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We consider a simple estimator of the density mode using the frequency polygon estimate. We investigate strong consistency of the estimator for strong mixing sequence of real variables under mild assumptions. We study the almost sure rate of convergence and we show that the estimator can achieve optimal almost sure rates of convergence for appropriate choices of the bin widths. The asymptotic normality of the simple estimator is given and a simulation study is performed. Our asymptotic results are obtained without any dierentiability condition assumed on the density around the mode.

Introduction

The problem of estimating the modes of a density function has generated a considerable amount of interest in many areas. For example, in unsupervised problems where modes are used as measure of typicality of a set of data. In particular, in modern applications, mode estimation is often used in clustering, with the modes representing cluster centers. There is an extensive literature on mode estimation in the independent case, see the key references: [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF], [START_REF] Samanta | Nonparamebic estimation of the mode of a multivariate density[END_REF], [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF], [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF] and the references therein. The common approaches consist of estimating the density mode by maximizing an estimate of the unknown density (usually a kernel estimate) on R d or R. [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF][START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] deal with a simple estimate of the mode by maximizing the kernel density estimate on data. More recently, [START_REF] Dasgupta | Optimal rates for k-nn density and mode estimation[END_REF] investigate the k-N N mode estimation.

Most of the existing works are concerned with the consistency and asymptotic normality of the estimators and rates achievable by various approaches. Despite the easy computation, there is only a very few literature dedicated to Email address: ahyounso@yahoo.fr (Ahmad Younso) the frequency polygon as density estimator. This estimator is constructed by connecting with straight lines the mid-bin values of a histogram, for a comprehensive overview, see [START_REF] Scott | Frequency polygons: theory and application[END_REF] in the independent case and [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF] and (X. Yang, 2015) in the dependent case. [START_REF] Scott | Frequency polygons: theory and application[END_REF] shows that the frequency polygon estimate has rates of convergence similar to those of non-negative kernel estimators with respect to the criterion of integrated mean squared error. [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF] and (X. Yang, 2015) extend the results of [START_REF] Scott | Frequency polygons: theory and application[END_REF] to the weakly dependent case and investigate the uniform strong consistency. It is important to note that all the asymptotic results on the frequency polygon estimator of density are obtained on the real line. In this paper, we consider the problem of estimating the mode of an unknown unimodal density by maximizing the frequency polygon estimate of the density.

Let {X i : i ≥ 1} be a sequence of identically distributed random variables dened on a probability space (Ω, F, P) and taking values in R. Suppose X 1 has a density f which is unknown. Denote by θ the unknown mode of f . Consider a partition ... < x -2 < x -1 < x 0 < x 1 < x 2 < ... of the real line into equal intervals I n,j ≡ [(j -1)b n , jb n [ of length b n , where b n , the bin width, is a strictly positive number decreasing to 0 as n → ∞, and j = 0, ±1, ±2, ... . Let J n,j = [(j -1/2)b n , (j + 1/2)b n [ and consider the two adjacent histogram bins I n,j and I n,j+1 . Consider a set of observations S n = {X 1 , ..., X n } and denote the number of observations falling in the intervals I n,j and I n,j+1 respectively by ν n,j and ν n,j+1 . Therefore,

ν n,k = n i=1 Y i,k with Y i,k = 1, if X i ∈ I n,k 0, otherwise, (1.1)
for k = j or j + 1. Then, the values of the histogram in these previous bins are given by

f n,k = ν n,k /(nb n ),
for k = j or j +1. Thus, the frequency polygon estimator of the density function f , for each x ∈ J n,j , is dened by

f n (x) = 1 2 + j - x b n f n,j + 1 2 -j + x b n f n,j+1 .
(1.2)

We rst let the estimate θ n of the mode θ be dened as

θ n ∈ arg max R f n .
(1.

3)

The estimate θ n is classied as indirect estimate since we rst estimate f by f n , then θ n is taken to be any point of R for which (1.3) is satised . When f n is the kernel estimator, θ n is considered by many authors in the independent case, see for example [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF], [START_REF] Samanta | Nonparamebic estimation of the mode of a multivariate density[END_REF], [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF], [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF] and [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF]. More recently, [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] consider it in the ψ-weakly dependent case. As noticed by [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF], the estimate dened by (1.3) is of small practical value because a time-consuming search is necessary. Also, classical search methods perform satisfactorily only when f n is suciently regular (continuous, unimodal, etc). An estimate of the mode which eliminates these problems is originally dened by [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF] and then considered by [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF][START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF]. This later estimator estimates the mode by maximizing the density estimate on data. When f n is the frequency polygon estimator, we let the estimate θ n of the mode θ be dened as

θ n ∈ arg max Sn f n . (1.4) i.e., θ n ∈ {x ∈ S n : f n (x) = max i=1,...,n f n (X i )}.
The estimate (1.4) is classied as direct (simple or sample) estimate since there is a simple recipe to obtain the estimate θ n from the data (see [START_REF] Scott | Multivariate Density Estimation: Theory, Practice, and Visualization[END_REF] for another denition of the sample mode). Since the sample points are naturally concentrated in high-density areas, the set S n can be regarded as the most natural (random) grid for approximating the mode. Clearly, the sharper the density around the mode, the more the data will concentrate around it, and the better θ n will perform. Our aim is to show some consistency and asymptotic results concerning the estimates (1.3) and (1.4) under a classical mixing condition.

Notations and assumptions

We rst introduce some notations. A sequence {X i : i ≥ 1} is said to be α-mixing (or strongly mixing) if

α(n) = sup k≥1 sup A∈F k 1 ,B∈F ∞ k+n |P(A ∩ B) -P(A)P(B)| ↓ 0, as n → ∞, (2.1)
where F k 1 and F ∞ k+n are the sub σ-algebras generated by {X i , i = 1, ..., k} and {X i , i = k + n, ...}, respectively. The α-mixing coecient is one of the most general mixing coecients (see [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF] for further details). It is often used to obtain asymptotic results for some estimators in nonparametric functional estimation. We suppose that

α(n) = O(n -ρ ), for ρ > 0. (2.2)
This means that α(n) tends to 0 at polynomial rate. Observe that if α(n) = 0 for all n ∈ N * , the two sub σ-algebras F k 1 and F ∞ k+n are independent for each k ∈ N * , and this implies that {X i : i ≥ 1} is a sequence of independent random variables. We consider for some > 0, the level set

A( ) = {x ∈ R : f (x) > f (θ) -}
which will play crucial rule throughout. Clearly, θ ∈ A( ) for any > 0. We denote by diam A( ) the diameter of A( ) and

V (δ) = {x ∈ R : |x -θ| < δ}.
We shall assume that there exists δ 0 > 0 such that f is continuous on V ≡ V (δ 0 ). Without loss of generality, we assume throughout the paper that δ 0 is small enough to ensure inf V f > 0. Finally, for any set B, its complement is denoted by B c . Before we state the main results, we need the following basic assumptions.

H1. As n → ∞, b n → 0 and nb n / log n → ∞.

H2. For any i = j, the joint density f i,j (x, y) of (X i , X j ) exists and satises sup

(x,y)∈R 2 |f i,j (x, y) -f (x)f (y)| < M, for some M > 0.
H3. for any δ > 0, sup x∈V (δ) c f (x) < f (θ).

H4. As → 0, diam A( ) → 0.

H5. There exists a constant C >

0 such that |f (x) -f (x )| ≤ C|x -x | for all x, x ∈ R. H6. E|X 1 | 2/T < ∞ for some T > 0.
H7. There exists L > 0 and β > 0 such that diam A( ) ≤ L β for ≤ 0 where 0 > 0 is small enough.

Note that hypotheses H1-H2 are mild regularity assumptions that are used by (X. Yang, 2015) to establish the strong uniform consistency of the frequency polygon estimator of the density. H3 is in line with the assumption that f is unimodal. H4 is introduced to avoid high density areas arbitrarily far from θ. It is used by [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF][START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF] to obtain strong consistency and asymptotic normality of the simple kernel estimator of the mode in the independent case. Assumptions H5-H6 are used by (X. Yang, 2015) to establish the optimal rate of convergence for the density estimator. Assumptions H6 is used by [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] to investigate the rate of convergence for the simple kernel estimator of the mode in the independent case. If H7 holds, we say that the density f admits a peak index β. This peak index measures the sharpness of the density around the mode. Roughly, the sharper the density around θ, the larger the peak index is. For example, β = 1/2 corresponds to the family of normal densities and β = 1 corresponds to the family of Laplace densities (see [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] for further details).

Preliminaries

For the proofs of main results, we need to state the following lemmas.

Lemma 3.1. If H4 is satised, then, for any δ > 0, sup V (δ) c f < f (θ).

Lemma 3.2. For any > 0 and δ > 0, we have

P (X ∈ A( ) ∩ V (δ)) > 0.
For the proofs of above two lemmas, we refer the reader to [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF].

Lemma 3.3. If H4 and (2.1) are veried then, a.s., for any δ > 0, max

Sn∩V (δ) f -→ f (θ) as n → ∞. (3.1)
Note that the result of Lemma 3.3 is shown without any condition on α(n).

Extension of Lemma 3.3 to the general multivariate case is immediate. The general version of Lemma 3.3 extends the result of [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] to the α-mixing case.

Main results

In this section, we will state the main results. The following theorem shows the almost sure convergence of the indirect estimator (1.3).

Theorem 4.1. Suppose that H1-H3 and (2.2) are satised for some ρ > 2. If there exists ξ > 0 such that as n → ∞,

nb -2 n (nb n / log n) -ρ/2+1/2 log n(log log n) 1+ξ -→ 0, (4.1) 
then as n → ∞,

θ n -→ θ a.s.
The following theorem shows the almost sure convergence of the direct estimator.

Theorem 4.2. Suppose that H1-H4, (2.2) and (4.1) are satised for some ρ > 2. Then, as n → ∞,

θ n -→ θ a.s.
Note that condition (4.1) is the same as the one used by (X. Yang, 2015) to obtain the uniform consistency of f n (x) on R. It is important to note that the results of Theorems 4.1 and 4.2 are obtained without assuming any dierentiability condition on the density f around the mode θ. Similar result for the simple estimator of the mode issued by kernel method is obtained by [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] under the independence assumption. Now, we consider the almost sure rate of convergence for the estimate (1.3) in the following theorem.

Theorem 4.3. Suppose that H1-H7 and (2.2) are satised for some ρ > 2. If there exists ξ > 0 such that as n → ∞,

n T +1 b -2 n (nb n / log n) -ρ/2+1/2 log n(log log n) 1+ξ -→ 0, (4.2)
where T > 0 is the constant dened in H6, then,

θn -θ = O ψ β n a.s.,
where ψ n = max{b n , (log n/(nb n )) 1/2 } and β is the peak index.

Remark. Condition (4.2) is the same as the one used by (X. Yang, 2015) to obtain the uniform consistency rate of f n (x) on R. Theorem 4.3 indicates that the sharper the density around θ the faster the rate is. For example, if β = 1, the rate of convergence achieved by the simple estimator of the mode is the same as that of the density estimator while it is slower when β < 1 . For β = 1, the rate of Theorem 4.3 is optimal ψ n = O 1/n 1/5 for a setting of b n ∼ 1/n 1/5 which is the optimal bin width derived in [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF]. It is obtained for ρ > 21/6. It is the same optimal rate obtained by [START_REF] Dasgupta | Optimal rates for k-nn density and mode estimation[END_REF] for the K-N N mode estimator and faster than the rate O (log n) 2/5 /n 1/5 established by [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF] for the simple kernel estimator. However, if we set b n ∼ n -1 log n

1/3 , then ψ n = O n -1 log n 1/3
which is the optimal rate of convergence for the density estimator in the i.i.d. case (see [START_REF] Tran | Density estimation for time series by histograms[END_REF]). This rate can be achieved if ρ > 7.

The proof of the following proposition is immediate by the fact that the expectation E is a positive linear operator.

Proposition 4.1. We have

θn -E( θn ) = O (b n ) a.s.
The proof of the following corollary is immediate from Theorem 4.3.

Corollary 4.1. Suppose that H1-H7, (4.2) and (2.2) are satised for some ρ > 2. Then,

E θn -θ = O ψ β n .
Theorem 4.4. Suppose that H2-H7, (4.1) and (2.2) are satised for some

ρ > 2. If as n → ∞, ϕ(n) := n 1+τ /2 b -τ /2 n (nb n ) -τ (2τ ρ-1) -→ 0, (4.3) for some 0 < τ < 1/2, then if θn ∈ J n,j , a.s. and θ ∈ J n,j0 , n b n θn -E( θn ) (f n,j+1 -f n,j )/σ n (θ) D -→ N (0, 1), with σ 2 n (θ) = 1 2 + 2j 0 -θ bn 2 f (θ) and D -→ denotes the convergence in dis- tribution.
Note that assumption (4.3) is weaker than (4.3) of [START_REF] Tran | Density estimation for time series by histograms[END_REF].

Simulation study

First, to illustrate the asymptotic result of Lemma 3.3, we simulate a sample of size 700 drawn from a correlated Gaussian process (X i ) with X i ∼ N (0, 1) and cov(X i , X j ) = O |i -j| -5 for any i = j. We set δ = 0.5. For each n = 1, ..., 700, we replicate the simulation for 100 times. In each replication, we calculate max f (x) on S n ∩ V (δ). 

max(f)

Figure 1: The red lines show how max{f (X i ), X i ∈ Sn ∩ V (δ), i = 1, ..., n} varies around f (0) ≈ 0.4 in function of n = 1, ..., 700.

Figure 1 shows that max{f (X i ), i = 1, ..., n} tends quickly to f (0) as n increases form 1 to 700. To illustrate the consistency results of Theorem 4.1-4.3, we rst reconsider the above simulated Gaussian model and estimate the mode θ by both the direct and the indirect modes using the optimal bin width obtained by [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF], Theorem 3.1). Then, we generate a samples of sizes n = 700 from the standard Laplace distribution also based on the above correlated model. We use this sample to estimate the density of this distribution.

The following gure includes frequency polygon estimates of both the standard normal and Laplace densities. The following gure shows how the two estimators θ n and θn vary around the exact mode θ. In the one hand, in both (a) and (b) of Figure 3, we note that the similarity between the trajectory of θ n and that of θn increases as the sample size increases.

In the other hand, if we compare (a) with (b) in Figure 3, we note that when the sample size increases, the trajectories in (b) becomes slightly closer to the exact mode than that of (a) since the peak index of Laplace density (β = 1) is more than that of normal density (β = 0.5) which is in line with Theorem 4.3.

Proofs

Proof of Lemma 3.3. Let S * n = {X * 1 , ..., X * n } be a ghost set of independent and identically distributed random variables with density f . Recall that one can use Bradly's coupling lemma (see [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF]) to approximate a sequence of (stationary or identically distributed) strongly mixing variables {X i : i ≥ 1} such that (2.1) by a sequence of i.i.d. variables {X * i : i ≥ 1}. Thus, if H3 is veried, by [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF], Theorem 1), we have a.s., for any δ > 0, max

S * n ∩V (δ)
f -→ f (θ) as n → ∞.

(5.1)

By contradiction, we suppose that (3.1) is not satised, i.e., there are 0 > 0 and δ 0 > 0 such that for each integer n 0 ∈ N * there is an integer n ≥ n 0 such that P f (θ) -max

Sn∩V (δ0) f ≥ 0 > 0.
Hence,

P f (θ) -max Sn∩V (δ0) f ≥ 0 = P max Sn∩V (δ0) f ≤ f (θ) -0 = P n i=1 ((f (X i ) ≤ f (θ) -0 , X i ∈ V (δ 0 )) ∪ (X i ∈ V (δ 0 ) c ) > 0.
Then, for each i = 1, ..., n,

P ((f (X i ) ≤ f (θ) -0 , X i ∈ V (δ 0 )) ∪ (X i ∈ V (δ 0 ) c ) > 0.
Consequently, since X * i has the same density f as X i , for each i = 1, ..., n,

P ((f (X * i ) ≤ f (θ) -0 , X * i ∈ V (δ 0 )) ∪ (X * i ∈ V (δ 0 ) c ) > 0.
Since X * 1 , ..., X * n are i.i.d., we can write

P n i=1 ((f (X * i ) ≤ f (θ) -0 , X * i ∈ V (δ 0 )) ∪ (X * i ∈ V (δ 0 ) c ) > 0.
Thus, there are 0 > 0 and δ 0 > 0 such that for each integer n 0 ∈ N * there is an integer n ≥ n 0 such that

P f (θ) -max S * n ∩V (δ0) (f ) ≥ 0 > 0.
(5.2)

Finally, (5.2) leads to contradiction with (5.1) and the proof is completed.

Proof of Theorem 4.1. The frequency polygon estimator (1.2) of f can be written as follows, for each x ∈ J n,j = [(j -1/2)b n , (j + 1/2)b n [:

f n (x) = a n,1 f n,j + a n,2 f n,j+1 , where a n,1 = 1/2 + j -x/b n , a n,2 = 1/2 -j + x/b n , f n,j = (nb n ) -1 n i=1 Y i,j , f n,j+1 = (nb n ) -1 n i=1 Y i,j+1
with Y i,j and Y i,j+1 are dened in (1.1). Since x ∈ J n,j , 0 < a n,1 , a n,2 < 1 and a n,1 + a n,2 = 1. Now, we have, for any x ∈ J n,j and n ≥ 1, (5.4)

E (f n (x)) = a n,1 b -1 n P(X 1 ∈ I n,j ) + a n,2 b -1 n P(X 1 ∈ I n,j+1 ) = a n,1 b -1 n jbn (j-1)bn f (t)dt + a n,2 b -1 n (j+1)bn jbn f (t)dt = a n,1 b -1 n (j-1/2)bn (j-1)bn f (t)dt + jbn (j-1/2)bn f (t)dt + a n,2 b -1 n (j+1/2)bn jbn f (t)dt + (j+1)bn (j+1/2)bn f (t)dt .
In the other hand, if |x -θ| > δ with (j -1/2)b n ≤ x < θ, then |t -θ| > δ for all t ∈ [(j -1)b n , (j -1/2)b n [ which implies also according to Lemma 3.1:

sup t∈[(j-1)bn,(j-1/2)bn[ f (t) < f (θ).

(5.5)

Consequently, since a n,1 + a n,2 = 1, by (5.3)-(5.5), we get

sup x∈V (δ) c E (f n (x)) = sup j sup x∈Jn,j ∩V (δ) c E (f n (x)) < f (θ).
So, we can write lim sup

n sup x∈V (δ) c E (f n (x)) < f (θ).
By ((X. Yang, 2015), Lemma 3.1 and (4.12)), f n (x) < f (θ).

sup x∈R |f n (x) -E (f n (x)) | -→ 0 a.s.
(5.6)

We can write, almost surely, for all δ > 0, lim sup

n sup V (δ) c f n < f (θ).
By ((X. Yang, 2015),Theorem 2.1), we have for some δ 0 > 0, sup x∈V (δ0)

|f n (x) -f (x)| -→ 0 a.s.

Then, we have a.s., for all δ ≤ δ 0 , lim sup

n sup V (δ) c f n < lim n sup V (δ) f n .
Finally, since δ is as small as desired, the last inequality shows that θ n -→ θ a.s.

Proof of Theorem 4.2. By (5.6), we have almost surely, for all δ > 0, lim sup

n max Sn∩V (δ) c f n < f (θ).
By ((X. Yang, 2015), Theorem 2.1), we have for some δ 0 > 0, sup

x∈V (δ0) |f n (x) -f (x)| -→ 0 a.s.
Applying Lemma 3.3, we have a.s., for all δ ≤ δ 0 , lim sup

n max Sn∩V (δ) c f n < lim n max Sn∩V (δ) f n .
Finally, since δ is as small as desired, the last inequality shows that θn -→ θ a.s.

Proof of Theorem 4.3. Let ψ n = max b n , (log n/(nb n ))

1/2 and M > 0 such that for n large enough:

f n -Ef n ∞ ≤ M (log n/(nb n )) 1/2 (5.7) and Ef n -f V ≤ M b n , (5.8)
with . ∞ and . V denote the supremum norms on R and V , respectively. The existence of M is ensured by ((X. Yang, 2015), Theorem 2.2 and Lemma 3.1). Set, for n ≥ 1, γ n = 2M ψ n and k n = 2 β L (1.5Cb n + 4γ n ) β where L and C are the constants dened in H5 and H7, respectively and η > 0 a constant to be chosen later. So, γ n → 0 and k n → 0 as n → ∞. We prove the theorem if we show that for n large enough

P (|θ n -θ| ≥ k n ) = 0.
(5.9) Hence,

P f (θ) -max S * n ∩V (γn) f ≥ γ n = P n i=1 ((f (X * i ) ≤ f (θ) -γ n , X * i ∈ V (γ n )) ∪ (X * i ∈ V (γ n ) c ) ≤ n i=1 P (((f (X * i ) ≤ f (θ) -γ n , X * i ∈ V (γ n )) ∪ (X * i ∈ V (k n ) c )) = [1 -P {X ∈ A(γ n ) ∩ V (k n )}] n = [1 -P {X ∈ A(γ n )}] n .
(5.16)

Without loss of generality, suppose that 0 is small enough so that inf

A( 0) (f ) > 0 and ∃l > 0 : λ(A( )) ≥ l β , ∀ ≤ 0 ,
with λ denotes the Lebesgue measure. Thus, by (5.16),

P f (θ) -max S * n ∩V (γn) f ≥ γ n ≤ 1 -lγ β n inf A( 0) (f ) n 
.

By Borel-Cantelli Lemma, we have for n large enough

P f (θ) -max S * n ∩V (kn) (f ) ≥ γ n = 0.
(5.17)

As was done in the proof of Lemma 3.3, if we assume that (5.15) is not true, then we will arrive to a contradiction with (5.17) and the proof is completed.

Proof of Theorem 4.4. Let θn ∈ J n,j a.s., then E( θn ) ∈ J n,j . Consequently, by (1.2), 1 b n θn -E( θn ) (f n,j+1 -f n,j ) = f n ( θn ) -f n (E( θn )).

(5.18)

Then, we can write n b n θn -E( θn ) (f n,j+1 -f n,j )

= nb n f n ( θn ) -E f n (E( θn )) + nb n E f n (E( θn )) -f n (E( θn )) .

(5.19)

We will rst show that Therefore, it suces to prove that as n → ∞, P |f n (x) -E(f n (x))| > / nb n -→ 0 for x ∈ J n,j .

(5.21)

For this aim, we write

f n (x) = 1 nb n n i=1 Z i (x)
where

Z i (x) = 1 2 + j - x b n Y i,j + 1 2 -j + x b n Y i,j+1 ,
with Y i,j and Y i,j+1 are given in (1.1). Then,

nb n (f n (x) -E(f n (x))) = n i=1 ∆ i (x),
with ∆ i (x) = 1 √ nbn (Z i (x) -E(Z i (x))). We now refer to ∆ i (x) simply as ∆ i for simplicity. Without loss of generality, let n = 2pq for p = p n , q = q n ∈ [1, n/2] such that p n → ∞ as n → ∞ and let us dene blocks as follow

W 1 = p i=1 ∆ i , V 1 = 2p i=p+1 ∆ i W 2 = 3p i=2p+1 ∆ i , V = 2 4p i=3p+1 ∆ i . . . . . .

W q =

(2q-1)p i=2(q-1)p+1

∆ i , V q = 2pq i=(2q-1)p+1

∆ i .

Observe that W i and V i are measurable with respect to the σ-algebras: σ(∆ i , i ∈ I k ) and σ(∆ i , i ∈ Ĩk ), respectively, where I k = {i : 2(k-1)p+1 ≤ i ≤ (2k-1)p} and Ĩk = {i : (2k -1)p + 1 ≤ i ≤ 2kp} for all k = 1, ..., q. Furthermore, we have |i -i | > p for any i ∈ I k and i ∈ I k if k = k . In the same way, one can show that |i -i | > p for any i ∈ Ĩk and i ∈ Ĩk if k = k . Consequently,

nb n (f n (x) -E(f n (x))) = q k=1 W k + q k=1 V k .
Hence,

P (|f n (x) -E(f n (x))| > ) ≤ P q k=1 W k > /2 + P q k=1
V k > /2 .

(5.22)

Since by [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF] It is well known that if θ ∈ J n,j0 (see [START_REF] Carbon | Asymptotic normality of frequency polygons for random elds[END_REF]), 

Figure 2 :

 2 Figure 2: Frequency polygon estimators of the standard normal (a) and Laplace (b) densities based on n = 700 draws.

Figure 3 :

 3 Figure 3: Typical trajectories of θn and θn for estimating the mode (θ = 0) of both the standard normal (a) and Laplace (b) densities with n = 1, ..., 700.

  0, since x ∈ J n,j , so in the one hand, if |x -θ| > δ with θ < x < (j + 1/2)b n , then |t -θ| > δ for all t ∈ [(j + 1/2)b n , (j + 1)b n[ and this implies according to Lemma 3.1: sup t∈[(j+1/2)bn,(j+1)bn[ f (t) < f (θ).

  nb n f n ( θn ) -E f n (E( θn )) the convergence in probability. We have for any > 0 and n large enoughP f n ( θn ) -E(f n (E( θn )) > / nb n ≤ sup x∈Jn,j P |f n (x) -E(f n (x))| > / nb n .

  22), (5.24) and (5.26)-(5.28), we get (5.21) which implies (5.20). Using the same proof as (5.20), we can shownb n Ef n (E( θn )) -f n (E( θn )) P -→ 0 and nb n (E (f n (θ)) -f n (θ)) P -→ 0. Then, nb n E f n (E( θn )) -f n (E( θn )) -nb n (E (f n (θ)) -f n (θ)) P -→ 0 (5.29)

  nb n (E (f n (θ)) -f n (θ)) /σ n (θ) . By (5.19) together with (5.29)-(5.30), the theorem is proved.
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For n large enough, to ensure that V (k n ) ⊂ V , we have

Clearly, according to (5.7) and (5.8), we have for n large enough

Consequently, it remains to prove that for n large enough

P max

Sn∩V (kn)

(5.10)

(5.11)

Choosing n large enough, we may assume that k

(5.12)

Now, choosing n large enough, we may assume that 1.

(5.13) By (5.12)-( 5.13), we can write sup

(5.14) Therefore, by (5.11) and (5.14),

P max

Sn∩V (kn)

Then, it suces to prove that for n large enough,

(5.15)

Let S * n = {X * 1 , ..., X * n } be a ghost set of independent and identically distributed random variables with density f . By (5.12)-(5.13), we get

We will nd an upper bound for each term in the right hand-side of the above inequality. Without loss of generality, we will only nd an upper bound for

) since the other term can be similarly treated. According to Bradly's lemma (see [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF])), we can nd mutually independent random variables W * 1 , ..., W * q such that for all k = 1, ..., q, W * k has the same probability distribution as W k and

(5.23)

for any positive numbers ζ and ν such that 0

(5.24)

Let τ = ν/(2ν + 1) and choose p = (nb n ) τ . Clearly,

(5.25)

In the one hand, if /4q ≤ W k ν , then by (5.23), .