ denotes the convergence in dis-

tribution.

Note that assumption (4.3) is weaker than (4.3) of (Tran, 1994).

4.1. Simulation study

First, to illustrate the asymptotic result of Lemma 3.3, we simulate a sample of
size 700 drawn from a correlated Gaussian process (Xi) with Xi ∼ N (0, 1) and

cov(Xi, Xj) = O
(
|i− j|−5

)
6



for any i 6= j. We set δ = 0.5. For each n = 1, ..., 700, we replicate the simulation
for 100 times. In each replication, we calculate max f(x) on Sn ∩ V (δ).
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Figure 1: The red lines show how max{f(Xi), Xi ∈ Sn ∩ V (δ), i = 1, ..., n} varies around
f(0) ≈ 0.4 in function of n = 1, ..., 700.

Figure 1 shows that max{f(Xi), i = 1, ..., n} tends quickly to f(0) as n increases
form 1 to 700. To illustrate the consistency results of Theorem 4.1-4.3, we �rst
reconsider the above simulated Gaussian model and estimate the mode θ by
both the direct and the indirect modes using the optimal bin width obtained
by ((Carbon et al., 1997), Theorem 3.1). Then, we generate a samples of sizes
n = 700 from the standard Laplace distribution also based on the above cor-
related model. We use this sample to estimate the density of this distribution.
The following �gure includes frequency polygon estimates of both the standard
normal and Laplace densities.
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Figure 2: Frequency polygon estimators of the standard normal (a) and Laplace (b) densities
based on n = 700 draws.

The following �gure shows how the two estimators θn and θ̂n vary around the
exact mode θ.
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Figure 3: Typical trajectories of θn and θ̂n for estimating the mode (θ = 0) of both the
standard normal (a) and Laplace (b) densities with n = 1, ..., 700.

In the one hand, in both (a) and (b) of Figure 3, we note that the similarity

between the trajectory of θn and that of θ̂n increases as the sample size increases.
In the other hand, if we compare (a) with (b) in Figure 3, we note that when
the sample size increases, the trajectories in (b) becomes slightly closer to the
exact mode than that of (a) since the peak index of Laplace density (β = 1) is
more than that of normal density (β = 0.5) which is in line with Theorem 4.3.
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5. Proofs

Proof of Lemma 3.3. Let S∗n = {X∗1 , ..., X∗n} be a ghost set of independent
and identically distributed random variables with density f . Recall that one can
use Bradly's coupling lemma (see (Bradley, 1983)) to approximate a sequence
of (stationary or identically distributed) strongly mixing variables {Xi : i ≥ 1}
such that (2.1) by a sequence of i.i.d. variables {X∗i : i ≥ 1}. Thus, if H3 is
veri�ed, by ((Abraham et al., 2003), Theorem 1), we have a.s., for any δ > 0,

max
S∗n∩V (δ)

f −→ f(θ) as n→∞. (5.1)

By contradiction, we suppose that (3.1) is not satis�ed, i.e., there are ε0 > 0
and δ0 > 0 such that for each integer n0 ∈ N∗ there is an integer n ≥ n0 such
that

P
(
f(θ)− max

Sn∩V (δ0)
f ≥ ε0

)
> 0.

Hence,

P
(
f(θ)− max

Sn∩V (δ0)
f ≥ ε0

)
= P

(
max

Sn∩V (δ0)
f ≤ f(θ)− ε0

)
= P

(
n⋂
i=1

((f(Xi) ≤ f(θ)− ε0, Xi ∈ V (δ0)) ∪ (Xi ∈ V (δ0)c)

)
> 0.

Then, for each i = 1, ..., n,

P ((f(Xi) ≤ f(θ)− ε0, Xi ∈ V (δ0)) ∪ (Xi ∈ V (δ0)c) > 0.

Consequently, since X∗i has the same density f as Xi, for each i = 1, ..., n,

P ((f(X∗i ) ≤ f(θ)− ε0, X∗i ∈ V (δ0)) ∪ (X∗i ∈ V (δ0)c) > 0.

Since X∗1 , ..., X
∗
n are i.i.d., we can write

P

(
n⋂
i=1

((f(X∗i ) ≤ f(θ)− ε0, X∗i ∈ V (δ0)) ∪ (X∗i ∈ V (δ0)c)

)
> 0.

Thus, there are ε0 > 0 and δ0 > 0 such that for each integer n0 ∈ N∗ there is
an integer n ≥ n0 such that

P
(
f(θ)− max

S∗n∩V (δ0)
(f) ≥ ε0

)
> 0. (5.2)

Finally, (5.2) leads to contradiction with (5.1) and the proof is completed. �
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Proof of Theorem 4.1. The frequency polygon estimator (1.2) of f can be
written as follows, for each x ∈ Jn,j = [(j − 1/2)bn, (j + 1/2)bn[:

fn(x) = an,1fn,j + an,2fn,j+1,

where an,1 = 1/2 + j − x/bn, an,2 = 1/2 − j + x/bn, fn,j = (nbn)−1
∑n
i=1 Yi,j ,

fn,j+1 = (nbn)−1
∑n
i=1 Yi,j+1 with Yi,j and Yi,j+1 are de�ned in (1.1). Since

x ∈ Jn,j , 0 < an,1, an,2 < 1 and an,1 + an,2 = 1. Now, we have, for any x ∈ Jn,j
and n ≥ 1,

E (fn(x)) = an,1b
−1
n P(X1 ∈ In,j) + an,2b

−1
n P(X1 ∈ In,j+1)

= an,1b
−1
n

∫ jbn

(j−1)bn
f(t)dt+ an,2b

−1
n

∫ (j+1)bn

jbn

f(t)dt

= an,1b
−1
n

( ∫ (j−1/2)bn

(j−1)bn
f(t)dt+

∫ jbn

(j−1/2)bn
f(t)dt

)
+ an,2b

−1
n

( ∫ (j+1/2)bn

jbn

f(t)dt+

∫ (j+1)bn

(j+1/2)bn

f(t)dt
)
. (5.3)

Let δ > 0, since x ∈ Jn,j , so in the one hand, if |x − θ| > δ with θ < x <
(j + 1/2)bn, then |t− θ| > δ for all t ∈ [(j + 1/2)bn, (j + 1)bn[ and this implies
according to Lemma 3.1:

sup
t∈[(j+1/2)bn,(j+1)bn[

f(t) < f(θ). (5.4)

In the other hand, if |x− θ| > δ with (j − 1/2)bn ≤ x < θ, then |t− θ| > δ for
all t ∈ [(j − 1)bn, (j − 1/2)bn[ which implies also according to Lemma 3.1:

sup
t∈[(j−1)bn,(j−1/2)bn[

f(t) < f(θ). (5.5)

Consequently, since an,1 + an,2 = 1, by (5.3)-(5.5), we get

sup
x∈V (δ)c

E (fn(x)) = sup
j

sup
x∈Jn,j∩V (δ)c

E (fn(x)) < f(θ).

So, we can write
lim sup

n
sup

x∈V (δ)c
E (fn(x)) < f(θ).

By ((X.Yang, 2015), Lemma 3.1 and (4.12)),

sup
x∈R
|fn(x)− E (fn(x)) | −→ 0 a.s.

Consequently, almost surely, for all δ > 0,

lim sup
n

sup
x∈V (δ)c

fn(x) < f(θ). (5.6)
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We can write, almost surely, for all δ > 0,

lim sup
n

sup
V (δ)c

fn < f(θ).

By ((X.Yang, 2015),Theorem 2.1), we have for some δ0 > 0,

sup
x∈V (δ0)

|fn(x)− f(x)| −→ 0 a.s.

Then, we have a.s., for all δ ≤ δ0,

lim sup
n

sup
V (δ)c

fn < lim
n

sup
V (δ)

fn.

Finally, since δ is as small as desired, the last inequality shows that

θn −→ θ a.s. �

Proof of Theorem 4.2. By (5.6), we have almost surely, for all δ > 0,

lim sup
n

max
Sn∩V (δ)c

fn < f(θ).

By ((X.Yang, 2015), Theorem 2.1), we have for some δ0 > 0,

sup
x∈V (δ0)

|fn(x)− f(x)| −→ 0 a.s.

Applying Lemma 3.3, we have a.s., for all δ ≤ δ0,

lim sup
n

max
Sn∩V (δ)c

fn < lim
n

max
Sn∩V (δ)

fn.

Finally, since δ is as small as desired, the last inequality shows that

θ̂n −→ θ a.s. �

Proof of Theorem 4.3. Let ψn = max
{
bn, (log n/(nbn))

1/2
}
and M ′ > 0

such that for n large enough:

‖fn − Efn‖∞ ≤M ′ (log n/(nbn))
1/2

(5.7)

and
‖Efn − f‖V ≤M ′bn, (5.8)

with ‖.‖∞ and ‖.‖V denote the supremum norms on R and V , respectively. The
existence of M ′ is ensured by ((X.Yang, 2015), Theorem 2.2 and Lemma 3.1).

Set, for n ≥ 1, γn = 2M ′ψn and kn = 2βL (1.5Cbn + 4γn)
β
where L and C are

the constants de�ned in H5 and H7, respectively and η > 0 a constant to be
chosen later. So, γn → 0 and kn → 0 as n → ∞. We prove the theorem if we
show that for n large enough

P (|θn − θ| ≥ kn) = 0. (5.9)
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For n large enough, to ensure that V (kn) ⊂ V , we have

P (|θn − θ| ≥ kn)

≤ P
(

max
Sn∩V (kn)

(fn) ≤ max
Sn∩V (kn)c

(fn)

)
≤ P

(
−‖fn − Efn‖∞ + max

Sn∩V (kn)
(fn) ≤ max

Sn∩V (kn)c
(fn) + ‖fn − Efn‖∞

)
= P

(
max

Sn∩V (kn)
(fn) ≤ max

Sn∩V (kn)c
(fn) + 2‖fn − Efn‖∞

)
≤ P

(
max

Sn∩V (kn)
(f) ≤ sup

V (kn)c
(fn) + 2‖fn − Efn‖∞ + ‖Efn − f‖V

)

≤ P

(
max

Sn∩V (kn)
(f) ≤ sup

V (kn)c
(fn) + 3γn

)
+ P (‖fn − Efn‖∞ ≥ γn)

+ P (‖Efn − f‖V ≥ γn) .

Clearly, according to (5.7) and (5.8), we have for n large enough

P (‖fn − Efn‖∞ ≥ γn) = 0

and
P (‖Efn − f‖V ≥ γn) = 0.

Consequently, it remains to prove that for n large enough

P

(
max

Sn∩V (kn)
(f) ≤ sup

V (kn)c
E(fn) + 3γn

)
= 0. (5.10)

For each x ∈ Jn,j = [(j − 1/2)bn, (j + 1/2)bn[, we can write

Efn(x) = an,1b
−1
n

∫ jbn

(j−1)bn
f(t)dt+ an,2b

−1
n

∫ (j+1)bn

jbn

f(t)dt

≤ an,1b−1n
∫ jbn

(j−1)bn
|f(t)− f(x)|dt+ an,1b

−1
n

∫ jbn

(j−1)bn
f(x)dt

+ an,2b
−1
n

∫ (j+1)bn

jbn

|f(t)− f(x)|dt+ an,2b
−1
n

∫ (j+1)bn

jbn

f(x)dt,

By H5, we have |f(t) − f(x)| ≤ 1.5Cbn since |x − t| ≤ 1.5bn. Now, since
an,1 + an,2 = 1, we get

sup
V (kn)c

E(fn) = sup
j

sup
V (kn)c∩Jn,j

E(fn) ≤ sup
V (kn)c

(f) + 1.5Cbn. (5.11)
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Choosing n large enough, we may assume that kn ≤ ε0. Fix t ∈ V (kn)c. If t
meets the condition f(θ)− f(t) ≤ ε0/2, then by H7, we have

kn ≤ |t− θ| ≤ diam A(2(f(θ)− f(t))) ≤ 2βL(f(θ)− f(t))β .

Consequently,

f(θ)− f(t) ≥ 2−1 (kn/L)
1/β

= 1.5Cbn + 4γn.

It implies that
f(t) ≤ f(θ)− 1.5Cbn − 4γn. (5.12)

Now, choosing n large enough, we may assume that 1.5Cbn + 4γn ≤ ε0/2. If
t ∈ V (kn)c with f(θ)− f(t) ≥ ε0/2, we have

f(t) ≤ f(θ)− 1.5Cbn − 4γn. (5.13)

By (5.12)-(5.13), we can write

sup
V (kn)c

(f) ≤ f(θ)− 1.5Cbn − 4γn. (5.14)

Therefore, by (5.11) and (5.14),

P

(
max

Sn∩V (kn)
(f) ≤ sup

V (kn)c
E(fn) + 3γn

)

≤ P

(
max

Sn∩V (kn)
(f) ≤ sup

V (kn)c
(f) + 1.5Cbn + 3γn

)

≤ P
(
f(θ)− max

Sn∩V (kn)
(f) ≥ γn

)
.

Then, it su�ces to prove that for n large enough,

P
(
f(θ)− max

Sn∩V (kn)
(f) ≥ γn

)
= 0. (5.15)

Let S∗n = {X∗1 , ..., X∗n} be a ghost set of independent and identically distributed
random variables with density f . By (5.12)-(5.13), we get

A(1.5Cbn + 4γn) ⊂ V (kn),

then obviously,
A(γn) ⊂ V (kn).
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Hence,

P
(
f(θ)− max

S∗n∩V (γn)
f ≥ γn

)
= P

(
n⋂
i=1

((f(X∗i ) ≤ f(θ)− γn, X∗i ∈ V (γn)) ∪ (X∗i ∈ V (γn)c)

)

≤
n∏
i=1

P (((f(X∗i ) ≤ f(θ)− γn, X∗i ∈ V (γn)) ∪ (X∗i ∈ V (kn)c))

= [1− P {X ∈ A(γn) ∩ V (kn)}]n = [1− P {X ∈ A(γn)}]n . (5.16)

Without loss of generality, suppose that ε0 is small enough so that

inf
A(ε0)

(f) > 0 and ∃l > 0 : λ(A(ε)) ≥ lεβ , ∀ε ≤ ε0,

with λ denotes the Lebesgue measure. Thus, by (5.16),

P
(
f(θ)− max

S∗n∩V (γn)
f ≥ γn

)
≤
(

1− lγβn inf
A(ε0)

(f)

)n
.

By Borel-Cantelli Lemma, we have for n large enough

P
(
f(θ)− max

S∗n∩V (kn)
(f) ≥ γn

)
= 0. (5.17)

As was done in the proof of Lemma 3.3, if we assume that (5.15) is not true,
then we will arrive to a contradiction with (5.17) and the proof is completed.�

Proof of Theorem 4.4. Let θ̂n ∈ Jn,j a.s., then E(θ̂n) ∈ Jn,j . Consequently,
by (1.2),

1

bn

(
θ̂n − E(θ̂n)

)
(fn,j+1 − fn,j) = fn(θ̂n)− fn(E(θ̂n)). (5.18)

Then, we can write√
n

bn

(
θ̂n − E(θ̂n)

)
(fn,j+1 − fn,j)

=
√
nbn

(
fn(θ̂n)− E

(
fn(E(θ̂n))

))
+
√
nbn

(
E
(
fn(E(θ̂n))

)
− fn(E(θ̂n))

)
.

(5.19)

We will �rst show that√
nbn

(
fn(θ̂n)− E

(
fn(E(θ̂n))

))
P−→ 0 (5.20)

with
P−→ denotes the convergence in probability. We have for any ε > 0 and n

large enough

P
(∣∣∣fn(θ̂n)− E(fn(E(θ̂n))

∣∣∣ > ε/
√
nbn

)
≤ sup
x∈Jn,j

P
(
|fn(x)− E(fn(x))| > ε/

√
nbn

)
.
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Therefore, it su�ces to prove that as n→∞,

P
(
|fn(x)− E(fn(x))| > ε/

√
nbn

)
−→ 0 for x ∈ Jn,j . (5.21)

For this aim, we write

fn(x) =
1

nbn

n∑
i=1

Zi(x)

where

Zi(x) =

(
1

2
+ j − x

bn

)
Yi,j +

(
1

2
− j +

x

bn

)
Yi,j+1,

with Yi,j and Yi,j+1 are given in (1.1). Then,

√
nbn(fn(x)− E(fn(x))) =

n∑
i=1

∆i(x),

with ∆i(x) = 1√
nbn

(Zi(x)− E(Zi(x))). We now refer to ∆i(x) simply as ∆i for

simplicity. Without loss of generality, let n = 2pq for p = pn, q = qn ∈ [1, n/2]
such that pn →∞ as n→∞ and let us de�ne blocks as follow

W1 =

p∑
i=1

∆i, V1 =

2p∑
i=p+1

∆i

W2 =

3p∑
i=2p+1

∆i, V =
2

4p∑
i=3p+1

∆i

...
...

Wq =

(2q−1)p∑
i=2(q−1)p+1

∆i, Vq =

2pq∑
i=(2q−1)p+1

∆i.

Observe thatWi and Vi are measurable with respect to the σ-algebras: σ(∆i, i ∈
Ik) and σ(∆i, i ∈ Ĩk), respectively, where Ik = {i : 2(k−1)p+1 ≤ i ≤ (2k−1)p}
and Ĩk = {i : (2k − 1)p + 1 ≤ i ≤ 2kp} for all k = 1, ..., q. Furthermore, we
have |i− i′ | > p for any i ∈ Ik and i

′ ∈ Ik′ if k 6= k
′
. In the same way, one can

show that |i− i′ | > p for any i ∈ Ĩk and i
′ ∈ Ĩk′ if k 6= k

′
. Consequently,

√
nbn(fn(x)− E(fn(x))) =

q∑
k=1

Wk +

q∑
k=1

Vk.

Hence,

P (|fn(x)− E(fn(x))| > ε)

≤ P

(∣∣∣∣∣
q∑

k=1

Wk

∣∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣∣
q∑

k=1

Vk

∣∣∣∣∣ > ε/2

)
. (5.22)
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We will �nd an upper bound for each term in the right hand-side of the above
inequality. Without loss of generality, we will only �nd an upper bound for
P (|
∑q
k=1Wk| > ε/2) since the other term can be similarly treated. According

to Bradly's lemma (see (Bradley, 1983)), we can �nd mutually independent
random variables W ∗1 , ...,W

∗
q such that for all k = 1, ..., q, W ∗k has the same

probability distribution as Wk and

P (|Wk −W ∗k | > ζ) ≤ 18 (‖Wk‖ν/ζ)
ν/(2ν+1)

[α(p)]
2ν/(2ν+1)

, (5.23)

for any positive numbers ζ and ν such that 0 < ζ ≤ ‖Wk‖ν <∞. Clearly,

P

(∣∣∣∣∣
q∑

k=1

Wk

∣∣∣∣∣ > ε/2

)

≤ P

(∣∣∣∣∣
q∑

k=1

(Wk −W ∗k )

∣∣∣∣∣ > ε/4

)
+ P

(∣∣∣∣∣
q∑

k=1

W ∗k

∣∣∣∣∣ > ε/4

)
. (5.24)

Let τ = ν/(2ν + 1) and choose p = (nbn)τ . Clearly,

max
1≤k≤q

‖Wk‖ν ≤ 2p(nbn)−1/2. (5.25)

In the one hand, if ε/4q ≤ ‖Wk‖ν , then by (5.23),

P

(∣∣∣∣∣
q∑

k=1

(Wk −W ∗k )

∣∣∣∣∣ > ε/4

)
≤ q max

1≤k≤q
P (|Wk −W ∗k | > ε/4q)

≤ 18q(4qε−1)τ max
1≤k≤q

‖Wk‖τν [α(p)]2τ

≤ 18(8ε−1)τq1+τpτ (nbn)−τ/2p−2τρ

≤ Cn1+τ/2b−τ/2n (nbn)−τ(2τρ+1)

= Cϕ(n), (5.26)

for some generic constant C > 0. In the other hand, if ε/4q > ‖Wk‖ν , then by
(5.23),

P

(∣∣∣∣∣
q∑

k=1

(Wk −W ∗k )

∣∣∣∣∣ > ε/4

)
≤ q max

1≤k≤q
P (|Wk −W ∗k | > ε/4q)

≤ 18q[α(p)]2τ ≤ Cϕ(n). (5.27)

A bound for P (|
∑q
k=1W

∗
k | > ε/4) will now be obtained. By Bernstein inequal-

ity, we have

P

(∣∣∣∣∣
q∑

k=1

W ∗k

∣∣∣∣∣ > ε/4

)
≤ exp

(
− ε2

64
∑q
k=1 var(W ∗k ) + 8‖W ∗k ‖∞ε

)
.
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Since by ((Carbon et al., 1997), Lemma 5.2),

q∑
k=1

var(W ∗k ) =

q∑
k=1

var(Wk) = O

(
1

(nbn)2

)
then, by (5.25),

P

(∣∣∣∣∣
q∑

k=1

W ∗k

∣∣∣∣∣ > ε/4

)
≤ exp

(
−C(nbn)1/2−τ

)
. (5.28)

Combining (4.3), (5.22), (5.24) and (5.26)-(5.28), we get (5.21) which implies
(5.20). Using the same proof as (5.20), we can show√

nbn

(
Efn(E(θ̂n))− fn(E(θ̂n))

)
P−→ 0

and √
nbn (E (fn(θ))− fn(θ))

P−→ 0.

Then,√
nbn

(
E
(
fn(E(θ̂n))

)
− fn(E(θ̂n))

)
−
√
nbn (E (fn(θ))− fn(θ))

P−→ 0 (5.29)

It is well known that if θ ∈ Jn,j0 (see (Carbon et al., 2010)),√
nbn (E (fn(θ))− fn(θ)) /σn(θ)

D−→ N (0, 1), (5.30)

with σ2
n(θ) =

(
1
2 +

(
2j0 − θ

bn

)2)
f(θ). By (5.19) together with (5.29)-(5.30),

the theorem is proved. �
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