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a b s t r a c t

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory perception, 
such as astringency and bitterness, are mainly related to condensed tannin, while colour intensity and evolution is 
due to anthocyanin composition. Therefore, the quick analytical measurement of phenolic compounds appears to be 
a real challenge for wine monitoring. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopy 
with chemometrics are good candidates for predicting polyphenolic contents in wines, but they have not yet been 
compared in terms of efficiency of each wavelength area. Thus, the possibility of combining the two areas has not 
been investigated.
This work sought to determine the tannin and anthocyanin content of ninety-two wines. The wine selection covered 
different vintages, varieties and regions. Tannin concentration was analysed by precipitation with protein and 
polysaccharide and by the Bate-Smith assay. Free anthocyanin concentration was analysed by bisulfite bleaching and 
the monomers/polymers ratio was analysed using the Adams-Harbertson method. Molecular anthocyanin concentration 
was also obtained by HPLC/UV-vis. Two spectra were collected using UV-vis and FTIR devices. The data collected 
were statistically analysed using the partial least squares (PLS) regression method.
The correlations obtained were relevant to both of the spectrum areas studied, with a coefficient of determination for 
cross validation larger than 0.7 for most parameters studied. While the two spectroscopic methods gave almost identical 
results, FTIR indicated higher robustness for the prediction of tannin concentration. Conversely, UV-vis appeared to 
be more relevant when determining anthocyanin concentration and evolution. Finally, the models obtained when 
combining the two spectrum areas gave slightly better results. When a selection of different visible wavelengths were 
added to the FTIR spectrum, the results showed that the prediction of anthocyanin parameters improved considerably, 
thus highlighting the importance of the visible area when estimating these compounds. 
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INTRODUCTION

Polyphenolic compounds are present in high 
concentrations in red wine. In particular, the 
flavonoid family can significantly impact 
the quality of wines, as well as their aging  
(Cheynier et al., 2006). Sensory perception, such as  
astringency and bitterness, are mainly related to 
tannin concentration and composition (Noble, 1998; 
Vidal et al., 2003), while colour intensity and 
evolution is due to anthocyanin composition 
(Mazza and Francis, 1995; Somers, 1971). During 
aging, tannin and anthocyanin molecules evolve; 
they degrade and polymerise, thus impacting 
the organoleptic properties of wine. In addition, 
a significant supply of oxygen can impact these 
different parameters (Iacobucci and Sweeny, 1983; 
Petrozziello et al., 2018). Therefore, we understand 
the importance of measuring these molecules  
in wines.

Several methods have been developed to analyse 
polyphenols in wines; however, most of these 
methods require time, laboratory equipment 
and knowledge, making them unsuitable for a 
quick analysis. In order to facilitate the analysis 
of these compounds, new methods can be used, 
such as spectroscopy analysis coupled with 
chemometrics. While the information found in 
different spectral areas can be useful for measuring 
polyphenols, it can sometimes be difficult to 
extract; wine is a complex matrix, and many 
compounds absorb at the same wavelengths as 
polyphenols and it is not possible to directly read 
different concentrations. Therefore, it is necessary 
to include chemometric analysis coupled with 
spectral analysis in the design of prediction models  
(Cozzolino et al., 2011a). Different statistical 
analyses have given conclusive results, but the 
Partial Least Squares regression (PLS) appears to be 
the most effective in producing robust and effective 
prediction models (Haaland and Thomas, 1988;  
Wold et al., 2001).

Several spectral areas coupled with chemometrics 
have already demonstrated their potential for 
the analysis of polyphenols; Ultraviolet-visible 
(UV-vis) appears to be one such area that can be 
used for analysing fermenting wines and finished 
wines. Several studies have been conducted 
in order to predict polyphenolic concentration 
in these samples. A first study conducted in 
2007 highlighted the potential of UV-vis to 
predict anthocyanins, polymeric pigments and 
tannins on a large dataset of fermenting samples  
(Skogerson et al., 2007). Another study enlarged the 
spectral reading to near infrared when predicting 

the concentration of catechin, epicatechin and 
malvidin-3-O-glucoside in thirty-nine wines 
from Spain (Martelo-Vidal and Vázquez, 2014). 
The results showed a lack of precision, but they 
demonstrated the ability of the technique to predict 
specific concentrations. Two different studies have 
reported good predictions for precipitable tannins. 
The first, conducted by Dambergs et al.  (2012), 
focused on methylcellulose precipitation with UV 
area and demonstrated the ability for the calibration 
to be transferred to another laboratory. The other, 
conducted by Aleixandre-Tudo et al. (2015), 
used methylcellulose and bovine serum albumin 
precipitation to investigate the differences 
in ability to predict different parameters in 
fermenting wine samples. A most recent study 
conducted on a large panel of fermenting samples 
and wines from south Africa has demonstrated 
that UV-vis alongside chemometrics can 
be considered as a suitable method for 
predicting specific polyphenolic compounds  
(Aleixandre-Tudo et al., 2018a). Because of the 
ability of UV-vis to detect molecules with carbon-
carbon double bonds and pi bonds, this technique 
is useful for the detection of polyphenols and 
avoids the absorbance of the most predominant 
compounds of the wine matrix.

Another spectroscopic technique which gives 
predictive results is Fourier transform infrared 
(FTIR). The absorption bands contain much more 
information than the UV-vis and the advantage 
is that several instruments already use this 
technology to measure various compounds in 
wine, such as sugar, alcohol, or different acids 
(Bauer et al., 2008; Moreira and Santos, 2005; 
Pizarro et al.,  2011). The development of infrared 
prediction models can therefore be directly 
applicable to these instruments, allowing the 
information contained in the wines provided to be 
enriched. Cozzolino et  al. (2004) demonstrated the 
ability of infrared with chemometrics to predict the 
concentration of several phenolic compounds (such 
as malvidin-3-O‑glucoside, pigmented polymers 
and tannins) during wine fermentation. Anthocyanin 
concentration in wines has also been investigated 
in order to distinguish the different monomeric 
anthocyanins (Soriano et al., 2007); the results 
showed a good correlation for the anthocyanin level, 
but a lack of precision for the less concentrated 
monomers. Another study conducted by  
Di Egidio et al. (2010) showed a robust prediction 
for total phenolics, total flavonoids and total 
anthocyanins for fermentation samples, using near-
infrared and mid-infrared techniques. However, the 
use of 280  nm and 540  nm absorbance readings 
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without pretreatment to calculate the concentration 
of flavonoids and anthocyanins respectively 
is a matter for discussion. More recently, 
Aleixandre-Tudo et al. (2018b) investigated the  
difference between Fourier transform infrared 
(FTIR), Fourier transform near infrared  
(FT-NIR) and attenuated total reflectance mid 
infrared (ATR-MIR) to analyse the phenolic 
composition of fermenting samples and red 
wine. The results obtained were comparable and 
predictive for each technique, and showed that  
FT-NIR appears to be the most accurate technique.

The UV-vis and infrared areas give efficient 
results for polyphenol prediction in red wine, but 
the comparison of these two techniques has not 
yet been investigated.

The aim of this study was to develop new tools 
for the wine industry to measure polyphenols 
in finished wines. To do this, we looked at two 
different spectral zones: UV-vis (200-700 nm) and 
FTIR (925-5011 cm–1). In order to obtain the most 
robust results possible, the two absorption areas 
were compared to determine their effectiveness 
in the design of a prediction model for measuring 
different polyphenolic parameters in wine. In 
addition, the complementarity of these two 
methods was studied in order to investigate the 
possibility of obtaining even more robust results 
by adding two different spectral zones. Because 
the wine matrix can be impacted by many 
parameters (Geladi, 2003), this study focused on 
ninety-two wines from the widest possible range 
of grape varieties and vintages, as well as different 
geographical regions (which impact the method of 
winemaking). In order to measure polyphenols 
in these samples, different reference methods 
were applied. The tannins were dosed according 
to the Bate-Smith method and by precipitation 
with methylcellulose and bovine serum albumin. 
Anthocyanins were dosed via bisulfite bleaching 
and by high-performance liquid chromatography 
(HPLC/UV-vis). In order to develop prediction 
models for the parameters studied, partial least 
squares (PLS) regression was applied to find 
correlations between the different spectra obtained 
and the reference analysis. The robustness 
of the resulting models was investigated via  
cross-validation.

MATERIALS AND METHODS

1. Reagents and standards

Chemicals for analyses (bisulphite solution, tartaric 
acid, sodium hydroxide, sodium chloride, sodium 

metabisulphite, bovine serum albumin, sodium 
dodecyl sulfate, triethanolamine, methylcellulose, 
ammonium sulfate, ferric chloride, malvidin-
3-O-glucoside, catechin and epicatechin) were 
all analytical grade and purchased from Sigma-
Aldrich (Saint Quentin Fallavier, France). Acids 
(acetic acid, hydrochloric acid and formic acid) 
were all analytical grade and purchased from 
Fisher Scientific (Geel, Belgique). Solvents 
(ethanol, methanol and acetonitrile) were all 
analytical grade and purchased from Prolabo-
VWR (Fontenay-sous-Bois, France). Water was 
purified via a Milli-Q system (Millipore, Bedford, 
MA, USA).

2. Samples collection

Ninety-two wines were purchased commercially 
in 2019 for this study. In order to work on the 
design of generalist prediction models, a variety 
of wines were selected ranging from the 1997 
vintage to the 2017 vintage. A diversity in grape 
variety was also sought: 72 wines were made from 
mono-varietal varieties, while 20 were blended. 
The main grape varieties of these wines were: 
Merlot (15); Cabernet sauvignon (10); Shiraz (8); 
Cabernet Franc, Malbec, Pinot noir (5); Grenache, 
Petite Syrah (4); Carmenere, Gamay (3); 
Carignan, Mansois, Nero d’Avola, Petit Verdot, 
Pinotage, Sagniovese, Tannat, Tempranillo, 
Zinfandel (2); and Agiorgitiko, Barbera, Cinsault, 
Mencía, Mondeuse noire, Nebbiolo, Négrette, 
Negroamaro, Niellucciu, Rondo, Trollinger, 
Zweigelt (1). In order to ensure that different 
winemaking processes were taken into account, 
a variability in geographical provenance was 
also sought: France (61); Italy (8); Argentina, 
Chile, South Africa (4); Australia, Spain, United 
States (2); Austria, Denmark, Germany, Greece,  
Portugal (1).

3. Spectra measurement

All measurements were carried out in triplicate.

3.1. FTIR measurement

Samples were scanned on a Winescan Flex (FOSS, 
Hillerød, Denmark) at a 3.858 cm–1 interval over 
the wavelength range 925-5011 cm–1, with water 
as the reference blank. Spectra were registered 
in transmittance and converted into absorbance 
values.

3.2. UV-vis measurement

Samples were scanned after a 1/100 water dilution 
adjusted to pH 3.3 with Hydrochloric acid on  
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a Jasco V-630 UV-VIS Spectrophotometer 
(JASCO, Japan) at a 1  nm  interval over the 
wavelength range 200–700 nm, with water as the 
reference blank and 10 mm path length in a quartz 
cuvette. The spectra were registered in absorbance.

4. Polyphenol analysis

4.1. Quantification of free anthocyanins by 
bisulphite bleaching

The concentration of free anthocyanins in the 
different samples was estimated using a method 
based on the ability of bisulphite to bleach these 
compounds (Ribéreau-Gayon and Stonestreet, 
1965). Two tubes were prepared, one containing 
1 mL of wine solution (250 μL of wine, 250 μL 
of ethanol with 0.1 % Hydrochloric acid v/v, and 
5 mL of water with 2 % Hydrochloric acid v/v) 
and 400  μL of water, and another containing 
wine solution and 400  μL of bisulphite solution 
(15 % bisulphite v/v in water). After 20 min, the 
difference in absorbance at 520 nm (10 mm path 
length with water as a blank) between the two tubes 
was recorded and free anthocyanin concentration, 
expressed as malvidin-3-O-glucoside equivalent, 
determined by reference to a calibration curve 
established by Ribéreau-Gayon and Stonestreet.

4.2. Quantification of molecular anthocyanins 
by HPLC/UV-vis

Twelve molecular anthocyanins were identified 
and quantified by HPLC/UV-vis: delphinidin-
3-O-glucoside (Dp-3-O-glc), cyanidin-3-O-
glucoside (Cy-3-O-glc), petunidin-3-O-glucoside 
(Pt-3-O-glc), peonidin-3-O-glucoside (Pn-3-O-
glc), malvidin-3-O-glucoside (Mlv-3-O-glc), 
delphinidin-3-O-glucoside acetyl (Dp-3-O-acglc),  
cyanidin-3-O-glucoside acetyl (Cy-3-O-acglc), 
petunidin-3-O-glucoside acetyl (Pt-3-O-acglc),  
peonidin-3-O-glucoside acetyl (Pn-3-O-acglc), 
malvidin-3-O-glucoside acetyl (Mlv-3-O-acglc), 
peonidin-3-O-glucoside coumaroyl (Pn-3-O-
cmglc), and malvidin-3-O-glucoside coumaroyl 
(Mlv-3-O-cmglc), using the method described by 
González-Centeno et al. (2017). Wine samples  
were injected directly after filtration (pore 
diameter, 0.45 μm). Analyses were carried out on 
an Accela HPLC system (Thermo Fisher Scientific, 
Waltham, MA, USA) with 520 nm for wavelength 
detection. The column was a reverse-phase 
Nucleosil C18 (250 mm × 4 mm, 5 μm) (Agilent, 
Santa Clara, CA, USA). The flow was set at  
1 mL/min, and the injection volume was 20 μL at 
15  °C. The solvents used were (A) water‑formic acid 
(95/5, v/v), and (B) acetonitrile‑formic  acid 

(95/5, v/v), with a gradient described by 
González‑Centeno et al. (2017). Area peaks were 
plotted on a calibration curve produced from 
data obtained with malvidin‑3‑O‑glucoside, and 
the results expressed as malvidin‑3‑O‑glucoside 
equivalents.

4.3. Determination of the ratio of monomeric to 
polymeric pigments and tannins concentration 
based on the Adams-Harbertson assay

The method used is based on anthocyanin 
metabisulphite bleaching and on the ability of 
polymeric pigment and tannins to precipitate with 
protein (Harbertson et al., 2003). 125 μL of wine 
was diluted in 375  μL of a wine model buffer 
containing 12  % ethanol v/v and 5  g/L tartaric 
acid, adjusted to pH 3.3 with Sodium hydroxide. 
After several tests, the choice of this dilution 
was made to obtain an absorbance of below 1.2 
during the whole analytical process. In a first  
1.5-mL microfuge tube, 500  μL of diluted wine 
was mixed with 1 mL of acetic acid–NaCl buffer 
(200 mM acetic acid and 170 mM NaCl, adjusted to 
pH 4.9 with Sodium hydroxide. The absorbance at 
520 nm (10 mm path length with water as a blank) 
of 1 mL of the mixture was read (the A value), 
then 80  μL of a 0.36 M sodium metabisulphite 
solution was added. After 10 min, the absorbance 
at 520 nm was read again (the B value). In a second 
microfuge tube, 500 μL of diluted wine was mixed 
with 1 mL of acetic acid–NaCl buffer containing 
bovine serum albumin at 1  g/L. After 20 min, 
the tube was centrifuged for 5 min at 13,500 g.  
One mL of the supernatant was mixed with 80 μL 
of a 0.36 M sodium metabisulphite solution.  
After 10 min, the absorbance at 520 nm was read 
(the C value).

The absorbance due to monomeric pigments (MP) 
is calculated as Δ (A-B), the absorbance due to 
small polymeric pigments (SPP) is C, and the 
absorbance due to large polymeric pigments (LPP) 
is calculated as Δ (B-C). Total polymeric pigments 
(PP) - which is the sum of the small polymeric 
pigments and the large polymeric pigments - was 
added as another parameter. 

In the second microfuge tube, the pellet was 
discarded from the remaining liquid and washed 
with 250 μL of acid acetic-NaCl buffer. The tube was 
centrifuged for 1 min at 13,500 g and the supernatant 
was discarded. The pellet was dissolved in in 
875 μL of a buffer containing 5 % w/v triethylamine 
and 5  % w/v sodium dodecyl sulfate adjusted to 
pH 9.4 with Sodium  hydroxide. The background 
absorbance was measured at 510 nm (10 mm path 
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length with water as a blank), and 125 μL of a ferric 
chloride solution was added (10 mM ferric chloride 
and 10 mM Hydrochloric acid in water). After  
20 min at room temperature, the reaction absorbance 
was measured at 510  nm. Tannins absorbance 
is calculated as Δ (Background-Reaction/0.875) 
and reported on a catechin calibration curve to be 
expressed in catechin equivalent.

4.4. Determination of tannins concentration by 
methylcellulose precipitation

The method used is based on the ability of 
tannins to precipitate with polysaccharide 
like methylcellulose (Sarneckis et al., 2006). 
Tannins will react with methylcellulose to form 
an insoluble tannin-polymer complex insulated 
by centrifugation. In a first 5 mL microfuge 
tube, 50 μL of wine was added with 800 μL of a 
saturated ammonium sulfate solution, 1950 μL of 
water and 1200 μL of a methylcellulose solution 
(0.04 % w/v in water, viscosity: 1,500 cP, 2 % in 
water at 20  °C). In a second microfuge tube, 50 μL 
of wine was added with 800  μL of a saturated 
ammonium sulfate solution and 3150  μL of 
water. After homogenisation and 10 min at room 
temperature, both tubes were centrifugated 10,000 
g for 5 min. Supernatants are measured at 280 nm 
(10 mm path length with water as a blank in quartz 
cuvette). Tannins absorbance was calculated as the 
difference between the two tubes and reported on 
an epicatechin calibration curve to be expressed in 
epicatechin equivalent.

4.5. Total tannins by Bate-Smith assay

This method was developed by Bate-Smith and is 
based on the transformation of proanthocyanidins 
into anthocyanidins by heating in acid environment 
(Ribéreau-Gayon and Stonestreet, 1966). In two 
different closed hydrolysis tubes 4 ml of wine diluted 
50 times, 2 ml of water and 6 ml of hydrochloric 
acid 37 % were added. The first tube was placed 
in an ice bath at 0  °C for 30 min. The second tube 
was placed in a water bath at 100  °C for 30 min. 
Total tannins absorbance was calculated at 550 nm 
(10 mm path length with water as a blank) as the 
difference between the two tubes and reported on 
a calibration curve established by Ribéreau-Gayon 
and Stonestreet, using the following formula:  
C (mg/L) = 19,330*Δabsorbance.

5. Data analysis

5.1. Principal component analysis

Principal component analysis (PCA) was performed 
on reference data, FTIR spectra and UV-vis spectra 

before the construction of prediction models 
using RStudio with FactomineR and Factoshiny 
packages. This preliminary analysis of the data 
allows any variations in the dataset, correlations 
between individuals or variables and outliers to be 
identified.

5.2. Partial least squares regression

Partial least squares (PLS) regression was 
performed using Matlab 2017 (MathWorks, 
Natick, MA, USA) coupled with PLS_Toolbox 
by Eigenvector (Manson, WA, USA). Before PLS 
regression was carried out, autoscale preprocessing 
was applied to the dataset. The automatic 
variable selection (VIP or sRatio) proposed by  
PLS_Toolbox was used to refine spectral 
wavelengths selected to build the PLS regression. 
After this pretreatment, calibration models were 
developed using PLS regression with leave-p-out 
cross-validation. For each model created, there were  
10 cross-validation subgroups. The cross-
validation result obtained is a good indicator of 
the model’s ability to predict values for external 
samples and testing model robustness.

RESULTS AND DISCUSSION

1. Dataset analysis

In order to fully understand the results obtained 
by the prediction models (such as their error or 
their robustness) it is necessary to be familiar with 
the dataset that the design of these models was 
based on. Therefore, the first step in this work was 
to analyse the dataset obtained by the analysis of 
wine samples. 

First, UV-vis and FTIR spectra area were redefined 
to match the absorbance limit of the instruments 
used, as well as the response of polyphenols in 
these spectral zones. Thus, it was decided that 
for UV-vis spectra absorbances greater than 
1.2, and therefore above the spectrophotometer 
detection limit, would not be considered. The 
spectrum obtained was from 250 to 700  nm. 
While some references demonstrated areas of 
interest for polyphenols below 250  nm, it was 
decided not to dilute the sample further so as to 
keep the visible part of the response clear enough 
for the analysis of the concentration of both 
anthocyanins and tannins via a single sample 
reading. Regarding FTIR, in 2008, Jensen et al.  
demonstrated that the spectral response of wine 
polyphenols was between 3000 cm-1 to 925 cm-1  
(Jensen et al., 2008). Only this area of the infrared 
spectrum was kept. 
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The reference data obtained was investigated. 
Mean, minimum (min), maximum (max), 
standard deviation (SD), coefficient of variation 
(CV) and standard deviation of handling (SD 
handling) was calculated and reported in Table 
1. Total glucoside was calculated as the sum 
of monoglucoside anthocyanins, total acetyl as 
the sum of monoglucoside acetyl anthocyanins, 
total coumaroyl as the sum of monoglucoside 
coumaroyl anthocyanins and total anthocyanins as 
the sum of all anthocyanins quantified.

These data show a very low content of most 
molecular anthocyanins. Apart from  Mlv-3-O-glc 
accounting for about 50 % of total anthocyanins 
content, all other anthocyanins have an average 

value of less than 10 mg/L. Considering the 
difficulty in predicting very low concentrations 
using FTIR or UV-vis, it was decided not to 
consider each molecular anthocyanin, but rather 
the total sum of these anthocyanins. For deeper 
analysis, the sum of anthocyanin monoglucoside, 
monoglucoside acetyl and monoglucoside 
coumaroyl was also considered. Some grape 
varieties, such as pinot noir, show deficiencies 
in acetylated anthocyanins, which is why it may 
be interesting to investigate these parameters 
(Dimitrovska et al., 2011).

Regarding coefficients of variation for 
condensed tannins, a noticeable variation 
was observed. Total tannins measured using  

TABLE 1. reference analysis parameters.

Mean Min Max SD CV SD Handling

Dp-3-O-glc (mg/L) 3.99 0.00 24.74 4.93 124 % 0.19

Cy-3-O-glc (mg/L) 0.67 0.00 4.86 0.79 118 % 0.11

Pt-3-O-glc (mg/L) 4.30 0.00 31.20 5.30 123 % 0.18

Pn-3-O-glc (mg/L) 2.74 0.00 17.48 3.45 126 % 0.12

Mlv-3-O-glc (mg/L) 26.49 0.00 116.50 29.95 113 % 0.37

Dp-3-O-acglc (mg/L) 1.97 0.00 8.75 2.19 111 % 0.10

Cy-3-O-acglc (mg/L) 0.62 0.00 2.41 0.58 93 % 0.08

Pt-3-O-acglc (mg/L) 0.97 0.00 6.13 1.31 135 % 0.10

Pn-3-O-acglc (mg/L) 0.69 0.00 4.67 0.98 143 % 0.08

Mlv-3-O-acglc (mg/L) 6.06 0.00 44.88 9.04 149 % 0.15

Pn-3-O-cmglc (mg/L) 0.53 0.00 2.69 0.52 98 % 0.06

Mlv-3-O-cmglc (mg/L) 2.32 0.00 11.54 2.45 105 % 0.11

Total glucoside (mg/L) 38.20 0.12 173.35 42.08 110 % 0.65

Total acetyl (mg/L) 8.33 0.00 52.66 11.52 138 % 0.24

Total coumaroyl (mg/L) 2.85 0.00 12.76 2.83 99 % 0.14

Total antocyanins (mg/L) 49.38 0.12 208.20 55.23 112 % 0.81

MCP (mg/L) 1594.80 0.00 3842.69 644.26 40 % 129.66

BSA (mg/L) 425.91 0.00 933.81 206.89 49 % 15.91

MP (Abs*100) 9.97 0.29 22.91 4.31 43 % 0.52

SPP (Abs*100) 11.26 1.16 26.76 4.81 43 % 0.45

LPP (Abs*100) 9.65 0.00 40.36 7.34 76 % 0.62

PP (Abs*100) 20.91 0.89 61.44 10.47 50 % 0.53

Free anthocyanins (mg/L) 152.09 12.19 557.32 115.24 76 % 4.84

Total tannins (mg/L) 4010.43 219.72 7748.75 1437.53 36 % 297.70
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the Bate-Smith method showed the lowest 
coefficient of variation (36  %). This can be 
explained by the fact that, in this method, condensed 
tannins were measured independently of their 
reactivity. On the other hand, tannins measured 
via the bovine serum albumin assay and the 
methylcellulose assay show a higher coefficient of 
variation (49 % and 40 % respectively). While the 
methylcellulose assay showed a variation similar 
to that of the Bate-Smith assay, the bovine serum 
albumin measurement showed a much greater 
variation. This could be explained by the very 
particular reactivity of tannins with proteins, and 
the fact that astringency is better represented by 
the concentration of tannin (Boulet et al., 2016).

It is possible to apply the same reasoning to three 
close parameters which measure anthocyanins: 
total anthocyanins, free anthocyanins and 
monomeric pigments via the Adams-Harbertson 
assay. The variation observed here, however, is 
much larger, with 112  % for total anthocyanins, 
76 % for free anthocyanins and 43 % for monomeric 

pigments. Although these parameters provide 
similar information, they can be considered as 
independent from each other, each providing 
interpretable data.

Overall, the error due to manipulation was low 
compared to the data analyses. The highest error 
value was recorded for the methylcellulose assay, 
corresponding to an error of 8 % compared to the 
average value. 

For further analysis of the database, PCA was 
applied to the reference analyses (individuals 
and variables, with the vintage as an external 
variable), UV-vis spectra and FTIR spectra, as 
shown in Figure  1. This allowed us to highlight 
any grouping of samples or variables, the proper 
dispersion of data, and any outliers.

For the 3 PCA analyses, we looked at the first two 
dimensions, which explain much of the variation 
in the datasets, accounting for 78 % of the variation 
in the dataset for reference data, 91 % for UV-vis 
spectra and 86 % for FTIR spectra.

FIGURE 1. PCA analysis of reference data (Individuals and variables), UV-vis spectra and FTIR spectra.
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The graphs of the individuals from reference data 
show a relatively homogeneous distribution of 
wines, with, however, several outliers. Indeed, the 
wines 7, 8, 77, 84 and 87 seem detached from the 
main cloud of points. If we compare this to the 
graphs of individuals from spectral data, we find 
that for the UV-vis spectra there are  three outliers 
in common: wines 77, 84 and 87. Regarding the 
FTIR spectra, these three wines also seem to be 
detached from the main point cloud, along with 
an additional outlier: wine 75. Three of these 
outliers (wines 75, 84 and 87) are distinguished 
by a concentration of condensed tannins far above 
average, and wine 77 by a very low concentration. 
Wines 7 and 8, stand out for their high concentration 
of molecular anthocyanin.

The variable graph shows a strong distinction 
between variables, which are split into two groups. 
The first group is composed of total anthocyanins, 
free anthocyanin, monomeric pigments, total 
coumaroyl, total glucoside and total acetyl; 
is highly correlated with the first dimension; 
and explains the variation in concentration in 
anthocyanins. In this group, the variables seem 
to be extremely correlated with each other, 
except for monomeric pigments. The 2nd group 
is composed of MCP, BSA, total tannins via the 
Bate-Smith assay, and all the different parameters 
of polymeric pigments. It is also highly correlated 
with the second dimension, and explains the 
variation in concentration of condensed tannins, as 
well as the variation of polymerised pigments. The 
vintage was added as an external variable, and we 
find a correlation similar to the parameters defining 
anthocyanins, as explained by the first dimension. 

In order to identify possible groupings of 
individuals in relation to their vintage and grape 
variety per polyphenol composition, a graph of 
individuals was created which highlights these 
subgroups (Figure 2).

In the first graph of individuals classified according 
to vintage, several groups can be observed. 
Indeed, the 2017 vintage - the youngest vintage 
to be analysed - stands out the most, followed by 
a grouping for the 2016, 2015 and 2014 vintages. 
Older vintages do not differ enough to be grouped 
together. As this separation can be made along the 
axis of dimension one, it is possible to consider the 
different parameters of anthocyanins as a marker 
for the age of a wine. 

The graph of individuals classified by grape 
variety shows no real differentiation, and has a 
massive overlay of confidence ellipse. Therefore, 
even if the composition of polyphenols varies 
from one grape variety to another, there does not 
seem to be enough variation to differentiate the 
grape varieties. However, this is only applicable 
to this dataset, which has a high number of grape 
varieties in terms of number of individuals.

Overall, the database shows a lot of diversity, 
very few groupings, and no outliers that cannot 
be explained by their parameters. The graph of 
individuals based on reference analyses, UV-vis 
spectra and FTIR spectra shows a homogeneous 
point cloud. This dataset therefore seems ideal 
for applying PLS regression in order to construct 
models for predicting the composition of 
polyphenol representative of a finished wine.

FIGURE 2. Reference analysis PCA grouping per vintage and variety, with confidence ellipses.
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2. Partial least squares regression models

2.1. Comparison between UV-vis and FTIR 
models

In order to compare the usefulness of the 
two spectral zones studied for predicting the 
polyphenol composition of wines, prediction 
models were constructed by PLS regression for 
each reference parameter studied. The results 
obtained for the UV-vis spectrum are shown in 
Table 2, and those for the FTIR spectra in Table 3. 

Several parameters were postponed: coefficient of 
determination for calibration (R2Cal), coefficient 
of determination for cross-validation (R2CV), root 
mean square error of calibration (RMSECal), root 
mean square error of cross-validation (RMSECV), 
relative percentage difference of cross-validation 
(RPD CV) and number of latent variables used to 
build the model.

The various studied parameters determine 
whether the prediction models are robust enough 
to assess the level of polyphenols in the wines 

TABLE 2. PLS regression results for UV-vis spectra.

TABLE 3. PLS regression results for FTIR spectra.

R2Cal R2CV RMSECal RMSECV RPD CV Latent  
variables

Total glucoside (mg/L) 0.91 0.71 12.62 22.74 1.85 14

Total acetyl (mg/L) 0.74 0.56 5.83 7.68 1.50 8

Total coumaroyl (mg/L) 0.75 0.52 1.40 1.98 1.43 9

Total anthocyanins (mg/L) 0.96 0.75 11.28 28.14 1.96 20

MP (Abs*100) 0.90 0.81 1.37 1.89 2.28 10

SPP (Abs*100) 0.94 0.88 1.13 1.68 2.86 18

LPP (Abs*100) 0.97 0.93 1.20 2.01 3.66 15

PP (Abs*100) 0.99 0.97 0.97 1.82 5.75 19

Free anthocyanins (mg/L) 0.94 0.80 28.19 50.91 2.26 16

BSA (mg/L) 0.90 0.84 65.15 83.53 2.48 10

MCP (mg/L) 0.93 0.83 171.33 270.82 2.38 16

Total tannins (mg/L) 0.98 0.81 227.21 642.38 2.24 20

R2Cal R2CV RMSECal RMSECV RPD CV Latent  
variables

Total glucoside (mg/L) 0.77 0.52 19.95 29.70 1.42 14

Total acetyl (mg/L) 0.85 0.68 4.46 6.64 1.74 19

Total coumaroyl (mg/L) 0.74 0.52 1.44 2.01 1.41 15

Total anthocyanins (mg/L) 0.79 0.66 25.33 32.62 1.69 19

MP (Abs*100) 0.80 0.55 1.91 2.98 1.45 18

SPP (Abs*100) 0.90 0.71 1.55 2.62 1.84 20

LPP (Abs*100) 0.95 0.78 1.63 3.56 2.06 20

PP (Abs*100) 0.95 0.83 2.37 4.41 2.37 20

Free anthocyanins (mg/L) 0.85 0.71 44.55 61.96 1.86 20

BSA (mg/L) 0.93 0.86 55.89 76.90 2.69 15

MCP (mg/L) 0.78 0.66 303.97 379.13 1.70 11

Total tannins (mg/L) 0.93 0.84 386.76 573.06 2.51 16
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in the database. R2Cal explains how data fit with 
the calibration line using all samples. While this 
first parameter alone is not enough to assess 
the robustness of a model, a low value already 
indicates the difficulty in organising the data to 
calibrate a model. R2CV explains how randomly 
removed data fit with the calibration line. This is 
a performant indicator of the effectiveness of the 
model in predicting external samples. A model 
with high R2Cal and low R2CV indicates its 
dependence on each sample in its design, and its 
inability to correctly predict external samples. To 
complete these two parameters, RMSECal and 
RMSECV were added to visualise the margin of 
error induced by the model. The last important 
parameter is the RPD CV, calculated using the 
following formula: SD/RMSE CV. According to 
the literature, an RPD under 1.4 indicates a non-
reliable model for prediction; it must only be used 
as an indicator. When the RPD is greater than 1.4 
and less than 2, the model starts being reliable 
enough to be used for prediction. When the RPD 
is above 2, the model starts to be considered as 
good, and when it is above 3, it is considered as 
excellent (Cozzolino et al., 2011b; Ferrer-Gallego 
et al., 2011; Martelo-Vidal and Vázquez, 2014).

From the results obtained from the analysis of 
molecular anthocyanins by HPLC/UV for the 
two spectrum areas in question, it is possible to 
see the difficulty in predicting these parameters. 
Compared to other results, none of them 
show R2CV above 0.8, and RPD CV above 2. 
Comparing FTIR and UV-vis we find a slightly 
higher prediction for UV-vis spectra. Only the 
parameter of total acetyl is better predicted by 
FTIR spectra. However, the low concentration of 
total acetyl (mean concentration at 8.33 mg/L) in 
the studied wines and the high number of latent 
variables (19) used to obtain the best performing 
model indicate that this result may be due to an 
over-correlation. Moreover, the result is at odds 
with a previous study which found that the total 
acetyl parameter was the least well predicted in 
a dataset of fermentation wines (Miramont et al., 
2019). Only the total anthocyanins parameter can 
be used as an indicator, with RPD CV values for 
the UV-vis spectra and FTIR spectra of 1.96 and 
1.69 respectively.

Regarding the prediction of the Adams-Harbertson 
method parameters, the comparison of models for 
UV-vis and FTIR spectra gave heterogeneous 
results. This assay has the advantage of being able 
to compare ratios of monomeric pigments and 
different polymeric pigments, and thus to evaluate 

the evolution of wine anthocyanins. Prediction 
models obtained by UV-vis spectra appear to be 
well adapted to this assessment. With R2CV for 
MP, SPP, LPP and PP equal to 0.81, 0.88, 0.93 and 
0.97 respectively, UV-vis models shows strong 
correlations. On the other hand, with R2CV for 
MP, SPP, LPP and PP equal to 0.55, 0.71, 0.78 
and 0.83 respectively, FTIR models clearly show 
that they lack precision and cannot be used for  
these parameters.

For free anthocyanins - the last parameter studied 
with regards wine colour - the previously obtained 
trend remains unchanged. The UV-vis spectra 
model highlights predictive results, with R2CV 
and RPD CV equal to 0.80 and 2.26 respectively, 
while the FTIR spectra model is lower in 
precision, with R2CV and RPD CV equal to  
0.71 and 1.86 respectively.

Overall, the comparison of the models obtained 
with UV-vis and FTIR spectra for anthocyanins 
shows that UV-vis spectra is superior in its ability 
to obtain a good prediction. This difference can 
be explained by the propensity of anthocyanins 
to absorb into the visible and their ability to 
impact the colour depending on their degree of 
polymerisation. In addition, the results obtained 
with the FTIR spectra appear to be weaker than 
those obtained in similar studies. This can be 
explained by the high variability of the wines 
used to build the database. The absorption due 
to anthocyanins could thus be impacted by the 
strong background noise caused by the many 
compounds that absorb in this spectral area. 
The lack of precision is also increased by the 
low concentration of anthocyanin compounds  
in the dataset.

When focusing on the analysis of condensed 
tannins, we found that the previously observed 
trend was less clear. For the two parameters 
studied, BSA and total tannins, the results for 
UV-vis and FTIR spectra were very close, with a 
slightly higher accuracy for the infrared spectra. 
With an RPD CV value of 2.69 and 2.51 for 
BSA and total tannins respectively for the FTIR 
models, this spectral area shows a real potential 
for condensed tannins prediction, despite a strong 
variation in the database induced by the diversity 
of grape varieties, vintages, and origin of the 
wines. While the values for UV-vis spectra were 
lower, with an RPD CV value of 2.48 and 2.24 
for BSA and total tannins respectively, they also 
indicate that UV-vis spectra is a reliable method 
for condensed tannins analysis.
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Unlike the two methods presented above, the last 
parameter, MCP, showed very heterogeneous 
results for the two spectral areas studied. 
While the prediction with UV-vis spectra 
remained consistent with previous results  
(RPD CV = 2.38 and R2CV = 0.83), the use of  
FTIR spectra showed a very sharp drop in 
prediction (RPD CV = 1.70 and R2CV= 0.66). 
Any analytical bias can be excluded, because the 
UV-vis results remain predictive; it is therefore 
necessary to look for the explanation for this 
difference in the analysis itself. Methylcellulose 
polymer interacts indiscriminately with condensed 
tannins and polymerised pigments, and the 
reading difference at 280 nm does not - unlike the 
BSA analysis - separate them. We can therefore 
hypothesise that the diversity of the precipitated 
compounds is too great for the FTIR reading. 
In order to test the complementarity of spectral 
areas, prediction models were constructed using 
a combination of FTIR and UV-vis spectra and 
reported in table 4. Autoscale pre-processing of 
the spectra used avoids over-exploitation of one 
spectral area over the other in the model design.

An overall improvement in the results can be 
seen when combining UV-vis and FTIR spectra 
compared to those obtained with just UV-vis or 
just FTIR spectra. However, they are still relatively 
similar to the best result obtained via each of the 
two spectra. It is difficult to attribute the increase 
in robustness to a complementarity of both spectra. 
One hypothesis is that it is due to a decrease in 

noise from other wine compounds, which could 
also explain the overall decrease in latent variables 
needed to design the best prediction model. 
Overall, the prediction gain would be negligible 
compared to instruments which would be required 
to perform the analysis, and stand-alone UV-vis 
and FTIR analyses would be preferable. 

We also find that the parameters which do not 
show improvement improvement are related to 
anthocyanins, demonstrating the large involvement 
of the visible area in the design of predictive 
models. The addition of the FTIR area adds more 
uncertainty than robustness for these compounds. 
If the visible greatly improves the prediction of 
anthocyanins, it is possible to integrate specific 
visible wavelengths to increase the robustness of 
the FTIR models. The wavelengths 420nm, 520 nm 
and 620 nm were chosen, because they are already 
used as colour parameters in the wine industry - to 
calculate colour intensity and modified colouring 
intensity - and because some FTIR devices used 
in wine analysis offer these parameters. Therefore, 
the models would be directly applied to these 
devices, should this combination increase the 
robustness of the prediction.

Prediction models using the combination of FTIR 
spectra and wavelengths 420  nm, 520  nm and 
620 nm are shown in Table 5.

Compared to the previous results obtained for 
FTIR spectra alone, an overall increase in accuracy 
for all anthocyanin parameters can be observed.  

TABLE 4. PLS regression results for the combination of UV-vis and FTIR spectra.

R2Cal R2CV RMSECal RMSECV RPD CV Latent 
variables

Total glucoside (mg/L) 0.89 0.73 13.96 21.97 1.91 11

Total acetyl (mg/L) 0.89 0.74 3.81 5.94 1.94 11

Total coumaroyl (mg/L) 0.82 0.60 1.20 1.80 1.57 11

Total anthocyanins (mg/L) 0.90 0.76 17.55 26.92 2.05 11

MP (Abs*100) 0.87 0.75 1.53 2.17 1.98 11

SPP (Abs*100) 0.96 0.81 1.01 2.12 2.26 16

LPP (Abs*100) 0.98 0.92 1.13 2.09 3.52 19

PP (Abs*100) 0.99 0.97 1.18 1.87 5.60 15

Free anthocyanins (mg/L) 0.94 0.83 27.81 47.50 2.43 13

BSA (mg/L) 0.98 0.89 29.59 71.20 2.91 19

MCP (mg/L) 0.94 0.82 157.90 277.26 2.32 15

Total tannins (mg/L) 0.94 0.84 351.82 567.44 2.53 19
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An overall decrease in the number of latent 
variables used to design the most predictive 
model also suggests that FTIR spectra, combined 
with the three visible wavelengths, can explain the 
dataset more easily.

The parameters obtained by HPLC/UV analysis 
show that, even if the robustness of the models 
has increased, their accuracy is still insufficient. 
In order to be usable, the precision of very specific 
parameters (e.g., anthocyanin monoglucoside, 
monoglucoside acetyl and monoglucoside 
coumaroyl with an RPD CV value of 1.70, 1.79 and 
1.59 respectively) would need to be increased. The 
sum of the monomeric anthocyanins - giving an 
RPD value of 1.80 - shows too much uncertainty to 
be used as a prediction of concentration, but it can 
be considered as an indicator of the level of non-
polymerised anthocyanins. The same observation 
can be made with free anthocyanins measured by 
bisulfite bleaching; with an RPD CV value of 1.90, 
this parameter can be considered as an indicator 
and not as a precise concentration reading.

The results obtained using the Adams-Harbertson 
method show a considerable increase in 
performance. The values of RPD CV for MP, 
SPP, LPP and PP range from 1.45, 1.84, 2.06 and 
2.37 respectively for FTIR spectra to 1.83, 2.28, 
2.41 and 3.15 respectively for FTIR spectra with 
visible wavelengths. Thus, the accuracy of these 
parameters - which could be considered too weak 
to be exploitable with FTIR alone - shows now 

results high enough to be considered. The addition 
of these wavelengths will allow an FTIR device 
to assess the level of evolution of anthocyanins 
in an analysed wine because of the ratio between 
the monomeric pigments and the different 
polymerised pigments.

CONCLUSION

This study aimed to compare and identify the 
main qualities of two spectroscopic areas, UV-
vis and FTIR, coupled with chemometrics, used 
for predicting the concentrations of the main 
polyphenols in wine. The choice of sample set 
was based on high variability, in order to avoid 
any bias related to the vintage, grape variety or 
winemaking method.

The results showed that, overall, the analysis of 
UV-vis spectra seemed more appropriate for the 
prediction of wine polyphenols, with the analysis 
of anthocyanins well above the FTIR spectrum, 
and the analysis of condensed tannins slightly 
lower. However, FTIR models showed very 
conclusive results in the analysis of condensed 
tannins, and the versatility of this method - which 
can also measure other important parameters of 
wine, such as acids, ethanol or sugars - suggests 
that it would be preferable to the UV-vis method.

In order to test the complementarity of the two 
spectral zones, prediction models were constructed 
with the combination of FTIR and UV-vis spectra. 
Although most of the studied parameters showed 

TABLE 5. PLS regression results for FTIR spectra, with the addition of 420 nm, 520 nm and 620 nm 
visible wavelengths.

R2Cal R2CV RMSECal RMSECV RPD CV Latent  
variables

Total glucoside (mg/L) 0.82 0.66 17.99 24.82 1.70 15

Total acetyl (mg/L) 0.84 0.70 4.64 6.43 1.79 19

Total coumaroyl (mg/L) 0.80 0.61 1.27 1.78 1.59 18

Total anthocyanins (mg/L) 0.83 0.69 22.38 30.74 1.80 14

MP (Abs*100) 0.87 0.71 1.55 2.36 1.83 15

SPP (Abs*100) 0.90 0.91 1.55 2.11 2.28 16

LPP (Abs*100) 0.88 0.83 2.56 3.05 2.41 10

PP (Abs*100) 0.93 0.90 2.68 3.33 3.15 15

Free anthocyanins (mg/L) 0.83 0.73 46.92 60.60 1.90 18

BSA (mg/L) 0.94 0.87 50.48 76.09 2.72 19

MCP (mg/L) 0.74 0.67 326.43 369.01 1.75 6

Total tannins (mg/L) 0.94 0.80 350.17 652.50 2.20 18
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a slight increase in prediction, it was not enough 
to indicate a real complementarity. However, 
this study has shown the value of the visible 
in the prediction of anthocyanins. To improve 
FTIR prediction models for these compounds, 
new models were developed by adding three 
specific visible wavelengths (420  nm, 520  nm 
and 620  nm) to the FTIR spectrum. These new 
models demonstrate that the addition of such 
wavelengths could compensate for the lack of 
predictive efficiency of FTIR spectra in the dosage 
of anthocyanins.

To complete this study, new wine samples could 
be used to validate the effectiveness of the built 
models and the differences between the two 
spectral areas. In addition, variability could be 
investigated by adding fermenting wines to look 
for the impact of variation in compounds, such as 
ethanol or sugar, on the robustness of models.
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