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Many media are divided into elementary units with irregular shape and size, as exemplified by domains in
magnetic materials, bubbles in foams, or cells in biological tissues. Such media are essentially characterized
by geometrical disorder of their elementary units, which we term cells. Cells set a reference scale at which
are often assessed parameters and fields reflecting material properties and state. Here, we consider the spectral
analysis of spatially varying fields. Such analysis is difficult in geometrically disordered media, because space
discretization based on standard coordinate systems is not commensurate with the natural discretization into
geometrically disordered cells. Indeed, we found that two classical spectral methods, the fast Fourier transform
and the graph Fourier transform, fail to reproduce all expected properties of spectra of plane waves and of white
noise. We therefore built a method, which we call cellular Fourier transform (CFT), to analyze cell-scale fields,
which comprise both discrete fields defined only at cell level and continuous fields smoothed out from their
subcell variations. Our approach is based on the construction of a discrete operator suited to the disordered
geometry and on the computation of its eigenvectors, which, respectively, play the same role as the Laplace
operator and sine waves in Euclidean coordinate systems. We show that CFT has the expected behavior for
sinusoidal fields and for random fields with long-range correlations. Our approach for spectral analysis is suited
to any geometrically disordered material, such as a biological tissue with complex geometry, opening the path to
systematic multiscale analyses of material behavior.

DOI: 10.1103/PhysRevResearch.3.023036

I. INTRODUCTION

The past decades have seen a growing interest in geomet-
rically disordered media [1] such as liquid and solid foams
[2–4], granular materials [5], or biological tissues [6,7]. This
brought many questions and concepts related to the dynamics
of these media such as coarsening [8–13], fluctuations [14],
jamming transition [15–19], grain growth [20], or applicabil-
ity to living tissues [21]. Many experimental approaches were
developed to observe and quantify cell tilings in these media.
For instance, magnetic resonance imaging [22] or x-ray to-
mography [11,23] enable imaging of foam evolution in three
dimensions. Imaging of biological tissue is performed with
serial block-face scanning electron microscopy [24] or with
confocal microscopy of living samples [21]. Using efficient
algorithms such as the watershed transform [25], it has been
possible to segment these two-dimensional (2D) and three-
dimensional (3D) images, i.e., to extract the geometry and the
arrangement of the cells, as performed in foams [26], granular
material [27], or in biological tissues [28]. Here, we consider
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quantitative analyses of properties or fields defined on such
segmented images.

An example is given in Fig. 1, which shows a coarsen-
ing 2D liquid foam. It is disordered, constituted of cells of
broadly distributed sizes, and irregularly arranged. Accord-
ingly, analyses of fields defined in geometrically disordered
media require disentangling potential randomness associated
with the field from randomness due to geometry. In addition,
the cell often provides a reference scale below which it is
difficult, irrelevant, or impossible to define fields. In a foam,
areal growth is defined at a discrete level (generally at cell
level, Fig. 1) because growth requires landmarks (here, ver-
tices) to be computed. These special features make it difficult
to assess spatial patterns and test theoretical predictions based
on continuous models, such as our prediction of long-range
spatial correlations for growth fluctuations in biological tis-
sues [29]. Here, we develop an approach to overcome these
difficulties, based on harmonic representation of signals de-
fined on cellular media, which enables one to properly analyze
the spectra of these signals. We term our approach cellular
Fourier transform (CFT).

Spectral analysis decomposes signals into linear combi-
nations of harmonics [30]. Ad hoc harmonics depend on
how signals are represented [31]: for a continuous signal in
Euclidean space, it is common to use plane waves and to
consider the Fourier transform, while discrete signals defined
on regular grids are often decomposed into the eigenvec-
tors of circulant matrices, yielding the fast Fourier transform
(FFT). Initial frameworks for spectral analysis of signals on
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FIG. 1. Cell areal growth rate in a 2D coarsening foam with
visible polydispersity in size. Black lines represent the liquid films
between cells, which are colored according to their relative areal
growth rate computed over a period of 106 s (color scale on right).
Data courtesy of Jérôme Duplat (see [13]).

irregular grids were based on FFT [32]. More recent ap-
proaches constructed ad hoc harmonics on graphs [33].
Harmonics depend on geometry and, in compact metric
spaces, they can be defined as eigenfunctions of the Laplace
operator [30]. This idea has been extensively used in dis-
crete analysis [34], especially to analyze signals on graphs
[33,35,36]. A graph may be endowed with an irregular geom-
etry by ascribing a distance to each edge and define Laplace
operators that incorporate distances. However, graphs cannot
be used to describe geometrically disordered materials, be-
cause graphs do not account for the full geometry of unit cells.
Discrete Laplace operators have also been defined for triangu-
lar meshing of surfaces [37], but their use for signals defined
on geometrically disordered materials seems problematic for
several reasons. These operators converge only weakly to the
smooth Laplace-Beltrami operator in the limit of small mesh
size [38] and discrete Laplacians on triangular meshes cannot
satisfy all desired natural properties [39]. Other reasons are
related to the nature of the mathematical object that we con-
sider: Cellular tessellations of space (2D or 3D), in which cells
may have complex shapes and varying topologies (number
of neighbors). Therefore the arrangement of cells cannot be
encapsulated in binary relations as in triangular meshes or in
graphs.

We therefore built a framework to analyze signals defined
on (possibly disordered) tessellations of space. We first moti-
vate our study by applying the fast Fourier transform and the
graph Fourier transform to examples of cellularized signals.
We present the geometry of the medium and how signals are
represented. We define a coarse Laplace operator, applicable
to signals with variations at sub- and supracell scale; we show
that sine waves are its eigenfunction in the Euclidean space.
We project this operator on the cellularized geometry and
discretize it. Finally, we test our analysis with numerically
generated data, illustrate it with experimental data from a
coarsening foam, and discuss the potential applications of this
framework. For simplicity, we present results for polygonal
tilings of the Euclidean plane, but this method is broadly
applicable to domains of any geometry and dimension. We
also provide MATLAB (Mathworks) scripts implementing CFT

that can be readily adapted to analyze any type of cellularized
signal.

II. MOTIVATION

We first discuss the applicability of the FFT or the GFT to
cellularized signals.

A. Reference tessellation and reference fields

To test the different approaches, we generated a cellular
tessellation and reference fields that associate to each cell
a scalar value. We started from 1000 × 1000 images of a
range of continuous fields shown in Figs. 2(a)–2(d): plane
waves of fixed amplitude and four values of wave number,
step function, long-range correlated noise, and white noise.
Stationary waves [Fig. 2(a)] have wave numbers 2

√
2πn/a

with n = 1, 3, 5, and 10. The step function is defined as
f (x, y) = −1 if y < 0 and f (x, y) = 1 if y � 0 [Fig. 2(b)]. We
built the long-range correlated random field [Fig. 2(c)] using
the Fourier filtering method detailed in [40]; the two-point
correlation function of pixel intensity 〈IiI j〉 decays with the
distance di j between pixels like 1/di j . The white noise has
amplitude 1 [Fig. 2(d)].

We built a reference domain and its partition into cells by
generating the Voronoi tessellation of a random distribution
of 1000 seeds initially placed in a square of side 1000. We
only kept the 894 cells entirely included in the square, yielding
the domain � as shown in Figs. 2(e)–2(h). � is not a perfect
square; it is a polygon with a large number of edges. The
number of cell neighbors is broadly distributed around six. For
a given continuous field, we computed the average of the field
over each cell; the mapping between a cell and the average
field over that cell defines the cellularized field. The four types
of cellularized fields are shown in Figs. 2(e)–2(h) and appear
as piecewise constant versions of the continuous fields. In the
remainder of this section, we focus on stationary waves and on
white noise [Figs. 2(a), 2(d) 2(e), and 2(h)]; we use the step
function and the long-range correlated noise in Sec. IV.

B. Applicability of fast Fourier transform

We first applied the FFT to reference fields. We discretized
these fields on 1000 × 1000 images, setting to zero the in-
tensity of pixels not belonging to cells (due to the Voronoi
tessellation not filling the square). We show the spectra of the
reference fields as a function of the x and y components of the
wave vector [Fig. 3(a) for stationary waves and Fig. 3(b) for
white noise] and as a function of the wave number in Fig. 3(c).
We made wave vectors dimensionless using the typical cell
scale lc, defined as the square root of the mean cell area.
To ease readability of figures, we only plotted the first few
thousands of modes among the million of possible modes (the
starting data has dimensions 1000 × 1000).

The spectra of the stationary waves show four peaks
(±q(m)

x ,±q(m)
y ), lines joining them, and background noise

[Fig. 3(a)]. The four peaks correspond to the wave numbers
of the initial stationary wave while the lines result from a
windowing effect due to the Voronoi tessellation not entirely
filling the square. The spectrum of the white noise is maximal
for the wave vector (0,0) and decays slowly away from (0,0)
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FIG. 2. Reference fields: four types of continuous fields and their cellularized versions defined on a reference domain. (a), (b), (c), and
(d) respectively show stationary waves, a step function, a random field with long-range correlation, and a white noise, while (e), (f), (g), and
(h) show their respective cellularized versions, in which each cell is ascribed the average of the continuous field over that cell.

[Fig. 3(b)]. In all cases, the amplitude of the FFT increasingly
departs from expectations as the wave number increases: the
height of the peaks decrease for waves of increasing wave
numbers [in Fig. 3(c)], instead of having a fixed amplitude,
and the spectrum of the white noise decreases with wave
number [in Fig. 3(d)] instead of having a constant amplitude,
a phenomenon that is very clear when averaging over realiza-
tions of the noise [inset of Fig. 3(d)].

The higher the wave number, the less the signal can be
approximated by its cellularized projection. Cells act like
a low-pass filter that reduces the amplitude of higher FFT
modes with respect to the spectra of the initial signals. As we
will see later, the method that we developed circumvents this
issue.

C. Applicability of graph Fourier transform

The GFT is applicable to signals that are defined on graphs;
the harmonics are then the eigenmodes of a discrete Laplace
operator. Here a graph can be defined from cells and neigh-
borhood relations between cells: each vertex of the graph
corresponds to one cell, and this vertex is connected to all ver-
tices corresponding to neighboring cells. We may account for
the metrics of the cellular tessellation by associating to each
edge (link between graph vertices i and j) a weight wi j that de-
pends on the distance between cell centers di j , wi j = f (di j );
the weight wi j vanishes if the two cells are not neighbors. For
a field φ that has values φi for i spanning vertices, the value
of the Laplacian at vertex i is [L(φ)]i = ∑

j wi j (φ j − φ). For
a fair comparison with the method that we developed, we
used the same kernel f (r) = exp(−r/σ ) with σ = 7lc. We
computed the eigenvectors ek of the Laplacian L, which are
associated to the eigenvalues L̂k . The graph Fourier transform
of a field is then given by the components of the field with
respect to the basis {ek}.

Because there is no standard definition of the wave number
for GFT harmonics, we plotted the spectra as a function of the
eigenvalue L̂k of the graph Laplacian L [Figs. 3(e)–3(f)]. The
GFT behaves poorly for stationary waves, having a marked
peak only for the wave with highest wavelength. The GFT
spectrum of the white noise has amplitudes that are one or-
der of magnitude lower than expected; in addition, when the

spectrum is averaged over realizations of the noise, a slowly
decreasing trend appears in the spectrum, in contradiction
with expected constant amplitude.

The GFT is not really applicable to cellularized fields
because it behaves poorly with respect to spectra of the con-
tinuous fields and it is difficult to define wave numbers. An
explanation is that geometrical information on cell shape is
partially lost when considering a weight that depends on dis-
tance between cell centers. As we will see later, the method
that we developed fully accounts for cell geometry.

III. FORMULATION

We first present the mathematical basis of the CFT. The
reader may skip to Sec. IV A to find the implementation
and validation of the CFT. The main results are given by
Eqs. (13)–(16) that, together with Eq. (4), define the har-
monics and their wave numbers from an appropriate discrete
Laplace operator.

A. Signal representation on a cellularized space

In this section, we explain how signals are represented in
the cellularized space and we specify desired properties of the
harmonics.

We consider a bounded domain � of the n-dimensional
space Rn, divided into N subdomains {ωi, i = 0, 1, . . . , N −
1}, which we call cells. We consider an integration measure
dμ defined on Rn. For a Euclidean metric and coordinates
(y1, y2, . . . yn), we would have dμ(y) = dy1dy2. . . . dyn. Let
S and Si be the sizes (e.g., areas) of domain � and cells
ωi, respectively, S = ∫

�
1 dμ(x) and Si = ∫

ωi
1 dμ(x), where

the integrals over � and the cell domains ωi are computed
according to the measure dμ(y). We aim at analyzing a signal
f defined over � (and assumed to have sufficient regularity
for all formulations to be mathematically well posed). The
smoothed version of the signal f is given by a cellwise con-
stant function fC . fC associates each cell ωi with the average
of the continuous signal f over that cell, 1/Si

∫
ωi

f (y)dμ(y).
We call fC the representation of f . Figure 2 shows examples
of signals f and their representations fC on a random Voronoi
tessellation. The representation fC belongs to a vectorial space
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FIG. 3. Fast Fourier transform and graph Fourier transform ap-
plied to cellular representations of plane waves and white noise
[Figs. 2(e) and 2(h)]. FFT modulus is plotted as a function of the
dimensionless components of wave vector (qx, qy ) in (a) and (b) and

as a function of wave number q =
√

q2
x + q2

y in (c) and (d), using
typical cell scale lc as unit length. In (e) and (f), GFT modulus is
plotted as a function associated eigenvalue L̂k of Laplacian. Insets in
(d) and (f) show the root mean square spectra obtained by averaging
1000 realizations of the white noise. Dashed vertical lines in (c) are
at the wave numbers of the initial fields, while dark horizontal lines
in (d) and (f) correspond to the spectral density of the initial noise
(theoretical curve).

E of dimension N (the number of cells ωi), which we call the
representation space. A basis of E is the set of functions {ψi}
that vanish outside ωi and are defined by

ψi : � → R,

x → ψi(x) =
{

1/
√

Si if x ∈ ωi

0 else.
(1)

Given the standard scalar product 〈 f · g〉 = ∫
�

f (x)g(x)dμ(x)
of two functions f and g, the basis of functions {ψi} is or-
thonormal, 〈ψi · ψ j〉 = δi j, where δi j is the Kronecker symbol
(δi j = 1 if i = j, else δi j = 0). The representation fC of f is
also its orthogonal projection on the representation space E ,

fC (x) =
N−1∑
i=0

fiψi(x) with fi = 〈ψi · f 〉. (2)

We note that fi = 1/
√

Si
∫
ωi

dμ(y) f (y) is not the signal av-
eraged over the domain ωi. The prefactor involving size Si of
cell i is important for the present analysis to be mathematically
sound and the definition of fi is the appropriate discretization
of the cellularized signal. Inappropriate discretization partly
explains the poor results of GFT. In the following, we aim to
define another orthogonal basis for the representation space
E so that its elements enable spectral analysis in cellular
media. We will call the elements ek of this basis harmonics
of the representation space. They can be written as ek (x) =∑

i Ukiψi(x), where Uki = 〈ek · ψi〉 are the elements of the ro-
tation matrix U between the two bases. Finding the harmonics
of the representation space is equivalent to determining the
unitary matrix U .

B. Coarse Laplace operator

In infinite Euclidean space, Fourier harmonics are plane
waves. These plane waves are notably eigenfunctions of the
classical Laplace operator. More generally, these plane waves
are eigenfunctions of all integral operators that are invari-
ant by translation, a property that we will use to define the
harmonics ek . In this section we consider a Laplace-like in-
tegral operator and investigate its properties, first in infinite
Euclidean space and then in bounded domain; we then explain
how the problem can be discretized to define the harmonics ek .

1. In unbounded space

Harmonics are often defined as eigenfunctions of the
Laplace operator. Because the signals that we consider are
smoothed out of their subcellular variations, we build a coarse
version of the Laplace operator, formulated as an integral
operator L which, to each function f defined on Rn, associates

L[ f ](x) =
∫
Rn

w(|x − z|)[ f (x) − f (z)]dμ(z). (3)

The kernel w is an integrable real function and |x − z| is the
Euclidean distance between points x and z of Rn. We assume
that w(r) has a maximum at r = 0 and vanishes when r → ∞,
with a characteristic decay length σ . Like the discrete Lapla-
cian on a grid, the operator W averages the difference between
the local field f (x) and its value on the neighborhood of x. In
the limit where the length scale σ vanishes, L[ f ] � C∇2 f ,
where ∇2 is the classical Laplace operator and the constant
C = − ∫

Rn w(|z|)z2/2 dμ(z). The operator L can be seen as a
coarse version of the Laplacian ∇2 (see [41]).

In all generality, plane waves of wave number q, uq(x) =
exp(Iq · x) (with I2 = −1) are eigenfunctions of L:

L[uq](x) = L̂(|q|)uq(x), with

L̂(|q|) = Ŵ (0) − Ŵ (|q|),

Ŵ (|q|) =
∫ +∞

0
w(r)Ad (|q|r)rd−1dr, and

An(r) = 2π (n−1)/2

	((n − 1)/2)

∫ π

0
dθ (sin θ )n−2 exp(I|q|r cos θ ).

(4)
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We will later consider the case when L̂ is positive and
monotonously increasing on [0,+∞[ so that the eigen-
functions of L associated to a given eigenvalue are linear
combinations of plane waves with all wave numbers having
the norm |q|.

2. In bounded domain

We now consider a compact bounded domain � of Rn and
functions f defined on �, and we replace the operator of the
previous section by

L[ f ](x) =
∫

�

w(|x − y|)[ f (x) − f (y)]dμ(y), (5)

where L is a compact and self-adjoint operator; according to
the spectral theorem, the eigenfunctions of L form an orthog-
onal basis of the associated Hilbert space [30]. If w is well
localized around 0 (equivalently if its decay length σ is small
with respect to size of the domain �), then the integral in (5)
can be approximated by an integral over the whole Euclidean
space Rn provided that the position x is not too close to the
boundary of �. Therefore, Eq. (4) implies that the eigenvalues
of L are approximately L̂(|q|). Associated eigenfunctions are
locally approximated by linear combinations of plane waves
with wave numbers of norm |q|, except close to the boundary;
eigenfunctions may show boundary layers of width σ (see
below). Note that, in order to reduce this boundary effect
for eigenfunctions associated to the lowest eigenvalues, we
defined L[ f ](x) in Eq. (5) using the difference f (x) − f (y),
which enforces constant functions to be eigenfunctions of L
that are associated to the eigenvalue 0.

C. Harmonics of the representation space

In this section we discretize the problem and consider
the representation of the coarse Laplace operator, L, defined
above. We introduce in Sec. III C 1 the harmonics of the rep-
resentation space and investigate in Sec. III C 2 how they are
related to the eigenfunctions of L and how their wave numbers
can be computed. In Sec. III C 3, we introduce a correction to
reduce boundary effects.

1. Discrete Laplace operator

In order to build the representation of the coarse Laplace
operator, we first consider the representation wC (x, y) of the
kernel w(x, y) assumed to be a function of the distance |x −
y| so that w(x, y) = w(|x − y|). w(x, y) is a function of two
variables and its representation is piecewise constant on �2.
Accordingly, we generalize the representation of a function of
a single variable defined as a projection on E and define the
projection of w(x, y) on E2 as follows:

wC (x, y) =
N−1∑
i=0

N−1∑
j=0

Wi j ψi(x)ψ j (y), (6)

where the elements of the weight matrix W are given by

Wi j = 1√
SiS j

∫
ωi

∫
ω j

w(|x − y|)dμ(x)dμ(y). (7)

The integral operator LC associated to the kernel wC

is LC[ f ](x) = ∫
�

wC (x, y)[ f (x) − f (y)]dμ(y). Using

Eq. (6) for wC and the relations
∫
�

ψ j (y)dμ(y) = √
S j

and f j = 〈ψ j · f 〉, we rewrite the integral operator
as LC[ f ](x) = ∑N−1

i=0

∑N−1
j=0 ψi(x)Wi j[ f (x)

√
S j − f j].

We then apply this operator to a function fC (x) =∑N−1
i=0 fiψi(x) of the representation space and use the

relation ψi(x)ψ j (x) = (1/
√

Si )δi jψi(x), so as to get
LC[ fC](x) = ∑N−1

i=0

∑N−1
j=0 Li j f j ψi(x), where

L = D − W, Di j = δi j

N−1∑
k=0

Wik

√
Sk

Si
. (8)

We call the matrix L the discrete Laplace operator. It shows
similarities with classical discrete Laplace operators [39],
such as being symmetric, having positive weights Wi j , and
being positive semidefinite. We nevertheless emphasize that
these classical discrete Laplacians do not operate on the
same mathematical objects: they apply to functions defined
on meshes or on graphs, whereas our operator L applies to
functions that are piecewise constant over each cell.

2. Eigenfunctions and eigenvalues

The discrete Laplace operator L can be diagonalized and
we propose to define the unitary matrix U introduced in
Sec. III A from the eigenvectors of L, yielding

Li j =
N−1∑
k=0

L̂kUkiUk j, (9)

where {L̂k, k = 0, 1, . . . , N − 1} are the eigenvalues of L.
Note that the eigenvector associated to eigenvalue 0 is
(
√

S0,
√

S1, . . . ,
√

SN−1) instead of being (1, 1, . . . , 1) as for
classical discrete Laplace operators. This difference illustrates
how cell size heterogeneity is taken into account by the cellu-
lar Fourier transform. The harmonics {ek, k = 0, 1, . . . , N −
1} associated to U are the eigenfunctions of LC :

LC[ek](x) = L̂kek (x). (10)

In the following, we show that harmonics of the repre-
sentation space are good representations of harmonics of the
whole space of functions defined on � and we determine the
wave numbers associated with the eigenfunctions ek , by using
the coarse Laplace operator L. To do so, we first consider an
eigenfunction f of L: L[ f ](x) = λ f (x). Based on the defini-
tions above, its representation fC verifies

LC[ fC](x) = λ fC (x) +
N−1∑
i=0

ψi(x)√
Si

∫
ωi

∫
�

dμ(y)w(|z − y|)

× [ f (y) − fC (y)]dμ(z). (11)

In the integral in (11), f (y) − fC (y) varies quickly, i.e., at the
typical cell scale lc = (μ/N )1/n. If the decay length σ of the
kernel w is greater than or comparable to lc, then the integral
in (11), yielding LC[ fC](x) = λ fC (x), and fC is, within a
good approximation, an eigenfunction of LC , associated to
the same eigenvalue λ. Therefore the linear space generated
by the eigenfunctions of L associated with eigenvalue L̂(|qk|)
[see Eq. (4)] is projected to the linear space generated by the
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harmonics ek such that

L̂k = L̂(qk ). (12)

Finally, based on Sec. III B, each eigenfunction of L as-
sociated to eigenvalue L̂(|qk|) is locally well approximated
by a linear combination of plane waves with wave vectors
having the same norm |qk|. Therefore the ek are appropriate
harmonics of the representation space because they are the
projections of linear combinations of plane waves of the same
wave number qk , defined by Eq. (12).

3. Correcting boundary effects

The results obtained in Secs. III C 1 and 2 are only valid in
the bulk of domain �. Indeed, when we explicitly compute
the set {ek, k = 0, 1, . . . , N − 1} following the above, we
found that some of the harmonics ek show visible bound-
ary layers near the edges of �. This can be explained
qualitatively as follows: At edges, L[ f ](x) is an integral
over a domain about twice smaller than in the bulk; con-
sequently, variations of eigenfunctions at edges are about
twice as big as in bulk. Two qualitatively similar methods
could be used to correct this artifact. One is to rescale the
weight function w(|x − y|) by its integral over �, i.e., use
the kernel w(|x − y|)/ ∫

�
w(|x − z|)dμ(z). Another is to di-

rectly rescale each row i of the discrete Laplace operator by
Dii = 1

Si

∫
ωi

∫
�

w(|x − y|)dμ(y)dμ(x). Here we use the latter
method and we consider the rescaled Laplace L̄ operator,

L̄i j = δi j − W̄i j, with

W̄i j =
√

Si

S j

∫
ωi

∫
ω j

w(|x − y|)dμ(x)dμ(y)∫
ωi

∫
�

w(|z − t |)dμ(z)dμ(t )
.

(13)

This rescaling only marginally changes the matrix L,
though it breaks its symmetry. For this reason U is no longer
defined as the eigenvectors of L̄ but as its right-singular vec-
tors. This does not significantly affect U , except for columns
corresponding to cells at the edges of �. The singular values
L̂k of the rescaled Laplace operator are therefore still related to
wave numbers via Eq. (12). If V are the left-singular vectors,
we may write the components of L̄ as

L̄i j =
N−1∑
k=0

L̂kVkiUk j . (14)

The wave number qk can be defined from the eigenvalue L̂k

using Eq. (4),

L̂k = L̂(qk )/L̂(0). (15)

From this analysis, we can deduce the spatial spectrum of a
signal f . The kth spectral coefficient is given by

�̂k = 〈ek · f 〉 =
N−1∑
i=0

Uki
1√
Si

∫
ωi

f (x)dμ(x), (16)

and is associated to the wave number qk defined in Eq. (15).
We call this spectrum the cellular Fourier transform: It is the
appropriate equivalent of the classical Fourier spectrum in Rn

for signals defined at cell level. The spectrum is fully defined
by Eqs. (13)–(16), together with Eq. (4).
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FIG. 4. The relation between wave numbers and eigenvalues of
L. The black line shows the function Q and the blue crosses show
Q(L̂k ) that correspond to the discrete wave numbers. Kernel: expo-
nential kernel, σ = 7 lc.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

We implemented the CFT on the domain and for the fields
shown in Fig. 2. The CFT relies on defining harmonics as
the eigenvectors of the discrete Laplace operator given by
Eq. (13). This equation involves cell sizes Si (e.g., cell areas
in 2D) and a kernel w(r) that vanishes for large r. We tested
several kernels w and several values of their characteristic
decay lengths σ (see below). We numerically computed the
integrals in Eq. (13) using Gauss quadrature. For tractability
of numerical calculations, we used the approximation w(r >

6σ ) = 0. We obtained the harmonics and associated wave
numbers [Eqs. (14) and (15)] using the singular value decom-
position algorithm of MATLAB (Mathworks) (see Appendix).
We present in Sec. IV B the CFTs of a few results of our
approach before testing in Sec. IV D how the parameters of
the kernel influence the analysis. As an illustration, we also
performed an analysis of the foam coarsening data shown in
Fig. 1, which is presented in Sec. IV E.

B. CFT applied to artificial fields

In this section, we use an exponential kernel, w(x) =
σ−2 exp(−r/σ ). Following (12), the corresponding wave
numbers qk take values qk = 1/σ Q(L̂k ), where Q(l ) =√

(1 − l )−2/3 − 1 is the inverse function of L̂ introduced in
(4). Note that the wave number qk associated to the harmonics
ek is not given by the square root of L̂k , as would be for
the Fourier transform in infinite space (though qk ∼

√
L̂k for

small L̂k). These wave numbers are shown in Fig. 4.
Figure 5 shows the first harmonics ek on �. These har-

monics resemble linear combinations of the eigenfunctions of
the Laplace operator with Neumann boundary conditions on
a square of side a [42], umn(x, y) = cos(πmx/a) cos(πny/a),
where (x, y) are the Cartesian coordinates and (n, m) are
integers. Indeed, the shape of � is close to a square and in
the limit σ → 0, the coarse Laplace operator L defined in

023036-6



CELLULAR FOURIER ANALYSIS FOR GEOMETRICALLY … PHYSICAL REVIEW RESEARCH 3, 023036 (2021)

FIG. 5. The six first harmonics on a domain � that was generated
using a randomly seeded Voronoi tessellation. Blue and yellow corre-
spond, respectively, to negative and positive values of the harmonic.
Kernel: exponential, σ = 7lc.

Eq. (5) converges toward the classical Laplace operator with
Neumann conditions on the boundaries of its domain � [41].
Accordingly, the first harmonic of the discrete Laplace opera-
tor, e0, is constant like u00. The following harmonics e1 and e2

correspond, respectively, to u10 and u01, but their orientation
deviates slightly toward diagonals. More generally, a given
harmonic ek corresponds to a linear combination of eigenfunc-
tions umn with indices corresponding to π/a

√
m2 + n2 ∼ qk .

This linear combination is such that higher harmonics ek

tend to have the same spatial periodicity in all directions.
Accordingly, the wave numbers of the CFT modes are well
defined, but the directions of the wave vectors of the modes
are not. Indeed, the CFT was designed for generic geometries,
which do not have well-defined wave vectors; for instance,
classical harmonics in a disk are Bessel functions of the radial
coordinate multiplied by sines of the orthoradial coordinate.

In Fig. 6 we show the spectra of the fields plotted in Fig. 2.
As expected, the spectra of the stationary waves representa-
tions are maximal close to the wave numbers of the initial
continuous waves [Fig. 6(a)]. Nevertheless, the width of the
peaks increases with the wave number of the initial continu-
ous stationary waves, owing to a less accurate approximation
of the stationary wave by its representation in the face of
finite cell size. Also as expected, the spectrum of the step
function representation is peaked at 0 [Fig. 6(b)]. The spectra
of field with long-range correlations [Fig. 6(c)] and of the
white noise [Fig. 6(d)] are random and the amplitudes are
distributed around zero (here we plot the absolute value); the
amplitudes slowly decay with qk in C but stay constant in D.
To further study random fields, we generated 1000 realizations
of the noise. We estimated the average spectrum, which should
give an estimate of the Fourier transform of the correlation
function. The spectra of representations behave as expected:
constant for white noise and power-law decay for field with
long-range correlations [Fig. 6(e)].
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FIG. 6. CFT of the cellularized fields shown in Figs. 2(a)–
2(d) Spectra of the cellularized fields shown in Figs. 2(e)–2(h),
respectively. (e) Root-mean-square spectra of white noise (red) and
of long-range correlated noise (blue); the average is over 1000 re-
alizations and is shown in linear (main plot) and logarithmic (inset)
scales. The magenta, yellow, red, and blue data in (a) are associated
to the wave numbers 2

√
2πn/a of the initial continuous signals (rep-

resented by dashed lines) with n = 1, 3, 5, and 10, respectively, and a
is the dimension of the square. The dark lines in (c)–(e) represent the
theoretical curves given by the Fourier transforms of the continuous
signals f . Kernel: exponential, σ = 7 lc.

C. CFT compared to FFT and GFT

In the context of cellularized signals, the CFT performs
better than the fast Fourier transform. They both retrieve
peaks in the spectra, but the position of the peaks is less
precise with FFT and the peaks are broader for FTT. This
can be quantified using the spectral density �̂k; the mean, qM ,
and root mean square, qrms, of wave number are computed
as (

∑N−1
k=0 qn

k |�̂k|2)/(
∑N−1

k=0 |�̂k|2), with n = 1 and n = 2, re-
spectively. We computed the relative shift in wave number δ =
(qM − qi )/qi between the resulting spectrum and the initial
stationary wave. For the CFT, we found values δ = −0.0583,
−0.127, −0.123, and −0.0993 (for the four respective station-
ary waves), which are orders of magnitude smaller than for the
CFT, δ = 3.91, 1.89, 1.89, and 1.76. Similarly, we computed
the relative standard deviation ν = (q2

rms − q2
M )1/2/qi of the

resulting spectrum. For the CFT, we found values ν = 0.164,
0.130, 0.130, and 0.183, which are also orders of magnitude
lower than for the FFT, ν = 26.6, 10.4, 8.09, and 5.75. The
CFT retrieves a flat spectrum for white noise, whereas the FFT
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yields a decaying spectrum. This is due to the FFT adding
artificially a large number of degrees of freedom (∼106) to
those of the cellularized signal (number of cells ∼103); hence
the spectrum of the noise spreads out to larger wave numbers.
Reducing the number of FFT modes would not be a solu-
tion because FFT is defined on a square grid which cannot
match the topological relations between cells in a disordered
medium.

In this context, the CFT also performs better than the
graph Fourier transform. The GFT yields broad peaks for the
spectrum of stationary waves and a decaying spectrum for
the white noise. Although this might be improved by a better
choice of the weight of links between cells, the GFT would
still discard cell shape, and the difficulty of defining wave
numbers in the GFT would remain a major issue.

We note, however, that all transforms would yield very
similar results for a tessellation with identical square-shaped
cells. As such, the CFT is most appropriate for geometrically
disordered media.

D. Sensitivity of the CFT to the kernel

We first tested the influence of the kernel decay length, σ ,
of the exponential kernel. We show in Fig. 7 spectra obtained
with different values of σ . We see that when σ is small,
spectra are shifted toward higher wave numbers. Optimizing
the kernel requires taking into account domain size and nu-
merical precision at which the singular value decomposition is
performed. The typical cell scale lc should be a lower bound
for σ while domain size and numerical precision prevent σ

from being too large. Optimal values for σ must depend on
the whole distribution of cell shapes and size as well as on the
number of cells. We estimated this optimal value by maximiz-
ing the agreement between the wave numbers corresponding
to maxima of spectra in Fig. 7(a) and the wave number of the
corresponding stationary waves. We found σ � 7lc, which is
intermediate between cell size and domain size.

We calculated the harmonics of the same domain � us-
ing a Gaussian kernel w(r) = exp [−r2/(2σ 2)]σ−2(2π )−1

for which qk = 1/σQ(Lk ) with Q(l ) = √−2 ln(1 − l ) and
compared the results with those obtained above with an expo-
nential kernel. We did not observe significant differences with
the exponential kernel, except at very high frequency. Such
differences at high frequency are better seen with long-range
correlated fields, as visible in Fig. 8: The Gaussian kernel
leads to an underestimation of the spectrum at large wave
numbers. This can be ascribed to finite numerical precision.
With the Gaussian kernel, the eigenvalues L̂k are distributed
closer to 1, which is a singularity of Q. For this reason, a
higher precision on L̂k would be required in the Gaussian case.

E. CFT illustrated with coarsening foam

To illustrate the cellular Fourier transform, we analyzed
data for a two-dimensional foam shown in Fig. 1. We first
obtained cell contours using the MATLAB imfill function which
is based on morphological reconstruction. We ascribed pix-
els to cells; we calculated the discrete Laplacian from (13)
by summing over pixels and then computed the harmonics.
Figure 9 shows the spectrum of areal growth and cell density.

0 2 4 6 8 10 12

2

4

6

8

0 2 4

200

2 40

200

400

2 40

200

400

0 2 4

200

400

400(a)

(b)

0.5

11

3

7

FIG. 7. Effect of kernel decay length. Spectra of stationary waves
(a) and root-mean-square spectra of long-range correlated noise (b).
The stationary waves are those represented in Fig. 2(a) and one
realization of the random signal was shown in Fig. 2(g). The dif-
ferent colors correspond to different kernel decay lengths σ of the
exponential kernel. Black lines represent the Fourier transform of the
input signals f (theoretical curves).

The spectrum for growth seems to be random and overall
decay with wave number. Its resemblance with the spectrum
shown in Fig. 6(c) suggests long-range correlations for areal
growth in foams. Knowing that, in a coarsening foam, relative
areal growth of a cell of area S and number of neighbors n
is proportional to (n − 6)/(Se) with e average thickness of
films, this could be associated with long-range correlations in
any of these parameters. The spectrum for cell density 1/S is
rather flat, with a slight increasing trend at high wave num-
bers. This trend would be expected based on a consequence
of the Aboav-Weaire and Lewis laws, according to which
relatively small cells are in contact with relatively large cells
(and conversely) leading to a short-range anticorrelation in
cell size [43]. Although this analysis is preliminary and should
be taken with caution, it indicates that CFT may help reveal
new features of geometrically disordered materials.

V. CONCLUSION

We considered here the harmonic decomposition of fields
defined over disordered cellular media. We found that the
classical fast Fourier transform and graph Fourier transform
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Gaussian v.s. exponential kernel
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Exponential
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101

FIG. 8. Effect of kernel type on the spectra. Log-log plot show-
ing the mean-square spectra of the representations of fields with
long-range correlations, as obtained with Gaussian (red) and expo-
nential (blue) kernels (σ = lc). Spectra were averaged over 1000
realizations. The black line represents the same root-mean-square
spectra but deriving from the Fourier transform of the input signals
f (theoretical curve).

(a)

(b)

FIG. 9. Coarsening foam. Spectrum of areal growth in (a) and
cell density in (b) for the foam shown in Fig. 1. Kernel: exponential,
σ = 7lc.

have some shortcomings in this context. In brief, the FFT is
defined on a square grid and does not account for disordered
topology (variable number of neighbors), while the GFT does
not account for disordered cell shape. We therefore built a
more adequate harmonic decomposition, which we called cel-
lular Fourier transform. It is based on the definition of a coarse
Laplace operator and the use of an appropriate localized ker-
nel. We found that the resulting harmonics generally behave
as expected for an exponential kernel of decay length that is
intermediate between cell size and domain size, though the
CFT does not yield perfect peaks because of finite cell size.
Another limitation of the CFT is that it is not well suited to
the identification of wave vectors because it was designed for
domains of irregular shapes. Overall, this harmonic decom-
position is suited to disordered media that are divided into
cells with variable sizes and irregular arrangements, such as
foams, emulsions, granular materials, or biological tissues.
As the definition of the harmonics does not depend on the
coordinate system, our approach would also be applicable to
non-Euclidean geometries, such as curved surfaces embedded
in 3D and, in particular, biological thin tissues with complex
3D shapes.

Our method could be broadly useful for disordered media,
even in the absence of subdivisions into cells. In some experi-
mental situations like in fluid dynamics, it is possible to track
landmarks such as particles to quantify their displacement. To
a certain extent, and similarly to the Helmholtz decomposi-
tion of a vector field as the sum of a curl-free field and a
divergence-free one, an equivalent point of view would be to
consider a triangulation of the landmark distribution and to
study the deformation and the rotation of the triangles. One
could define invariants which do not depend on the translation
relative to the reference frame or the coordinate system and
directly apply the CFT to those invariants.

Finally, we believe that our approach can be used for cel-
lularized media in all contexts where Fourier transforms are
used. This includes statistical estimations (estimating fluctua-
tions at different scales and their correlations), constructing a
wavelet decomposition, or pattern recognition.
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APPENDIX: TO COMPUTE THE CELLULAR
FOURIER TRANSFORMS

We here explain how to implement the cellular Fourier
transforms of cellularized signals. This implementation com-
prises three steps: computing the Laplace operator, defining
the Fourier harmonics, and computing the cellular Fourier
transform of the cellular representation of a signal. In com-
plement, we provide a MATLAB code (see Supplemental
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Material [44]) that can be used to compute cellular Fourier
transforms of a signal on a Voronoi tessellation.

1. Calculation of the discrete Laplace operator

We assume the tessellation to contain N cells, ωi, indexed
by i spanning {0, 1, . . . , N − 1}. The geometry of a cell ωi,
may be defined from an image, by the set of pixels that belong
to ωi, or, alternatively, from a triangle mesh by the set of
triangles that belong to ωi. A cell may also be defined by its
contour, for instance by the set of pixels that belong to the
contour or by the coordinates of the vertices of a polyhedron
that defines the contour. It is then possible to compute the
size Si of a cell (e.g., its area in 2D), typical cell scale lc =√

1/N
∑N−1

i=0 Si , and the Laplace operator, whose elements are

L̄i j = δi j − W̄i j , with

W̄i j =
√

Si

S j

∫
ωi

∫
ω j

w(|x − y|)dμ(x)dμ(y)∫
ωi

∫
�

w(|z − t |)dμ(z)dμ(t )
. (A1)

Here w is the kernel function. In the paper, we generally
used w(x) = e−x/σ with σ = 7lc. The implementation of the
integrals in the expression of W̄ differs according to how the
information on cellular geometry is stored. Any integral may
be approximated by a sum over the elements (pixels, triangles)
of the cell or, using the Stokes theorem to get a contour
integral, by a sum over the elements of the contour. In the code
that we provide, the functions cft_voro and cft_laplace gener-
ate random Voronoï tessellations and calculate their Laplace
operator.

2. Calculation of the Fourier harmonics

The Fourier harmonics ek = ∑N−1
i=0 Uki�i are computed

by determining the transformation matrix U from the basis

{�i}i=0...N−1 of the representation space,

ψi : � → R,

x → ψi(x) =
{

1/
√

Si if x ∈ ωi

0 else.
(A2)

U is defined as the right singular vectors of the Laplace
operator. A singular value decomposition algorithm applied to
L̄ yields the left singular vectors V , the right singular vectors
U , and the singular values L̂k:

L̄i j =
N−1∑
k=0

L̂kVkiUk j, with L̂k = L̂(qk )/L̂(0). (A3)

To find the wave numbers {qk}k=0...N−1 associated with the
harmonics, we use the singular value and the relation L̂k =
L̂(qk )/L̂(0) where L̂ depends on the functional form of the
kernel w. For an exponential kernel w(x) = e−x/σ , one has
qk = 1/σQ(L̂k ), with Q(l ) =

√
(1 − l )−2/3 − 1. The harmon-

ics are indexed so that their index grows with the wave
number. The function cft_harmics of our code computes the
Fourier harmonics.

3. Calculation of the CFT of a signal

To calculate the cellular Fourier tranform of a signal f ,
we compute its right coordinates in the basis {�i}i=0...N−1 of
the representation space, �i = 〈�i · f 〉. This done, the cellu-
lar Fourier transform is simply �̂k = ∑N−1

i=0 Uki�i, and the
Fourier spectrum is obtained from �̂k and the wave number
qk . The functions cft_cellularize_signal and cft_fourier of our
code compute signals in the basis {�i}i=0...N−1 of the repre-
sentation space and compute the Fourier transform.
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