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Abstract 

Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, 

Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish 

either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in 

plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), 

glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC 

transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were 

analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent 

data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural 

pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and 

from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic 

analyses for each detoxification gene family. We found expansions of several gene sub-families in the 

genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the 

same genomic position and orientation suggesting recent successive duplications. These results 

highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in 

adaptation to plant secondary metabolites, and provide gene candidates for further functional 

analyses. 

Keywords: adaptation, detoxification, Daktulosphaira vitifoliae, insect hormones, omics 

 

Introduction  

Daktulosphaira vitifoliae is better known as phylloxera, the pest responsible for the massive 

European vineyard destruction in the XIXth century. D. vitifoliae is a piercing-sucking monophagous 

hemipteran. Phylloxera feeds on Vitis spp. host plants, forms galls and highjacks plant resources for 

its own benefit (Forneck et al., 2001, Kellow et al., 2004, Nabity et al., 2013). The polyphenic 

phylloxera life cycle has several generations per year and different insect forms feed on leaves 

(gallicole, GA) and roots (radicicole, RA; Figure 1) (Powell et al., 2013). 

In plants, primary metabolism responds to phylloxera attack with enhanced levels of free amino 
acids, particularly glutamine (Kellow et al., 2004). Phylloxera infests grapevine hosts by inhibiting 
water- and mineral-uptake, modifying sink-source translocation, altering secondary metabolism and 
manipulating root growth (Eitle et al., 2017). While phylloxera resistance to pesticides is rarely 
reported, several studies have demonstrated phylloxera interactions and/or manipulations of plant 
secondary metabolites (Du et al., 2009, Eitle et al., 2017, Kellow et al., 2004, Nabity et al., 2013, 
Powell et al., 2013). Insect adaptation to plants they fed on partly relies on detoxification genes 
(Dermauw et al., 2018). Detoxification gene products are targets for xenobiotics which include plant 
secondary products and chemical compounds such as pesticides. Two naturally occurring phenolic 
compounds in grapevine, chlorogenic acid and quercetin, stimulate gall formation, whereas caffeic 
acid, quinic acid and glycosylated quercetin appear to inhibit gall formation in resistant hybrids 
(Denisova, 1965, Powell et al., 2013). Data suggest that phylloxera might also manipulate plant 
hormones since an auxin is found in phylloxera saliva (Schaller, 1963) and levels of other hormones 
(abscisic acid, zeatin, gibberellic acid, cytokinins, kinetin) are induced during gall formation in leaf and 
root galls. The GA and RA forms of phylloxera specifically manipulate plant organ physiology but little 
is known about insect physiological changes during this plant-insect interaction. 
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GA and RA forms have specific patterns of host plant manipulation. After root attack, levels of 

terpenoid pathway compounds increased (Lawo et al., 2011), possibly due to up-regulation of 

mevalonate and/or alternative isopentenyl pyrophosphate pathways (IPP). Plant secondary 

metabolite profiles differ between young nodosities and mature nodosities during phylloxera root 

infection. Beta-caryophyllene is only found in mature nodosities and is induced in response to root 

attack where it attracts natural plant enemies (Rasmann et al., 2005). Phenylpropanoid pathway 

compounds l are elevated in mature compared to young nodosities (Loughrin et al., 1997). The 

lipoxygenase pathway is also induced following phylloxera attack and high levels of linoleic acid were 

measured in resistant grapevine (Du et al., 2009, Tucker et al., 2007). As a consequence, volatiles 

derived fromthe mevalonate and IPP pathways and the compounds from phenylpropanoid pathway 

(phenolics, flavonoids and stilbenes) are also up-regulated in roots of grapevines infected by the 

radicicole form (Du et al., 2009, Lawo et al., 2011). Flavonol compounds, such as rutin and quercetin 

glycoside, were up-regulated in leaf tissue after root attack (Benheim et al., 2011), together with a 

reduction in chlorophyll content and an increase in xanthophyll protective pigments and other 

carotenoids (Düring, 1999).  

Phylloxera leaf galls predominantly occur on non-economically important American Vitis hosts, and in 

southern Europe, leaf galling is more common than root-galling (Powell et al 2013). Leaf galling on V. 

vinifera is associated with enhanced auxin levels such as indole acetic acid (Powell et al., 2013). 

Transcriptomic analyses of GA and RA are helping us understand phylloxera adaptation to its Vitis 

hosts, and a recent study of phylloxera leaf gall development suggested that phylloxera is redirecting 

leaf development to carpel formation (Schultz et al., 2019). GA forms suppressed accumulation of 

gibberellins, auxins and jasmonate in early stages of plant gall development, and abscisic acid was 

barely detectable in plant galls (Body et al., 2019). Cytokinins play a central role in the initiation of 

plant galls, but at the early stage of plant gall development, the plant pathway is not activated 

implying that phylloxera could provide this phytohormone. Phylloxera could manipulate other 

phytohormones and plant biosynthetic pathways. Here, we quantify detoxification gene expression 

levels in RA and GA in order to characterize phylloxera responses to Vitis species.  

Xenobiotic detoxification requires three phases: an initial oxidation-reduction-hydrolysis (mainly 

cytochrome P450s (CYP) and carboxylesterases (CCE)), followed by enzymatic conjugation (UDP-

glycolsyl transferases (UGT) or glutathione S-transferases (GST)) and finally, conjugated-metabolite 

transport-excretion out of the cells (ABC transporters (ABC)). Many insect CYPs are involved in the 

metabolism of key endogenous substrates such as steroid hormones and lipids. CYPs are also 

associated with the metabolism or detoxification of xenobiotics such as plant natural products and 

pesticides and are key components for the insects’ successful adaptation to their host plants (Heidel-

Fischer and Vogel, 2015). Carboxylesterase (Pfam PF00135 domain) is a gene family belonging to the 

α/β hydrolase protein superfamily (Pfam PF00561 domain) (Oakeshott et al., 2005). The CCE family 

comprises mostly catalytic proteins that hydrolyze a number of carboxylic esters but there are non-

catalytic exceptions (Oakeshott et al., 2010, Oakeshott et al., 2005). CCEs are also involved in the 

modification of insect juvenile hormone, an endogenous sesquiterpene. Glutathione S-transferases 

(EC 2.5.1.18, GSTs), and the uridine diphosphate-glycosyltransferases (EC 2.4.1.17, UGTs) (Jakoby and 

Ziegler, 1990) are conjugation enzymes that covalently attach small endogenous hydrophilic 

molecules to increase compound solubility and facilitate their excretion. GSTs can be divided into 

several classes based on their cellular localizations (cytosolic or microsomal), substrate specificities 

and phylogenetic relationships. UGTs catalyze the conjugation of a glycosyl group from a UDP-

glycoside to variety of small hydrophobic molecules (lipophilic aglycones), resulting in highly 

hydrophilic molecules that are subsequently eliminated by excretion pathways or sequestered as 

non-toxic compounds (Bozzolan et al., 2014). In insects, UGTs are involved in the metabolization of 
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several allelochemical compounds (Huang et al., 2008), and appear to play a role in insecticide 

resistance mechanisms (Pedra et al., 2004, Silva et al., 2012, Vontas et al., 2005, Yang et al., 2013). 

ATP-binding cassette transporters use ATP hydrolysis energy to transport substrates like amino acids, 

lipids, peptides, sugars and drugs across cell membranes. In insects, they have attracted recent 

interest due to their involvement in insecticide resistance. 

Here, we investigate the potential roles of phylloxera detoxification genes in adaptation to Vitis 

species. Our study is based on the manual annotation of detoxification genes from previously named 

families using the recently published genome of D. vitifoliae (Rispe et al., 2020). Using RNAseq data 

from GA and RA whole bodies (Rispe et al., 2016), we inferred expression levels associated with the 

suite of detoxification genes. We also re-analyzed transcriptomic data from L1 and L2-3 phylloxera 

stages feeding on tolerant and resistant rootstock (Savoi et al., 2020). By combining genomic 

information, orthology studies, phylogenetic and expression data, we were able to infer potential 

roles of certain detoxification genes in the response of specialist phylloxera to both its main host, 

Vitis vinifera, and to insect endogenous compounds. We highlight the role of key detoxification gene 

targets for future functional studies to confirm their involvement phylloxera-grapevine adaptive 

interactions. 

 

Results-discussion 

D. vitifoliae divergence from the piercing-sucking hemipteran pea aphid Acyrthosiphon pisum or 

green peach aphid, Myzus persicae occurred about 137 MYA, and from the Chagas disease vector 

Rhodnius prolixus at 302 MYA. A. pisum, M. persicae and R. prolixus have sequenced genomes with 

manually annotated detoxification gene families (Ramsey et al., 2010, Schama et al., 2016) and serve 

as comparison for our studies. A. pisum is a Fabaceae specialist and M. persicae is a broad generalist 

(Blackman and Eastop 2000). D. vitifoliae detoxification genes were identified in the recently 

published genome, manually annotated and compared with family members from these three 

species. We found 66 CYPs, 20 CCEs, 35 UGTs, 10 GSTs, and 67 ABCs in the D. vitifoliae genome 

(Table 1) (Rispe et al., 2020), and heterogeneity in detoxification gene numbers among the annotated 

hemipteran genomes. For example, the invasive polyphagous glasshouse white fly, Trialeurodes 

vaporariorum displayed 2.6 times more GSTs and 1.4 less ABCs than phylloxera. 

Phase I enzymes: CYP and CCE 

 CYP 

66 CYP sequences were found on 56 scaffolds with 30% of these containing more than one CYP. CYP 

genes are often clustered in genomes, as a result of gene duplication events (Feyereisen, 2011b). 

Suppl Table 1 summarizes the scaffold, gene position, orientation, exon number, protein size, clan 

and the name attributed by David Nelson. Based on their sequence identity, we annotated 7, 20, 33 

and 6 members for CYP2, CYP3, CYP4 and mitochondrial clades, respectively. The phylogeny of the 66 

DvCYPs, is presented in Figure 2A. Mitochondrial and CYP2 clans are evolutionary conserved in 

Hemiptera and have roles in insect development , but they are also involved in chemosensory 

processes (Willingham and Keil, 2004, Feyereisen, 2012). Five CYP2 clade members had a 1:1 

ortholog in the A. pisum and M. persicae genomes. A single copy of CYP307A was found in D. 

vitifoliae and A. pisum compare to two copies in M. persicae. A single copy of CYP15A was found in D. 

vitifoliae versus three copies for M. persicae and A. pisum (Mathers et al., 2017). CYP15A catalyzes 

the epoxidation of methyl farnesoate to juvenile hormone (Helvig et al., 2004) and CYP307A2  is 

involved in the ecdysone pathway. DvCYP15A1 and DvCYP307A2 are thus most probably involved in 
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molting, which is consistent with their low expression in phylloxera adult GA and RA forms 

(Schumann et al., 2018b). Ecdysteroidogenic P450 expression levelscorresponding toHalloween 

genes are summarized in Figure 3. CYP18A1 (ecdysteroid inactivating enzyme) and CYP306A1 , 

clustered on scaffold52, are highly expressed in the two adult forms. It has been suggested that the 

CYP306A1 whitefly ortholog might be also involved in adaptation to plant secondary metabolites, like 

the alkaloid nicotine (Pym et al., 2019). Only one copy of CYP314A1 was found in D. vitifoliae 

whereas three copies were found in A. pisum and two in M. persicae. The D. melanogaster CYP314A1 

enzyme catalyzes the hydroxylation of ecdysone to the steroid insect molting hormone 20-

hydroxyecdysone (Petryk et al., 2003). DvCYP314A1 is expressed at higher levels in RA than in GA. 

DvCYP302A1, also involved in 20-hydroxyecdysone biosynthesis, had one ortholog in M. persicae 

while A. pisum had two (Ramsey et al., 2010). 

D. vitifoliae possessed one copy of CYP303A1, one of the rare 1:1 CYP orthologs in insects. It is 

essential for adult eclosion a function conserved over 400MY in D. melanogaster and Locusta 

migratoria (Wu et al., 2019). Its gene product is involved in the regulation of cuticular hydrocarbon 

synthesis protecting insects from water loss and insecticide penetration in locust (Wu et al., 2020)... 

In drosophila, CYP303A1 is essential for wing extension at adult eclosion. We estimated that 

DvCYP303A1 expression is 7-times higher in RA compared to GA forms (Figure 2B) suggesting a 

specific role in the root environment. Interestingly, winged-phylloxera forms emerge from radicicole 

forms. 

In insects, CYP3 clade members are involved in xenobiotic metabolism and insecticide resistance. The 

CYP4 clade is a highly diversified group of enzymes involved in pesticide metabolism, development 

and chemical communication. Both clades showed more diversity than CYP2 and mitochondrial 

clades when compared to M. persicae and A. pisum (Table 1). The CYP6CZ family (4 members) 

showed an expansion compared to A. pisum and M. persicae, which each contain a single CYP6CZ. 

Two CYP6CZ are clustered on scaffold 184 (Suppl data Figure1) in close proximity with two effectors, 

which are small secreted proteins potentially essential for interactions between phylloxera and 

grapevines, five ABC transporters, two genes involved in development and a glutamate receptor. The 

other two CYP6CZ members are clustered on scaffold 156 (Suppl data Figure 2) withCYP6CZ2 highly 

expressed in GA forms (Figure 2B, Suppl data Figure 2). CYP6CZ2 is up-regulated in the phylloxera 

feeding larval stage compared to the probing stage. In contrast, CYP6CZ3 is expressed more highly in 

the L1 probing phylloxera stage (Savoi et al., 2020). 

Four other families from clan 3 (CYP6NZ, CYP6PA, CYP6PC and CYP6PD) were specifically found in D. 

vitifoliae but were absent from M. persicae and A. pisum and are derived from CYP6CY ancestor 

duplications. Interestingly, the scaffold 375 contained CYP6PA1 and CYP6PC1 together with four 

genes from the CYP6CY family (Suppl data Figure 3; data scaffold 375). These genes might be 

involved in host plant and feeding site selections. The DvCYP6CY family is reduced, with eight 

members annotated in D. vitifoliae compared to 16 in  A. pisum and 17 in M. persicae (Mathers et al., 

2017).. DvCYP6CYs showed high expression in RA forms, with CYP6CY25 having the lowest expression 

and CYP6CY26 the highest (Figure 2B). DvCYP6CY25 was the closest ortholog of the blooming CYP6CY 

family of M. persicae and A. pisum and grouped in a clade with eight A. pisum and three M. persicae 

CYP6CYs suggesting it was present in a common ancestor. The other CYP6CYs grouped in a single D. 

vitifoliae branch (Figure 2A). MpCYP6CY3 detoxifies the plant pyridine alkaloid, nicotine (Bass et al., 

2013) and six genes from the CYP6CY family are involved in adaptive evolution to plant hosts in Aphis 

glycine (Bansal et al., 2014). CYP6CY genes specific to the D. vitifoliae genome might be involved in 

the detoxification of grape secondary metabolites like phenolic compounds (chlorogenic acid, 

quercetin, and tannins) together with phylloxera-specific CYP6PA, CYP6PC and CYP6NZ. CYP6PD1 is 
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expressed 100-times more in RA forms compared to GA (Figure 2B, Suppl data Table 2 and (Rispe et 

al., 2016)). 

We annotated a new CYP family, CYP3806A, previously named CYP3373A (Rispe et al., 2020) and 

classified in CYP4 clade. CYP3806A1 is expressed 100-fold higher in RA forms than GA (Suppl data 

Table 2 ,Figure 2B). This new gene family shared a common ancestor with CYP4LR-LP-LS and CYP4CH 

families (Figure 2 A). CYP380B1 was the only 1:1 ortholog in A. pisum and M. persicae genomes from 

the CYP4 clade, and it is highly expressed in adult forms. CYP380B1 is highly expressed in the feeding 

L2-L3 larval stage compared to probing L1 stage and is up-regulated in phylloxera biotype C feeding 

on the rootstock Teleki 5C (Savoi et al., 2020). This gene could be linked to the manipulation of plant 

metabolism and hormones (cytokinins) by insects during sap feeding (Zhang et al., 2017).  The 

CYP380C family has 11 members all blooming from CYP380C6 ancestor. Six CYP380C are clustered on 

two scaffolds (315 and 386) with three genes on each indicating recent duplication events. Seven 

CYP380C members (CYP380C22,23,24,26,28,29 and 36) had higher expression in RA compared to GA 

forms. CYP380C6 and C9 from green peach aphid are induced while feeding and are involved in aphid 

adaptation to indole-glucosinolate mediated plant defense (Ji et al., 2020). Their phylloxera ortholog, 

CYP380C36, is highly expressed in RA and is also up regulated in the probing stage (Savoi et al., 2020). 

This gene could be involved in phylloxera response to root derived compounds synthetized after 

phylloxera wounding (Du et al., 2009). We annotated three members of the CYP4G family in D. 

vitifoliae clustered on scaffold 379. Only one copy of this family, DvCYP4G194, has an ortholog in M. 

persicae and A. pisum (Figure 2A), and is involved in cuticular long-chain hydrocarbon synthesis (Chen 

et al., 2016, Feyereisen, 2020, Qiu et al., 2012). A DvCYP4G194 duplication produced two additional 

copies (CYP4G195 and CYP4G196). The three DvCYP4Gs showed the highest expression among all 

DvCYPs as is often seen in insects (Daborn et al., 2002, Feyereisen, 2020). CYP4G196 is highly 

expressed in the L2-3 form, whereas CYP4G194 and CYP4G195 have increased expression in L1 forms 

of phylloxera biotype A (Savoi et al., 2020). CYP4LQ1 and 2 cluster with CYP4CJ6,7and 8 as well as 

with the GSTomega1 and a chitin synthase (Suppl data Figure 4). All these clustered genes are highly 

expressed in adult forms except for CYP4LQ1 which is only expressed in RA. CYP4LQ1 and CYP4CJ6 

are expressed in the L1-probing stage together with CYP4LN1, CYP4LP1, CYP4LR1, CYP4LS2 and 

CYP4CH4 (Savoi et al., 2020). In all inducer Agrobacterium tumefaciens, virH2, a P450, detoxifies 

phenolic compounds such as ferulic acid (Kalogeraki et al., 1999). These compounds also accumulate 

in root gall upon phylloxera attack (Du et al., 2009). DvCYPs expressed when L1 larvae are selecting 

host plants and feeding sites may reflect their implication in phenolic compounds detoxification. 

CCE  

Twenty genes encoding CCEs were retrieved from the D. vitifoliae genome, across thirteen scaffolds 
(see Suppl data Table 1 for gene position, exon number and orientation). Twelve sequences bearing a 
putative alpha/beta domain but not the CCE domain were discarded. With the exception of 
sequences encoding non-catalytic NLGs and Gliotactin, all other DvCCEs displayed the catalytic triad 
(Ser-His-Glu) with the serine-active site included in the conserved pentapeptide Gly-X-Ser-X-Gly 
(Claudianos et al., 1999) (Suppl data Table 3), suggesting that they could encode active enzymes. The 
total number of DvCCEs is much lower than the mean number of sequences found in other insect 
genomes (Table 1), with the exception of the body louse Pediculus humanus (17 genes (Ramsey et al., 
2010) and the bee A. mellifera (24 genes (Claudianos et al., 2006)), known to exhibit a deficit in 
detoxification enzymes.  

The neuro/developmental class comprises eight members in D. vitifoliae, including two AChE genes, 
three NLGs and one member of the glutactin and gliotactin families, respectively (Table 1). 
Phylogenetic analysis (Figure 4A) showed clear orthologous relationships for these genes between 
the four hemipteran species, confirming previous results (Schama et al., 2016, Ramsey et al., 2010). 
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In D. vitifoliae, three sequences belonging to the NLG clade have been isolated (DvCCE13,14,19), all 
of which possess hydrophobic transmembrane regions. DvCCE13 and 19 are more highly expressed in 
probing larvae, whereas DvitCCE14 is expressed in the L2-3 feeding stage (Savoi et al., 2020). The 
number of annotated NLGs differ depending on the species: one in M. persicae, up to ten in Bemisia 

tabaci (Xia et al., 2019), six in B. mori and four in D. melanogaster (reviewed in (Durand et al., 2017)). 
Overall, this neuro/developmental class is well-conserved amongst insects, as supported by several 
phylogenetic analyses comparing CCE genes from various insect orders, such as Hymenoptera 
(Oakeshott et al., 2010) (Claudianos et al., 2006), Lepidoptera (Yu et al., 2009) and Diptera 
(Oakeshott et al., 2010). DvCCE16 encodes a putative glutactin protein, but the remaining CCEs from 
this first class are expressed at low levels in D. vitifoliae adult stages (Figure 4B), as expected for 
genes mainly involved in cell adhesion during neural development. AChEs are the most studied 
enzymes from this class. They have conserved functions in insects with the hydrolysis of 
neurotransmitter acetylcholine. Like most insects, D. vitifoliae possesses two AChE genes, one 
predicted to be membrane-bound with a GPI anchor signal (DvCCE8=AChE1), the other to be 
secreted (DvCCE9=AchE2). Both DvCCE8 and 9 are expressed in L1 larvae (Savoi et al., 2020). Insect 
AChEs are known targets of carbamate and organophosphorus insecticides (Oakeshott et al., 2010). A 
point mutation that causes a single amino acid substitution (S341F) in the acyl pocket of AChE1 has 
been associated with insecticide resistance, first in M. persicae resistant clones (Nabeshima et al., 
2003), then in other aphid species (reviewed in (Bass et al., 2014)) (Suppl data Figure 5). More 
recently, a F392W substitution has been observed in the AChE1 sequence from a Chinese B. tabaci 
chlorpyrifos resistant strain (Zhang et al., 2012). However, this mutation was not responsible for 
insecticide resistance, as it was also found in susceptible populations from the field. Interestingly, the 
DvCCE8 sequence isolated here also exhibits a tryptophan at the same position (Suppl data Figure 5). 
suggesting that this F392W substitution may be common amongst hemipterans.  

D. vitifoliae appears to possess only two genes (DvCCE17, 18) encoding intracellular enzymes related 
to the detoxification/dietary class (Figure 4A). In A. pisum, and M. persicae only five or six sequences 
from this class were identified, and none were found in triatomines (Traverso et al., 2017). R. prolixus 

is an exception among hemipterans as it may possess 22 of these CCEs. However, their phylogenetic 
assignment was not well supported (Schama et al., 2016) and they mostly clustered into a R. prolixus 
specific group in our analysis, but again with low support values (Figure 4A). The low expansion of 
this CCE class within hemipterans is in marked contrast with other insect orders which generally 
retain more. (Table 1). Nevertheless, DvCCE17 and DvCCE18 are strongly expressed in both adult 
forms (Figure 4B), and DvCCE18 is upregulated in feeding larvae (Savoi et al., 2020), consistent with 
the detoxification of dietary or allelochemical compounds.  

In D. vitifoliae, as in other hemipteran species, the low number of CCEs from the second class is 
counterbalanced by a diversification of hormone/pheromone processing CCEs. In sucking insects, the 
relative expansion of this class, which mainly includes secreted enzymes, may be useful for 
detoxification process in the gut or the salivary secretions that are pumped into the host (plant or 
animal) as they feed. Ten DvCCEs belonging to this third class were identified, comparable to the 
twelve sequences isolated in M. persicae, but still far from the diversity identified in other 
hemipterans (Table1). Eight of these clustered with A. pisum and M. persicae genes related to JHE 
and JHE-like enzymes. These eight sequences were located on only two scaffolds, suggesting 
duplication events. No ortholog for the A. pisum JHE (ACYPI007757; (Ishikawa et al., Schama et al., 
2016) was found. Nevertheless, DvCCE2 and DvCCE10 both exhibit the “QSAG” motif which strongly 
correlated with insect JHE (Oakeshott et al., 2010) and both are predicted to be secreted proteins 
with active catalytic sites (Suppl data Table 3). DvCCE7 and 10 were predicted to be putative effector 
candidates, and were expressed in L1 larvae and L2-3 larvae, respectively (Savoi et al., 2020). Aphid 
CCEs from this JHE/JHE-like clade split into several sub-groups suggesting that that they may descend 
from an ancestral JHE but that some have gained new functions. Finally, two genes (DvCCE11 and 
DvCCE12) from this third class clustered within the β-esterase clade, which contains almost 
exclusively secreted enzymes. DvCCE12 is expressed in feeding larvae (Savoi et al., 2020). β-esterase 
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overexpression suggested a major mechanism of resistance to organophosphate and carbamate 
insecticides in hemipterans ((Field and Devonshire, 1998); review in (Bass et al., 2014)). These CCEs 
were also recently found to be involved in neonicotinoid resistance in B. tabaci (Xia et al., 2019). In 
addition, β-esterases have other biological functions, including reproduction and odorant processing 
(Chertemps et al., 2012, Chertemps et al., 2015, Richmond et al., 1980, Scott, 1986). In D. vitifoliae, 
the genes of this third class showed marked differences in expression between the two adult forms 
(Figure 4B). In particular, DvCCE1 and DvCCE2 showed high expression levels in RA compared to GA 
forms, whereas DvCCE11 is mostly predominant in GA-adult. All three DvCCEs exhibit higher 
expression in feeding phylloxera larvae (Savoi et al., 2020). These differences may reflect variations in 
exposure to allelochemicals, in relation to the distinct environments of these adult forms.  

Phase II enzymes: UGT and GST 

GSTs 

In insect GSTs, the cytosolic class contains six subclasses (Delta, Epsilon, Omega, Sigma, Theta and 

Zeta) (Sheehan et al., 2001).The microsomal GSTs are very different in structure and origin but they 

catalyze similar reactions to the cytosolic GSTs (Toba and Aigaki, 2000). We annotated only 10 GST 

genes (see Suppl data Table 1 for gene position, exon number and orientation). This number is 

comparable to GST numbers found in other Hemipteran genomes (Table1) like M. persicae or R. 

prolixus, but lower than in A. pisum (Ramsey et al., 2010, Schama et al., 2016) and similar to the 8 

genes identified in the D. vitifoliae transcriptome (Zhao et al., 2017). A low number of genes is often 

associated with reduced detoxification capabilities (Claudianos et al., 2006). Nevertheless, such low 

diversity is often observed in aphids and could be linked to specific adaptations to environmental 

conditions. The distribution of GST genes revealed classical duplication events, with genes belonging 

to the same class located in the same scaffold and in the same orientation. Patterns of inter-specific 

conservation and lineage-specific expansion of the gene family were observed (Figure 5A). The 

phylogenetic analysis enables unambiguous identification of D. vitifoliae GST classes. As in other 

aphids, we did not identify any epsilon GSTs, a class involved in insecticide resistance in other insects 

(Ding et al., 2003). This could suggest the recruitment of other GSTs in this process, like the insect 

specific delta class (Vontas et al., 2002) which is phylogenetically associated with epsilon GST, or the 

involvement of detoxification enzymes. In addition, the absence of GSTs from the zeta and 

unclassified class, both of which are involved in insecticide resistance in Lepidoptera species 

(Yamamoto et al., 2009, Yamamoto and Yamada, 2016), leads to a potential similar selection of 

detoxification capabilities in other classes of GSTs. Overall, the cytosolic DvGSTs appeared to be very 

closely related to the M. persicae repertoire, and could be associated with defense against plant 

secondary metabolites. GSTd2 is highly expressed in adult forms (Figure 5B). GSTs2 and 3, GSTd1 and 

GSTt1 displayed low expression in adult forms, and Savoi et al. reported higher expression of these 

genes in feeding larvae compared to probing larvae (Savoi et al., 2020). GSTs1 is expressed in RA and 

GA, and is more expressed in mobile probing L1 larvae than in feeding L2-3 larvae (Savoi et al., 2020). 

Overall, cytosolic GSTs are more expressed in RA adults where, in addition to detoxifying plant 

secondary metabolites, they could play an important role in protection against external factors like 

bacterial infections, temperature stress or entropic contaminants such as heavy metals or 

insecticides. Such functions have often been associated with increased expression following exposure 

to stress in aphids and various insects (Enayati et al., 2005, Gawande et al., 2014, Zhou et al., 2013). 

We identified three microsomal GSTs in D. vitifoliae genome, the highest number of mGSTs described 

so far in aphids. We found a highly conserved region (ERVRRAHLNDLENI) in all insect mGSTs analyzed 

(Suppl data Figure 6), indicating its potential importance as a functional domain. Microsomal class 

GST genes are involved in cell protection from oxidative damage and xenobiotics, thus this relatively 

high diversity of mGSTs could highlight an original stress response mechanism. While D. vitifoliae 



9 
 

MAPEGs are very conserved, their expression pattern is remarkably different: mGST1 and 2 are 

expressed at very low levels in adult forms but data obtained by Savoi et al. showed that mGST1 and 

2 are more expressed in L1 larvae compared to L2-3 larvae (Savoi et al., 2020). Microsomal GST1 and 

2 are also expressed at low levels in GA and RA, and might therefore be involved in the early phase of 

phylloxera-grapevine interaction, whereas mGST3, which is broadly expressed in all tissues and 

development stages, could be involved in detoxification of substrates accumulated during feeding 

(L2-3 larval stages) and adult phylloxera forms. 

UGTs 

The D. vitifoliae genome contains 35 putative UGT genes (Suppl data Table 1), which is similar to 
other aphids, particularly in M. persicae (38) and A. pisum (55), and comparable to that of Aphis 

gossypii (31) (Pan et al., 2018), and Bemisia tabaci (76) (Guo et al., 2020) and Diaphorina citri (17) 
(Tian et al., 2019) (Table 1). DvUGTs are distributed across 10 sub-families when compared to the 
curated UGTs repertoires from M. persicae and A. pisum. The phylogeny reveals the absence of the 
UGT50 family, which is usually highly conserved in holometabolous insects, a common feature with 
the UGTs of A. pisum and M. persicae, suggesting the recruitment of other candidate for its relative 
function. A major sub-family, UGT344, accounts for nearly half of the sequences identified, indicating 
that this clade should have potential functional diversification in D. vitifoliae (Figure 6A). Expansion of 
10 genes of the 344N sub-family was found in the scaffold 572 cluster (Suppl data Figure 7). This 
expansion is associated with a wide range of expression patterns ranging from a near absence for 
UGT344N4-N6 and UGT344N2 in GA, to high specific expression for UGT344N3 in RA. UGT344N4 and 
UGT344M2 are strongly expressed in L2-3 forms, while UGT344N2, N3, N6 and N7 are more 
expressed in L1 forms. Interestingly, UGT344N10 is only expressed in biotype C L1 larvae. Such varied 
expression patterns could be related to various exogenous detoxification pathways, given that 
members of the 344 family are often associated with aphid insecticide resistance (Pan et al., 2018, 
Pan et al., 2019). The distribution of UGT genes over the identified scaffolds revealed further 
duplication events, with scaffold 424 and 572 accounting for almost 50% of the total gene number, 
suggesting rapid evolution of these families. Expression levels of genes present in the scaffold 424 
cluster are also heterogeneous, with UGT349A2-A5 showing high expression in RA compared to GA 
and high expression in L2-3 forms while UGT349A4-A7 are expressed in biotype C L1 larvae. The 
same is true for the expression levels of the remaining UGT genes: almost no expression was 
detected for UGT343C5,350C2,349A4,351A3,349A6 in the two adult forms. In contrast, UGT329A1 
and UGT350C1 were the highest expressed UGTs in both GA and RA forms, respectively (Figure 6B). 
Finally, UGT344F3 is the only UGT specifically expressed in biotype C L1 forms, whereas 
UGT344N1,339A3,343C4 are highly expressed in L1 forms in all biotypes studied. The varied 
expression patterns for UGTs might reflect a diversity of functions during phylloxera-grapevine 
interactions, but also multiple potential functions in cuticle tanning, pigmentation and even olfaction, 
as observed in other insect species (Bozzolan et al., 2014, Hopkins and Kramer, 1992). 
 

Phase III enzymes: ATP-binding cassette transporters 

ABC transporters are classified into eight different families (A to H) based on similarities in their ATP 
binding domain. A full transporter (FT) contains two cytosolic nucleotide-binding domains (NBDs) and 
two transmembrane domains (TMDs), whereas a half transporter (HT) possesses only one of each 
domain and needs to dimerize to form a functional transporter. The NBD is involved in ATP binding 
and hydrolysis. The TMD has 5-6 transmembrane segments and is responsible for substrate 
specificity. 
D. vitifoliae genome hosts 67 ABC transporter genes, spread over 48 scaffolds. This total number is 
close to the 71 genes identified automatically in A. pisum (International Aphid Genomics, 2010) 
(Table 1) and is in the same range as the 55 ABC transporters of B. tabaci (Nicholson et al., 2015, Tian 
et al., 2017). However, a smaller number of ABC transporters has been identified in another recently 
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sequenced Hemiptera, T. vaporariorum, with 45 genes (Pym et al., 2019). ABCD, ABCE, ABCF 
subfamilies are well conserved across arthropods, whereas specific lineages showed a reduction 
(ABCA, ABCC) or an expansion (ABCG and ABCH) in their gene number in D. vitifoliae.  
ABCA is limited to 4 members, similar to the number present in D. noxia (Nicholson et al., 2015). 
ABCAs are full transporters and are among the largest ABC transporters. In humans, they are 
involved in lipid transport (Wenzel et al., 2007), however this has not yet been demonstrated in 
insects. However, the Bt toxin receptor function was described and mutations in ABCA2 were shown 
to confer resistance to Cry2Ab toxin in Helicoverpa armigera and H. punctigera (Tay et al., 2015). In 
addition, a role in wing development has been suggested in T. castaneum (Broehan et al., 2013). 
DvABCA1 and DvABCA2 were highly expressed in GA and RA, while DvABCA4 was expressed in L1 
probing larvae (Savoi et al., 2020) (Figure 7B). 
ABCBs commonly refer to either P-glycoproteins (P-gps) or multi drug resistance proteins (MDR). 

DvABCBs group 2 FTs and 4 HTs. DvABCB1 FT shares orthologous relationships with D. melanogaster 

Mdr65 and Manduca sexta ABCB1, which is involved in drug efflux at the blood-brain barrier (BBB) 

(Murray et al., 1994). Furthermore, studies showed that Mdr65 RNAi knock-down Drosophila are 

more sensitive to nine insecticides from different chemical classes (Sun et al., 2017a). DmMdr65 has 

also been suggested to play a major role in protection against plant toxins such as cardenolides 

(Groen et al., 2017), a role also suggested for ABCB in Lepidoptera (Petschenka et al., 2013) and in 

Coleoptera (Kowalski et al., 2020). DvABCB6 exhibits a mitochondrial-addressing domain, and human 

mitochondrial ABCBs have roles in biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis and 

prevention of oxidative stress (Schaedler et al., 2015). Given their similarities, mitochondrial ABCBs 

might have a conserved role from humans to arthropods. Expression levels of all DvABCBs are 

relatively high in the adult forms, with only DvABCB3 showing a very low expression level (Figure 7B). 

Expression levels of DvABCBs were higher in L2-3 feeding larvae compared to L1 probing larvae, 

except for DVABCB2 (Savoi et al., 2020). 

ABCCs are also named multidrug-resistance associated proteins (MRPs) for their role in drug 
extrusion. This subfamily has fewer members in D. vitifoliae, with only five genes, which is less than 
A. mellifera but similar to Laodelphax striatellus (Sun et al., 2017b). This is the smallest number 
observed in the genomes available to date. This lineage-specific reduction in ABCCs is also observed 
in two other Hemiptera, B. tabaci and Cimex lectularius, with only six genes coding for ABCC (Tian et 
al., 2017). At least two other functions have been identified for humans ABCCs in addition to MRPs: a 
sulfonylurea receptor (SUR) and a cystic fibrosis transmembrane conductance regulator (CFTR). ABCs 
with these different functions were identified in insects. The adult expressed DvABCC1, and DvABCC4 
are MRPs (Figure 7B). DvABCC2-3 share orthology with human ABCC4 and ABCC7/CFTR. DvABCC3 is 
also highly expressed in adults (Figure 7B). DvABCC5 is a SUR ortholog and is the only DvABCC 
member detected with higher expression in L1 larvae compared to L2-3 larvae (Savoi et al., 2020). 
The subfamily ABCD is composed of HTs that need to homo- or hetero-dimerize to be functional. 

Three members have been identified in D. vitifoliae genome, which is identical to P. xylostella, 

Danaus plexippus and D. pulex (Qi et al., 2016, Sturm et al., 2009). The high sequence identity found 

in ABCDs from humans to arthropods suggests conserved functions. Human ABCDs are expressed at 

the peroxisomal membrane and are involved in fatty acid and fatty acyl-CoA transport into the 

peroxisome (Morita and Imanaka, 2012). In accordance with this putative role in insects, all DvABCDs 

are highly expressed in adult forms (Figure 7B). 

ABCE1 and ABCF1-3 are highly conserved in arthropods and share a human ortholog suggesting 

conserved function. Both of these subfamilies contain only two NBDs and lack TMDs which abolishes 

transporter function. ABCE is involved in ribosome biogenesis and translation regulation (Barthelme 

et al., 2011), whereas ABCFs have functions in translation regulation only. ABCE and ABCFs are highly 

expressed during all stages of arthropod development which is consistent with a function in 
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translation regulation (Broehan et al., 2013, Dermauw et al., 2013, Qi et al., 2016) and is in 

agreement with our expression data (Figure 7B). 

D. vitifoliae possesses 22 genes coding for ABCG, a number very close to other piercing-sucking 

arthropods (Tian et al., 2017) and higher than chewing insects, which usually have around 15 

members. This specific expansion may be due to successive duplications, as we found four scaffolds 

with more than two ABCGs (scaffold31-40-88-213). ABCGs are historically the most well described 

ABC transporters. White was the first identified in D. melanogaster with a role in eye pigmentation 

(Morgan, 1910), followed by brown and scarlet, which are also involved in eye-color. In addition to 

their roles as pigment precursor transporters, they have functions in courtship behavior (Zhang and 

Odenwald, 1995), transport of biogenic amines (Borycz et al., 2008) and uptake of uric acid 

(Tatematsu et al., 2011). One white ortholog, DvABCG17, was identified in the D. vitifoliae genome 

while DvABCG18, DvABCG19, and DvABCG20 are paralogs of scarlet. DvABCG16 is the ortholog of 

another highly conserved ABCG gene in insects, DmE23. This ABCG transporter can be induced by the 

hormone 20-hydroxy-ecdysone and thus modulates ecdysone responses (Hock et al., 2000). ABCGs 

are also involved in lipid transport from the epidermis to the cuticle (Broehan et al., 2013). Our data 

revealed that expression patterns between the 22 ABCG members are diverse (Figure 7B), with low 

or no expression of ABCG20, 21 and 22, as confirmed by (Savoi et al., 2020), whereas ABCG1 is one of 

the most expressed ABC transporters in D. vitifoliae. Scarlet (DvABCG18) is highly expressed in GA, 

but the opposite expression is seen for DvABCG14. DvABCG18 is also more expressed in probing 

forms compared to feeding forms (Savoi et al., 2020).  

The ABCH subfamily is restricted to arthropods and zebrafish (Popovic et al., 2010) and has not been 

found in mammals, plants or fungi (Dean et al., 2001, Kovalchuk and Driessen, 2010, Verrier et al., 

2008). In D. vitifoliae, ABCH consists of 23 genes corresponding to one third of the total ABC 

transporter genes and thus constitutes the largest subfamily. Several genes are present in cluster: 

five genes on scaffold 184 (Suppl data Figure 1), while scaffolds 36 (Suppl data Figure 8) and 129 

(Suppl data Figure 9) carry four genes each. ABCHs on scaffold 36 have a conserved 15-exon 

organization and high protein identity, suggesting recent tandem duplications. Interestingly, the 

genes surrounding this cluster are six predicted effector genes (Suppl data Figure 9). Such extensive 

expansion of the DvABCH subfamily is only observed in T. urticae (Dermauw et al., 2013). Some 

members of this subfamily have a role in cuticle barrier construction via lipid transport as reported in 

Locusta migratoria and T. castaneum studies (Broehan et al., 2013, Yu et al., 2017). In D. 

melanogaster Oskyddad (Osy) and Snustorr (Snu) are required to build the cuticular desiccation 

barrier (Wang et al., 2020, Zuber et al., 2018). The D. vitifoliae orthologs of these genes are DvABCH1 

and DvABCH2, respectively, and they are highly expressed in adult forms (Figure 7B), which is in 

accordance with their expected function. The ABCH transporter family displays different expression 

patterns in RA and GA. For example, DvABCH16 is higher in GA than RA (Figure 7B) and more 

expressed in L1 than in L2-3 larvae (Savoi et al., 2020). Mite ABCH genes showed differential 

expression after host plant transfer or xenobiotic exposure, suggesting their potential involvement in 

detoxification mechanisms (Dermauw et al., 2013). This might also apply to D. vitifoliae ABCHs as we 

observed differential expression patterns between the two adult forms with root and leaf 

environments, and between the probing and feeding larvae. 

CONCLUSIONS 

D. vitifoliae is a xylem-sucking aphid that monophagously feeds on grapevines. We analyzed the 

detoxification gene repertoire of phylloxera. Genes coding for phase I (66 CYPs, 20 CCEs), phase II (35 

UGTs, 11 GSTs) and phase III (67 ABC transporters) enzymes were found in the D. vitifoliae genome 

and we are able to make predictions about their physiological roles, according to both their 
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expression patterns and described functions from other models. The Halloween genes are involved in 

ecdysteroid synthesis and regulation, and DvCCE2 and 10 are probably JHE enzymes. DvABCG16 is 

orthologous to an ABCG transporter modulating ecdysone response. DvCYP303A1 and DvCYP4G are 

involved in cuticular hydrocarbon synthesis. DvCCEs from the neuro/developmental class are crucial 

for nervous system development. DvABCE1 are most probably involved ribosome biogenesis and 

translation regulation. While feeding on a plant, the insect is reprogramming leaf and root 

development toward galls by manipulating primary and secondary metabolism. We found expansions 

of several sub-families including DvCYP6CZ (four members), DvCYP380C (eleven), microsomal DvGST 

(three), DvUGT344N (ten members) and DvABCH (23). Members of these families could be involved 

in xenobiotic detoxifications. DvCYP3806A1 was only found in phylloxera and is highly expressed in 

RA. DvCYP6PD1 expression is also 100-fold more in RA than GA. Both genes might have a major role 

in root metabolite detoxification. DvCYP380B1, a rare 1:1 ortholog between A. pisum, M. persicae 

and D. vitifoliae, is highly expressed in feeding L2-3 and up-regulated in insects feeding on resistant 

rootstock. DvCYP4LQ1 and DvCYP4CJ6 might detoxify phenolic compounds induced during insect 

probing. DvCCE7 and 10 were predicted to be putative effector candidates by Savoi et al. (Savoi et al., 

2020) and our phylogenetic data assigned these two CCEs as secreted enzymes from class III, which 

are often associated with detoxification processes. Microsomal GST1 and 2 might be involved in early 

phases of phylloxera-grapevine interaction, whereas mGST3 could be involved in detoxification of 

substrates accumulated during L2-3 feeding and in adult forms. We found that DvABCH1 and H2 

genes are orthologs of genes involved in cuticular lipid transport and possibly xenobiotic excretion. 

Finally, we found several loci where detoxification families were in the vicinity of effectors and 

developmental genes. Our work provides a list of candidate genes for future functional investigation 

aimed at elucidating phylloxera adaptation to grapevine. We have highlighted the main 

characteristics of these detoxification families in D. vitifoliae with a specific focus on adaptation to 

host plant secondary metabolites and insect endogenous compounds. 

 

Experimental procedures 

Divergent time estimation 

We used TimeTree, a knowledge-base for information on the tree-of-life and its evolutionary time 

scale (Kumar et al., 2017) to estimate divergent time between D. vitifoliae, A. pisum, M. persicae and 

R. prolixus.  

Transcriptome data 

Transcriptome data from adult forms of D. vitifoliae that feed respectively on leaves (GA) and roots 

(RA) was published by Rispe et al. 2016 (project accession: PRJNA294954). We mapped these data on 

the D. vitifoliae genome v3.1 using OGS3.2 annotations (Rispe et al., 2020). Hisat2 and transcript 

abundance was subsequently quantified using RSEM to obtain a “transcript per million” estimation. 

We screened these data with our detoxification gene annotation lists (Suppl data Table 2), and used 

the heatmap.2 function from the R gplots package with the Euclidean distance and the complete 

hierarchical clustering methods to obtain our heatmap figures. 

Gene annotations and phylogenetic analysis 

We used described sets of Hemiptera P450, CCE GSTs, UGTs and ABC transporter proteins to search 

the D. vitifoliae genome, Pcf7 strain v3.1 (Rispe et al., 2020)., by TBLASTN using Galaxy (Giardine et 

al., 2005). All gene models were manually validated or corrected in WebApollo based on homology 
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with other Hemipteran sequences, and on alignment with RNAseq data, when available. 

Alternatively, a direct keyword query search was used against the AphidBASE website 

(http://bipaa.genouest.org/is/aphidbase/). The classification of deduced proteins and their integrity 

were verified using BlastP against the non-redundant (nr) GenBank database. When genes were 

suspected to split in different scaffolds, protein sequences were merged for further analyses. Genes 

were also searched by TBLASTN against the whole genome assembly using CCE, CYP, UGT and GST 

proteins sequences from N. vitripennis, R. prolixus, A. pisum and M. persicae collected from the latest 

NCBI release. ABC transporters genes from D. vitifolia genome were searched by TBLASTN using ABC 

transporter proteins sequences from D. melanogaster and A. mellifera. 

Amino acid sequences were aligned using MAFFT (using L-INS-i option) (Katoh et al., 2019) with 

different gene families members from Myzus persicae, Rhodnius prolixus and Acyrthosiphon pisum 

(Ramsey et al., 2010, Schama et al., 2016). Phylogenetic trees were constructed using PhyML 

(Guindon et al., 2010) based on the LG substitution model (see Suppl data Table 4) as determined by 

the SMS server (Lefort et al., 2017) using Nearest Neighbour Interchange (NNI). Branch supports 

were estimated by a Bayesian-like transformation of aLRT (aBayes) (Anisimova et al., 2011). A 

dendrogram was created and colored using FigTree software 

(http://tree.bio.ed.ac.uk/software/figtree/). Protein CYP sequences were send to D. Nelson for name 

attribution.  
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Figures legends 

Figure 1: D. vitifoliae life cycle 

Life cycle drawing was adapted from Annu. Rev. Entomol 2001, 46:387-412 and Entomologia 

experimentalis et applicata. 2009 vol:131 (1) pp:1-10. Gall corresponds to the grey form surrounding 

by an orange line. Sexual forms are in blue. 

Figure 2: Phylogeny and expression heatmap for CYP family members 

Panel A: Phylogeny of CYP found in D. vitifoliae (Dvit in red), A. pisum (Apis in green), M. persicae 

(Mper in purple) and R. prolixus (Rpro in blue). The DvCYP nomenclature was given by D Nelson. The 

other CYP names were taken from (Feyereisen, 2011a, Grbic et al., 2011, Dermauw et al., 2020). 

Colored lines correspond to branches with species using the same colors as for the CYP names. 

Numbers on the tree correspond to bootstrap values above 0.8. CYP clans were colored pink for the 

mitochondrial clan, purple for clan2, yellow for clan3 and green for clan4. Scale is given in the middle 

of the tree. 



14 
 

Panel B: Heatmap of expression levels for DvCYP in gallicole and radicicole adults. Color scale is given 

with more highly expressed DvCYPs in red and lower expressed DvCYPs in blue. Hierarchical 

clustering is given on the left side of the heatmap. 

Figure 3 Ecdysteroid biosynthetic pathway associated with RA and GA expression levels 

Dotted line is representing putative steps as part of the ‘Black box’ in the ecdysteroid pathway 

(Schumann et al., 2018a). The blue box shows gene expression levels in the radicicole adult (RA, 

dotted line) and in the gallicole adult (GA, plain line). These values were calculated using log2 of 

counts per million. 

Figure 4: Phylogeny and expression heatmap for CCE family members 

Panel A: Phylogeny of CCEs found in D. vitifoliae (Dvit in red), A. pisum (ACYP in green), M. persicae 

(Mper in purple) and R. prolixus (RPR in blue). Colored lines correspond to branches with species 

using the same colors code for the CCE names. Numbers on the tree correspond to bootstrap values 

above 0.8. CCE clades were colored with blue for pheromone/hormone processing class, light green 

for dietary class, pink for Nlg (L) and Glio (K) classes, yellow for AchE (J) class. Scale is given in the 

middle of the tree. 

Panel B: Heatmap of expression level for DvCCEs in gallicole and radicicole adults. The color scale is 

given with more highly expressed DvCCEs in red and lower expressed DvCCEs in blue. Hierarchical 

clustering is given on the left side of the heatmap. 

Figure 5: Phylogeny and expression heatmap for GST family members 

Panel A: Phylogeny of GST found in D. vitifoliae (Dvit in red), A. pisum (Apis in green), M. persicae 

(Mper in purple) and R. prolixus (Rpro in blue). Colored lines correspond to branches with species 

using the same color code as for the CCE names. Numbers on the tree correspond to bootstrap 

values above 0.8. GST clades were colored with blue for MAPEG class, green for Sigma class, orange 

for Omega class, yellow for Theta class and pink for Delta class. Scale is given in the middle of the 

tree. 

Panel B: Heatmap of expression level for DvGST in gallicole and radicicole adults. The color scale is 

given with more highly expressed DvGSTs in red and lower expressed DvGSTs in blue. Hierarchical 

clustering is given on the left side of the heatmap. 

Figure 6: Phylogeny and expression heatmap for UGT family members 

Panel A: Phylogeny of UGT found in D. vitifoliae (Dvit in red), A. pisum (Apis in green), M. persicae 

(Mper in purple) and R. prolixus (Rpro in blue). Colored lines correspond to branches with species 

using the same color code as for the UGT names. Numbers on the tree correspond to bootstrap 

values above 0.8. The UGT clades are colored with green for UGT329 and UGT343, pink for UGT348 

and UGT350, blue for UGT330 and UGT349, purple for UGT339 and UGT342, and yellow for UGT344 

and UGT341. Scale is given in the middle of the tree. 

Panel B: Heatmap of expression levels for DvUGT in gallicole and radicicole adults. The color scale is 

given with more highly expressed DvUGTs in red and lower expressed DvUGTs in blue. Hierarchical 

clustering is given on the left side of the heatmap. 

Figure 7: Phylogeny and expression heatmap for ABC transporter family members 

Panel A: Phylogeny of ABC found in D. vitifoliae. Numbers on the tree correspond to bootstrap values 

above 0.8. ABC transporter clades are colored with purple for ABCC, orange for ABCD, light green for 
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ABCF, pink for ABCH, dark green for ABCG and yellow for ABCA. Scale is given in the middle of the 

tree. 

Panel B: Heatmap of expression levels for DvABC in gallicole and radicicole adults. The color scale is 

given with more highly expressed DvABCs in red and lower expressed DvABCs in blue. Hierarchical 

clustering is given on the left side of the heatmap. 

Table 1: Comparison of detoxification gene numbers in annotated insect species 

GST, UGT, CCE, ABC transporter and CYP numbers from annotated genomes are compiled in this 

table. In addition to D. vitifoliae, the table contains Acyrthosiphon pisum, Rhodnius prolixus, Bemisia 

tabaci, Myzus persicae, and Trialeurodes vaporariorum.  

References for data included in this table: Bemisia tabaci (Chen et al 2016 BMC biology 14(1)pp:110); 

A. pisum UGT sequences were reanalyzed based on the latest genome releases (AphidBase). 

Numbers in brackets denote number previously described UGTs in (Ramsey, Rider et al. 2010, 

Schama, Pedrini et al. 2016);) CYP numbers for A. pisum (Feyereisen R, 2011) and M persicae 

(Dermauw et al 2020). *:Ramsey et al, 2010, number based on EST data. ** Acyrthosiphon pisum, 

ABC transporter numbers obtained by automatic analysis. CCE data from B. tabaci (Xia et al, 2019, 

number corrected compared to Chen et al, 2016: 51 CCE); CCE data from R. prolixus from Schama et 

al, 2016 but assignment to clades were modified according to our phylogenetic analysis (Schama et 

al, 2016: 22 class I and 9 class 2); Trialeurodes vaporariorum (Pym A. et al 2019 BMC Genomics). 

Supplementary data Figure 1: Gene organization and expression levels on scaffold 184 

Scaffold184 carrying CYPs, effectors, ABCs, glutamate receptor and developmental genes in  cluster. 

Genomic scale is given in base pairs (bp). Grey arrows correspond to ABC transporter genes, blue 

arrows to CYPs and black arrows to other genes. Expression levels in gallicole adult (GA) and 

radicicole adult (RA) are given in log2 of count per million. Numbers corresponding to expression 

levels are given in maroon boxes with a plain line for GA and dotted line for RA. 

Supplementary data Figure 2: Gene organization and expression levels on scaffold 156 

Scaffold156 carrying CYPs (CYP6NZ1, CYP6CY25, CYP6CZ2 and CYP6CZ fragment), sodium channel, 

farnesoic acid O-methyl transferase and carbonic anhydrase genes in cluster. Genomic scale is given 

in base pairs (bp). Blue arrows to CYPs and black arrows to other genes. Dashed arrow represents an 

incomplete gene sequence. Expression levels in gallicole adult (GA) and radicicole adult (RA) are 

given in log2 of count per million. Numbers corresponding to expression levels are given in maroon 

boxes with a plain line for GA and dotted line for RA. 

Supplementary data Figure 3: Gene organization and expression levels on scaffold 375 

Panel A: Scaffold 375 carrying six CYPs (CYP6CY67, CYPCY26, CYP6CY66, CYP6PC1, CYP6CY28, and 

CYP6PA1), in cluster. Genomic scale is given in base pairs (bp). Exon/intron gene representation is 

given in the arrow of each gene. Expression levels in gallicole adult (GA) and radicicole adult (RA) are 

given in log2 of count per million. Numbers corresponding to expression levels are given in maroon 

boxes with a plain line for GA and dotted line for RA. CYP6CY66 was previously named CYP6PB1. 

CYP6CY67 is a pseudogene (previously named CYP6PB2). No good estimation of expression was 

possible for CYP6CY67 and CYP6CY26 as they were considered to be a single gene in expression 

analysis. 
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Panel B: Phylogenetic tree extracted from the CYP family phylogenetic tree showing the eight 

members of CYP6CY (light blue), CYP6PA1 and CYP6NZ1 (in black), the two CYP6PCs (in grey) and two 

CYP6PDs (dark blue). 

Supplementary data Figure 4: Gene organization and expression levels on scaffold 89 

Scaffold 89 carrying five CYPs (CYP4LQ1 and 2, CYP4CJ6-7 and 8), a chitin synthase and a GSTomega1 

in cluster. Genomic scale is given in base pairs (bp). CYPs are marked with blue arrows and other 

genes with black arrows. Expression levels in gallicole adult (GA) and radicicole adult (RA) are given in 

log2 of count per million. Numbers corresponding to expression levels are given in maroon boxes 

with a plain line for GA and dotted line for RA. 

Supplementary data Figure 5: Amino acid alignment of AChE1 and AChE2 sequences from aphids 

and other insects  

In bold: the amino acid where a substitution (F->W) is observed in B. tabaci clones that are resistant 

to clorpyrifos or where a substitution (S->F) is observed in M. persicae clones resistant to pirimicarb.  

References of AChE1 sequences: Bemisia tabaci (ABV45413.1); Myzus persicae (AY147797); 

Melanaphis sacchari (XP_025206860.1); Acyrtophison pisum (ACYPI009886); Aphis gossypii 

(AJ748114); Aphis craccivora (KAF0771168.1); Aphis glycines (KAE9530899.1); Rhodnius prolixus 

(RPRC000482-PA). References of AChE2 sequences: Bemisia tabaci (ABV45415.1); Myzus persicae 

(CAE11220.1), Acyrthosiphon pisum (ACYPI009533); Rhodnius prolixus (RPRC003013; Drosophila 

melanogaster (X05893); Lucilia cuprina (U88631); and Apis mellifera (AF213012). 

 

Supplementary data Figure 6: Microsomal GST proteins 

Amino acid comparison of microsomal GST proteins from D. vitifoliae (Dvit), M. persicae (Mper), R. 

prolixus (Rpro), S. furcifera (Sfur) and A. pisum (Apis). The first line corresponds to the sequence Logo 

(conserved and most probable amino acids). The second line corresponds to identity in the sequence 

at each position. Green indicates complete identity and red indicates poor conservation of amino 

acid at that position. 11 MAPEG sequences were aligned. In the following order: Apis_MAPEG1, 

MperMAPEG1, Dvit_MGST1, Dvit_MGST2, Sfur_MAPEG1, Sfur_MAPEG2, Rpro_MAPEG1, 

Apis_MAPEG2, Mper_MAPEG2, and Dvit_MGST3. 

 

Supplementary data Figure 7: Gene organization and expression levels on scaffold 572 

Scaffold 572 carrying nine UGT344N (UGT344N2-3-4-6-7-8-9-10) with black arrows and UGT344M2 

with blue arrow, in cluster. Genomic scale is given in base pairs (bp). Expression levels in gallicole 

adult (GA) and radicicole adult (RA) are given in log2 of count per million. Numbers corresponding to 

expression levels are given in maroon boxes with a plain line for GA and dotted line for RA. ND: not 

detected. 

Supplementary data Figure 8: Gene organization and expression levels on scaffold 36 

Scaffold 36 carrying four ABC transporters (black arrow) clustered with six effectors (blue arrow). 

Genomic scale is given in base pairs (bp). Expression levels in gallicole adult (GA) and radicicole adult 

(RA) are given in log2 of count per million. Numbers corresponding to expression levels are given in 

maroon boxes with a plain line for GA and dotted line for RA. ND: not detected. 

Supplementary data Figure 9: Gene organization and expression levels on scaffold 129 
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Scaffold 129 carrying four ABC transporters (black arrow) clustered with one effector, three RING 

genes and groucho gene (blue arrows). Genomic scale is given in base pairs (bp). Expression levels in 

gallicole adult (GA) and radicicole adult (RA) are given in log2 of count per million. Numbers 

corresponding to expression levels are given in maroon boxes with a plain line for GA and dotted line 

for RA. 

Supplementary Table 1: Detoxification genes position on D vitifoliae genome 

Complete data set for each detoxification gene annotated on the genome of D. vitifoliae. In each 

column: scaffold number; position or transcript name; strand column describing the orientation of 

the gene of the scaffold; size indicating the size in amino-acid of the protein; exon column giving the 

number of exons; detox family column attributing the gene to one of the detoxification family (CYP, 

CCE, GST, UGT or ABC transporter); name_ID column presenting the unique identity of the gene; 

classification column indicating clan or class associated with the gene; name column giving the 

official name of the gene; and comments column listing additional gene information.  

Supplementary Table 2: Expression data of detoxification genes for GA and RA 

RNAseq data from GA and RA samples were analyzed for our annotated detoxification genes. GA and 

RA samples in duplicate were sequences, counts per million are given in this table. We calculated the 

mean and transformed the value in log2 of counts per million. 

Supplementary Table 3: Summary of CCE specific characteristics 

All DvCCEs were classified and analyzed in terms of the composition of their catalytic triad, the 

presence of a signal peptide or other domains and their subcellular localization. 

Supplementary Table 4: Summary of model use for phylogenetic studies of detoxification families 

Supplementary Table 5: Fasta file containing CYPs, UGTs, GSTs and ABC transporters amino acid 

sequences 
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Order

Species
Daktulosphair

a vitifoliae 

Acyrthosipho

n pisum

Rhodnius 

prolixus Bemisia tabaci
Myzus 

persicae*

Trialeurodes 

vaporariorum

Glutathione S-transferase omega 1 2 1 ND 1 (0) 13
Glutathione S-transferase epsilon 0 0 0 ND 0 1

Glutathione S-transferase sigma 3 5 6(7) ND 7 (8) 8
Glutathione S-transferase delta 2 11 1 ND 3 (2) 0
Glutathione S-transferase theta 1 2 2(4) ND 2 (0) 0
Glutathione S-transferase Zeta 0 2(0) 1 ND 0 2

Glutathione S-transferase unknown 0 1 (3) 0 ND 0 0
Glutathione S-transferase microsomal 3 2 1 ND 2 2

Total 10 25 12 ND 15 26

UGTs 35 55 16 76 38 42

Detoxification/dietary class 2 5 22 6 5 14
Pheromone/hormone processing 10 18 9 20 12 7

Neuro/developmental (total) 8 8 12 16 5 10
clade H - Glutactin 1 1 2 1 0 0

clade J - Acetylcholinesterase 2 2 2 4 3 3
clade K - Gliotactin 1 1 1 1 1 1
clade L - neuroligins 3 3 4 10 1 3

clade M - neurotactine 0 0 1 1 0 1
Unknown function 1 1 2 1 1 2

Total CCEs 20 31 43 42 23 31

A 4 11 ND 8 ND 3

B 6 9 ND 3 ND 9

C 5 16 ND 6 ND 7

D 3 2 ND 2 ND 4

E 1 1 ND 1 ND 1

F 3 4 ND 3 ND 3

G 22 19 ND 23 ND 9

H 23 9 ND 9 ND 9

Total 67 71** ND 55 ND 45

clan2 7 10 5 10 10 7

clanmito 6 8 6 7 7 7

clan3 20 23 50 57 25 41

clan4 33 23 23 56 23 45

Total 66 64 84 130 65 80

Total detoxification genes number 198 175 155*** 333*** 136*** 224
data for Bemisia tabaci : Chen et al 2016
A. pisum UGT sequences were reanalysed based on latest genome releases (AphidBase). Numbers in brackets denote number previously described UGTs in (Ramsey, Rider et al. 2010, Schama, Pedrini et al. 2016).
CYP data from A pisum are from Feyereisen R, 2011b 
CYP data from M.persicae are from Dermauw et al. 2020
CCE data from B. tabaci from Xia et al, 2019 (number corrected compared to Chen et al, 2016: 51 CCE)
CCE data from R. prolixus from Schama et al, 2016 but assignment to clades were modified according to our phylogenetic analysis (Schama et al, 2016: 22 class I and 9 class 2)
Trialeurodes vaporariorum Pym A. et al 2019 BMC Genomics
*Ramsey et al, 2010, number based on EST data
** Acyrthosiphon pisum, ABC transporter numbers obtained by automatic analysis. 
***this data are incomplete

Hemiptera

Glutathione S-transferase 

Cytochrome P450 (CYP)

ABC sub-family

Carboxyl/Cholinesterase (CCE)

Uridine diphosphate-GlycosylTransferase (UGT)



A. pisum UGT sequences were reanalysed based on latest genome releases (AphidBase). Numbers in brackets denote number previously described UGTs in (Ramsey, Rider et al. 2010, Schama, Pedrini et al. 2016).

CCE data from R. prolixus from Schama et al, 2016 but assignment to clades were modified according to our phylogenetic analysis (Schama et al, 2016: 22 class I and 9 class 2)






