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Abstract  8 

Bacteriophage ecology has raised an increasing attention over the last few years, thanks to 9 

the improvement and contributions of microscopy, comparative genomics and viral 10 

metagenomics methods. Fermented foods host dense and diverse microbial communities 11 

and, therefore, represent an ideal biotope for bacteriophages. If their occurrence in such 12 

environments has been demonstrated decades ago, data highlighting their impact on mixed 13 

communities and their ecological roles are scarce when compared to other microbial 14 

ecosystems. This review summarizes most recent knowledge into the bacteriophage 15 

diversity of fermented foods and stress evidences suggesting the impact of these entities on 16 

the dynamics of food microbial communities. The main ecological roles played by 17 

bacteriophages in microbial ecosystems are also addressed. Understanding the impact of 18 

bacteriophages in fermented foods will further help in designing adapted microbial consortia 19 

and thus providing a better control of the food fermentations.  20 
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Introduction 33 

Fermented foods are widely consumed worldwide and encompass diverse types of products 34 

including fermented dairy products, meats, fishes, cereals, legumes, vegetables, seeds, roots 35 

and also alcoholic and non-alcoholic beverages [1]. Initially developed with the objective of 36 

extending the raw products shelf-life, they are currently also appreciated for their typical 37 

sensory properties, nutritional value and potential health benefits [2,3]. Food fermentation 38 

relies on the conversion of substrates present in the raw material (e.g. sugars, proteins, 39 

lipids) into simpler products such as lactic acid, acetic acid, alcohol, carbon dioxide, ammonia 40 

and free fatty acids, through the specific activity of microorganisms.  41 

Fermented foods are dynamic microbial ecosystems, where the succession of several 42 

microbial groups occur in a short time, usually from days to weeks or months. This period 43 

varies according to the nutrients available in the raw material, abiotic parameters such as 44 

temperature, humidity, oxygen and osmotic pressure, and microbial interactions as well [4]. 45 

Huge efforts have been performed by the scientific community during the past decades to 46 

describe the composition and functioning of food microbial communities, helped by the 47 

recent development of several meta-omics tools [5]. It is now well-established that microbial 48 

communities of fermented foods are generally dense (e.g. >109 cells per gram of cheese [6]) 49 

and have a low diversity when compared to other microbial ecosystems such as soils [7] or 50 

oceans [8]. Bacteria from diverse phyla, e.g. Firmicutes (which includes lactic acid bacteria), 51 

Actinobacteria, Proteobacteria and Bacteroidetes, yeasts and filamentous fungi constitute 52 

the main microbial groups involved in food fermentation [9]. Through this fermentative 53 

activity, they contribute to the quality of the food products in several ways, i.e. by 54 

preventing the development of pathogens, modifying the texture, releasing aroma 55 

compounds or degrading anti-nutritional factors.  56 

Bacteriophages (phages), viruses that infect bacterial cells, are considered as key ecological 57 

drivers in the functioning of microbial ecosystems [10]. Indeed, phage-bacterial interactions 58 

can potentially affect the balance between the different functional groups of microbes and 59 

then (re-)shape microbial communities. In the human gut, where phage particles probably 60 

do not outnumber bacteria, phages could play a transitory role in the homeostasis or the 61 

evolution of the microbiota [11]*. In food fermentations, although the presence of 62 

bacteriophages has been demonstrated around one century ago [12], only few examples of 63 

deep inventory of their diversity are available and the literature about their ecological role is 64 

even rarer.  65 

The present review summarizes the current knowledge on the occurrence and diversity of 66 

bacteriophages in fermented foods, especially in light of the recent discoveries resulting 67 

from the analysis of viral metagenomics data, and discuss the possible ecological roles 68 

played by these biological entities in the context of this peculiar ecosystem which, 69 

ultimately, may impact the success of the fermentation process.    70 

 71 



Current knowledge on bacteriophages’ occurrence and diversity in 72 

fermented foods 73 

Several experimental approaches have been used for enumerating bacteriophages in 74 

microbial ecosystems and exploring their diversity. Some of them require the isolation of 75 

phages, which implies as first steps to identify and cultivate susceptible bacterial hosts, while 76 

others can be applied directly on environmental samples (Figure 1). 77 

Culture-dependent approaches  78 

The presence of bacteriophages in fermented foods was frequently investigated by culture-79 

dependent approaches. In practice, the main technic consists in collecting phages from a 80 

liquid sample obtained from the food product, or from a suspected reservoir in the 81 

manufacturing environment, and putting them into contact with a sensitive bacterial strain 82 

on a double-layer agar plate (for a detailed protocol, see [13]). It is also possible to directly 83 

enumerate phages to determine their initial level in food products [14], or to enrich them 84 

before isolation to enhance the probability of recovery [15]. 85 

Once isolated, phages can be further identified and characterized by applying a variety of 86 

downstream analysis. The historical classification of bacterial viruses is based on electron 87 

microscopy (EM) observations [16], and it is now progressively moving to a molecular 88 

classification. In Philippe et al., the authors used EM for the morphological characterization 89 

of phage GC1 isolated from wine musts [17]. They observed tail-less icosahedral particles, 90 

meaning that this phage did not belong to Caudovirales order. A further characterisation of 91 

its genomic properties determined that GC1 belongs to the Tectiviridae family.  92 

In most recent articles, genome sequencing and comparative genomics were also applied to 93 

phages isolated from fermented foods. De Melo et al., made comparative genomics on 18 94 

Brevibacterium aurantiacum phages isolated from cheese [18]**. They were classified into 7 95 

distinct genomic groups based on the number of DNA tandem repeats (TRs) in each genome. 96 

They also found that 85% of phages in databases possessed such TRs. Similarly, Cheng et al., 97 

classified 7 Propionibacterium freudenreichii phages into two clusters, based on the 98 

nucleotide identity and coverage percentage between each genomes [15]. 99 

In most cases, such a culture-dependent approach also gives clues as to whether the isolated 100 

phage is temperate or virulent, by confronting the aspect of plaques (turbid for temperate, 101 

and usually clear for virulent [19]) and the genetic analysis of the complete genome (which 102 

usually contains an integrase when the phage is temperate).  103 

As summarized in Table 1, both virulent and temperate phages were isolated from many 104 

fermented foods. However, surprisingly, no filamentous phages were retrieved from this 105 

type of products to date. Most of them are Siphoviridae and Myoviridae but Podoviridae and 106 

Tectiviridae were also isolated occasionally [14,17,20]. The hosts are usually members of the 107 

dominant species present in the corresponding food, such as Leuconostoc mesenteroides in 108 

Sauerkraut [21] or Oenococcus oeni in Wine [22]. For the particular case of cheese, where an 109 

abundant literature regarding phages infecting Lactic Acid Bacteria (LAB) starter cultures is 110 



available, as reviewed previously [23,24], only a few studies described the isolation of 111 

phages infecting other important bacteria such as Propionibacterium freudenreichii [15], the 112 

bacteria responsible for the production of holes in Emmental-type cheese, Brevibacterium 113 

aurantiacum [18], a surface ripening culture used in many cheese varieties and Enterococcus 114 

faecalis [25,26]*.  115 

However, in the perspective of understanding the bacteriophage ecology in fermented 116 

foods, single phage isolation suffer from the major limitation of the culture-dependent 117 

approach that is the need of a susceptible host. By definition such approach cannot 118 

accurately reflect neither the bacterial and viral diversity present in fermented foods, nor 119 

their relative abundance. It is however very efficient from a technological point of view, for 120 

example in the case where a phage is suspected to be responsible of a fermentation failure 121 

and needs to be quickly identified.   122 

Direct detection approaches 123 

An alternative is to detect and/or quantify phages directly in food samples or in a viral 124 

fraction extracted from food samples without a priori on the bacterial host(s). Several 125 

techniques are available to count or observe viruses directly in complex samples [27], such 126 

as flow cytometry [28], epifluorescence microscopy [29], nanoparticle tracking analysis [30], 127 

interferometric light microscopy [31] and electron microscopy including Scanning Electron 128 

Microscopy (SEM) [32], Transmission Electron Microscopy (TEM) [33] and cryo Electron 129 

Microscopy (cryo-EM) [34]. 130 

Only few studies used such direct approaches to characterize the phage communities of 131 

fermented foods. Dugat-Bony et al., used interferometric light microscopy to determine the 132 

phage concentration on the surface of three cheese varieties and found that it ranged from 133 

1×109 to 4×1010 particles per gram at least [35]*. They also observed different morphotypes 134 

on Epoisses cheese with TEM, giving first indications about the complexity of phage 135 

communities present on the cheese surface.  136 

As a complement to their metagenomic study, Park et al., used TEM on samples from 137 

shrimps, sauerkraut and kimchi, after a cesium chloride (CsCl) density gradient purification 138 

step [36]. They were able to characterize various phages morphologies, mainly Sipho- and 139 

Myoviridae. 140 

To summarize, in the context of fermented foods, direct detection approaches can provide 141 

rapidly important ecological information such as total phage’s concentration and rough 142 

elements about their diversity. However, since many bacteriophages can share similar 143 

morphological traits, techniques offering more precision are desirable to properly describe 144 

the composition of phage communities in fermented foods.  145 

New contributions of whole metagenome sequencing and viral metagenomics  146 

Two main categories of metagenomics approaches can be used to detect viral signals from 147 

environmental samples.  148 



First, whole metagenome sequencing, which generates simultaneously sequences from both 149 

microbial cells and viruses, can be used to identify abundant phages present in microbial 150 

ecosystems using dedicated bioinformatic tools [37,38]. Regarding fermented foods, only 151 

two articles refer to the use of such approach for studying the composition of phage 152 

communities. In kimchi [39], the authors identified four putative phage contigs with 153 

sequence similarity with the genome of LAB-phages. In kinema, a fermented soybean 154 

product, the viral community was dominated by phages infecting Bacillus species. Their 155 

identity was further confirmed by taxonomic analysis, and they all had one or several well-156 

characterized host(s) [40].  157 

Second, viral metagenomics, or “viromics”, consist in extracting and sequencing the genomic 158 

material of the viral community selectively purified from an environmental sample (e.g. food 159 

products, natural environment, host-associated) [41]. This approach is designed to obtain a 160 

deep overview of the composition of the phage community present in a given ecosystem. 161 

Generally, only dsDNA phages are sequenced, letting a grey area regarding RNA and ssDNA 162 

phages, whose quantities and diversity are probably underestimated thus far [42]. In natural 163 

ecosystems such as ocean, or soils, numerous viral metagenomic studies targeting phages 164 

have been carried out (respectively, [43] and [44,45]). However, they are scarce when it 165 

comes to fermented foods or fermented beverages, as reviewed in [46].  166 

Park et al. firstly analysed the metavirome of fermented shrimp, kimchi and sauerkraut [36]. 167 

Viral particles were recovered and concentrated from the food samples by using filtration 168 

and ultracentrifugation prior to viral DNA extraction and pyrosequencing. The results 169 

revealed an important diversity in phage sequences, most of which showing no significant 170 

hits in public databases, and 6 to 27 contigs >5 Kb per food sample were assembled. Major 171 

discrepancies were observed between predicted hosts and the actual bacterial diversity 172 

detected in kimchi and fermented shrimp, reflecting the fact that viral genomes of these 173 

fermented foods were poorly represented in public databases at the time of the study, so 174 

that host predictions probably failed. On the contrary, phage host predictions in sauerkraut 175 

were reliable, thanks to the availability of several phage genomes isolated in previous work 176 

[21].  177 

The viral community from ten samples representative of Korean and Chinese kimchi was also 178 

investigated [47]. Viral concentrates were obtained through filtration and Polyethylene 179 

Glycol (PEG) concentration, and DNA was sequenced providing several thousands of contigs 180 

>500 bp per sample, and revealing a very high diversity. The phage host prediction was 181 

consistent with the bacterial diversity and, interestingly, viral community profiling was found 182 

to outperform bacterial community profiling for predicting the geographical origin of kimchi.   183 

Recently, the first metavirome of the cheese surface was described [35] using Epoisses 184 

cheese as an example. The viral fraction was obtained according to an optimized protocol 185 

involving filtration, PEG concentration and chloroform treatment. DNA sequences were 186 

assembled into 124 viral contigs from 2.5 to 122 kb, highlighting the presence of an 187 

unexpected viral diversity in this ecosystem. The authors were able to predict a bacterial 188 

host for the most abundant ones, e.g. Glutamicibacter, Lactococcus, Psychrobacter, Vibrio, 189 



Leuconostoc and Halomonas, which were previously detected as dominant bacterial genera 190 

in Epoisses cheese [48].  191 

Overall, available data suggest that fermented foods host dense and complex phage 192 

communities, at least as diverse as bacterial ones. However, despite the growing descriptive 193 

data available regarding bacteriophages occurrence and diversity in fermented foods, there 194 

is still a gap before demonstrating that these entities play an ecological role in this 195 

environment and can impact food fermentations.  196 

 197 

Relationships between viral and bacterial dynamics  198 

The first step would be to determine if a relationship exists between the levels of viral and 199 

bacterial populations during the fermentation cycle. For fermented foods, few studies 200 

demonstrated such correlation.  201 

In kimchi [39], the monitoring of the composition of bacterial and phage populations during 202 

29 days of fermentation was achieved by using a whole metagenome sequencing approach. 203 

The relative abundance of the four putative phage contigs identified increased during the 204 

fermentation cycle, reaching ~7% of the total metagenomics sequences after 25 days. This 205 

large number of sequences was correlated to the decrease of bacterial population observed 206 

after 25 days suggesting that bacteriophages may influence the microbial community 207 

dynamics in this product. 208 

Recently, Kong and Park used a culture media made from sterilized supernatant of 209 

dongchimi kimchi (a watery kimchi made from radish, green onions, garlic, ginger and salt) to 210 

perform co-culture of the main LAB species involved in the fermentation of this product, i.e. 211 

Leuconostoc citreum, L. mesenteroides and Weissella cibaria [49]*. They used different 212 

combinations of strains, sensitive to phages or not, and followed the dynamic of both 213 

bacterial and phage populations by culture-dependent methods over 10 days. They observed 214 

a negative relationship between the abundance of phages and the viability of their hosts, 215 

independently of the pH of the medium, demonstrating the impact of bacteriophages on the 216 

succession of LAB species during dongchimi kimchi fermentation.   217 

Finally, Erkus et al. studied an undefined complex cheese starter culture, composed of 218 

several strains of Lactococcus lactis and Leuconostoc mesenteroides grouped in eight 219 

different genetic lineages, some of which carrying active prophages [50]. In one of the 220 

described experiment, they propagated in vitro the culture daily in milk during several 221 

weeks, mimicking the back-slopping procedure used in the dairy industry, and followed 222 

temperate phage population by titration and the different bacterial lineages by qPCR. The 223 

results indicated that although some strains can undergo dramatic decrease in abundance at 224 

certain stages of propagation, due to the increase in a particular phage population in the 225 

medium, the effect on the relative abundance of the genetic lineage they belong to was very 226 

limited, ensuring an overall stability of the community structure, both regarding genes and 227 

functionalities.  228 



To summarize, there are increasing evidences that bacteriophages affect the dynamics of 229 

food microbial communities during fermentation. The impact of phage attacks on the overall 230 

structure and function of microbial communities is thought to depend on the complexity of 231 

the studied system and microdiversity seems to play an important role in the overall stability 232 

of microbial communities in fermented foods. 233 

 234 

Ecological roles of bacteriophages  235 

Studies elucidating the ecological roles of bacteriophages occurring in fermented foods are 236 

scarce. Thus, this section summarizes the main roles attributed to these entities regardless 237 

of the microbial ecosystem of origin. It is likely that major results observed within natural 238 

ecosystems are transferable to fermented products.  239 

Direct regulation of bacterial populations  240 

Bacteriophages may have several types of behaviours toward their bacterial hosts (Box 1). 241 

They can directly impact the population levels of their hosts in different ways and, 242 

consequently, the whole community structure.  243 

First, phages performing a lytic cycle, which encompass professionally lytic, virulent mutant 244 

(or ex-temperate, see [51]) and temperate phages entering a lytic cycle, foster a prey-245 

predator relationship with their host. Since bacteriophages are non-motile entities, the 246 

probability of encountering a host cell and starting infection strongly depends on the host’s 247 

density. In mixed microbial communities, this means that bacteriophages kill the sensitive 248 

bacterial strain(s) with the highest density, as theorized in the Kill-the-Winner [52] and seed-249 

bank models [53,54], while having a little impact on the total microbial biomass. This direct 250 

effect also promotes bacterial diversity since several bacterial populations sharing the same 251 

ecological niche can coexist [55] and grow in a sequential manner. Finally, it also favours the 252 

optimal utilisation of all resources present in the ecosystem, as a single dominant bacteria 253 

wouldn’t have all the necessary enzymatic equipment to exploit all the available nutrients 254 

[56].  255 

Second, temperate phages can also affect the fitness of their host when entering a lysogenic 256 

cycle. When integrated as prophages into the bacterial host genome, they can develop 257 

either a parasitic or a mutualistic interaction with their host. In complex cheese starter 258 

culture, Alexeeva et al. [57]* demonstrated the competitive advantage of Lactococcus lactis 259 

lysogens compared to their prophage-cured derivatives but the mechanism behind this 260 

observation was not identified. Similarly, Costantini et al. [22] observed that, among sixteen 261 

Oenococcus oeni strains used for malolactic fermentation in wine, the ones integrating one 262 

or several prophages in their genomes were more resistant to the predation by other 263 

oenophages. 264 

Finally, bacteriophages which cannot enter a lysogenic cycle and are producing virions in a 265 

chronic fashion without cell lysis interact with their host through a parasitic relationship. In 266 

this case, the main expected effect would be a lower fitness of the host caused by the 267 



energy cost required for the bacteriophage’s replication but this was not studied in the 268 

context of fermented foods to our knowledge.  269 

In addition to the regulation of the population level of their hosts, bacteriophages can also 270 

prompt substantial modifications of the bacterial transcriptome and proteome and, hence, 271 

affect their metabolism [58].  272 

Indirect effects on non-host populations 273 

Bacterial lysis mediated by bacteriophages is responsible for the release of organic matter 274 

into the environment. In ecology, this phenomenon is known as the “viral shunt” and it 275 

affects trophic webs by lowering bacterial biomass before it is assimilated at higher trophic 276 

levels [59]*. Bacterial lysis provides an important source of free nutrients which can support 277 

and promote the growth of other microorganisms. It has thus a large impact on microbial 278 

dynamics and densities.  279 

For example, Fazzino et al. studied the effect of virulent bacteriophages on the mutualistic 280 

interaction between Escherichia coli and Salmonella enterica [60]**. In such cross-feeding 281 

model community, phages can have extensive indirect effects affecting the bacterial 282 

community dynamics. One of those indirect effect was the release of organic matter since 283 

the growth of S. enterica was stimulated by the lysis of E. coli by phage T7.  284 

In fermented foods, such phenomenon is likely to occur. However, contrary to other natural 285 

ecosystems, the trophic chain is short and there is generally no upper trophic level above 286 

heterotrophic microorganisms. In this case, the role of the viral shunt encompasses probably 287 

only the release of cellular debris and intra-cellular compounds, providing additional 288 

resources for non-hosts species. In line with this suspected role, Kong & Park experimentally 289 

evidenced that a bacteriophage lysate of Weissella cibaria can promote the growth of L. 290 

citreum in kimchi fermentation [49].  291 

Phages as bacterial evolution drivers  292 

Bacterial viruses represent a continuous selective pressure on bacteria, driving them to 293 

evolve by selecting antiphage defence mechanisms [61]*. In response, phages adopt 294 

strategies to overcome host defence systems. This antagonistic co-evolution is a kind of 295 

perpetual arms race, referred to as the Red Queen dynamics [62]. This is due to the 296 

extremely rapid evolution and turnover of phage particles [63], increasing mutation rates in 297 

their host(s) [64], driving neither the predator nor the prey to extinction. The most 298 

prominent outcome of this interaction is ecological speciation, resulting in a high 299 

microdiversity of both hosts and phages.  300 

Horizontal gene transfer (HGT), which refers to the incorporation by an organism of genetic 301 

material from another organism without mating, contributes to the microbial genome 302 

evolution [65]. Bacterial lysis due to the phage progeny release is accompanied by the 303 

release of intra-cellular components into the environment and especially pieces of DNA that 304 

could be acquired by other bacteria through natural transformation [66]. HGT can also 305 

happen through transduction (generalized or specialized [67]), when a bacteriophage 306 

accidentally packages bacterial DNA and transfers it to another host.  307 



Lysogeny has been suggested as a survival strategy when the environment contains low host 308 

densities [68]. Prophages integrated in a host bacteria are usually in a dormant state, as they 309 

don’t actively replicate their genomes, while regulating bacterial genes. If some phages have 310 

evolved to insert only in highly conserved sites [69], others as transposable phages integrate 311 

themselves randomly in the host genome, possibly inactivating genes coding for essential 312 

functions and having therefore a detrimental effect on host fitness [70]. Some phages are 313 

also able to display “active lysogeny”, acting as regulatory switches, as they turn off the gene 314 

by integrating in its sequence [71].  315 

Phages can stay in lysogenic cycle for several generations. However, they are not totally 316 

inactive since the bacterial cell expresses moron genes (for “more DNA”) that are not 317 

necessary for the phage cycle, and expressed during lysogeny [72,73]. A well-known example 318 

is the stx gene coding for shigatoxin, which is acquired by bacterial strains through lysogenic 319 

conversion, meaning the acquisition of a stx-positive prophage [74]. These morons are far 320 

from being all characterized, but they probably enhance bacterial fitness and expand the 321 

environmental niche of the host [75]. 322 

 323 

Conclusions  324 

Fermented foods represent undoubtedly suitable ecosystems for the development of 325 

bacteriophages. The isolation of a large set of bacteriophages and the first viral 326 

metagenomics data shed light into the viral diversity of this type of products. However, the 327 

question of the impact of this diversity on the composition and functioning of microbial 328 

communities still remains underexplored.   329 

The continuous improvement of sequencing techniques, with in particular the first 330 

applications of long-read sequencing for the description of metaviromes [76]**, makes it 331 

possible to envisage both the description and the monitoring of the composition of viral 332 

communities in fermented foods more easily and in a more comprehensive way. 333 

Furthermore, synthetic microbial ecosystems offer new perspectives for investigating 334 

individual to ecosystem level microbial interactions [77]. The viral dimension of food 335 

microbial ecosystems should therefore be considered for the future design of synthetic 336 

ecology experiments with the objective of characterizing the role of bacteriophages in 337 

fermented foods. 338 

The exploitation of this knowledge should help the food industry facing numerous challenges 339 

such as controlling phage contamination to reduce the risk of fermentation failure. Main 340 

applications are the biocontrol of pathogens [78] and spoilage bacteria [25]* but new 341 

developments could lead to finely modulate the composition of microbial communities in 342 

order to reach the desired technological properties in fermented products.   343 

 344 
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Tables 377 

Table 1. Selected examples describing the isolation of phages directly from fermented foods. 378 

Fermented 
food 

References  Phage families Type  Host 

Cheese* 

[15] 7 Siphoviridae Virulent 
Propionibacterium 

freudenreichii 

[18] 16 Siphoviridae Virulent  
Brevibacterium 

aurantiacum 

[25] 1 Myoviridae Virulent Enterococcus faecalis  

[26] 1 Siphoviridae Virulent Enterococcus faecalis 

Fermented 
Cucumber 

[79] 1 Siphoviridae Virulent 
Lactobacillus 

plantarum 

[80] 
3 Siphoviridae 

and 3 Myoviridae 
N.D 

Lactobacillus brevis, 
Lactobacillus 

plantarum, Weissella 
paramesenteroides, 

Weissella cibaria 

[81] 1 Siphoviridae Virulent Pediococcus sp. 

Fermented 
Soybean 

[82] N.D 
Virulent and 
temperate 

Bacillus subtilis  

[83] 16 Siphoviridae N.D Bacillus cereus  

[84] 1 Myoviridae N.D Bacillus cereus 

[85] 
1 Siphoviridae 

and 1 Myoviridae 
N.D 

Pediococcus 
halophilus 

Kefir  [86] 2 Siphoviridae N.D 
Lactobacillus 

plantarum 

Kimchi 

[20] 1 Podoviridae N.D Weissella cibaria 

[49] N.D N.D 
Weissella cibaria, 

Leuconostoc citreum 

[87] 1 Siphoviridae N.D 
Lactobacillus 

plantarum 

Salami  [88] 2 Podoviridae N.D 
Staphylococcus 

carnosus 

Sauerkraut  

[89] 
3 Siphoviridae 

and 3 Myoviridae 
N.D Leuconostoc fallax 

[90] 
5 Siphoviridae 

and 3 Myoviridae 
N.D 

Leuconostoc 
pseudomesenteroides, 

Leuconostoc 
mesenteroides, 

Leuconostoc citreum, 
Leuconostoc fallax, 

Weissella sp., 
Lactobacillus 
plantarum, 

Lactobacillus brevis 

[21] 1 Siphoviridae Virulent  
Leuconostoc 

mesenteroides 



[91] 2 phages N.D 
Leuconostoc 

mesenteroides 

[92] 

2 
Myoviridae ‘type 
1’, 5 Myoviridae 

’type 2’ and 2 
Siphoviridae 

N.D 

Leuconostoc 
mesenteroides, 

Lactobacillus 
plantarum 

Sourdough 
bread 

[93] 9 Siphoviridae 
3 virulent and 
6 temperate 

Lactobacillus 
fermentum 

[94] 1 Siphoviridae Virulent 
Lactobacillus 

sanfranciscensis 

Wine 

[95] 11 Siphoviridae N.D Oenococcus oeni  

[14] 
Siphoviridae, 
Myoviridae, 
Tectiviridae 

N.D 

Lactobacillus 
plantarum, 

Lactobacillus hilgardii, 
Oenococcus oeni 

[22] 15 Siphoviridae Temperate Oenococcus oeni 

[96] 4 Siphoviridae N.D Oenococcus oeni 

[97] 2 Siphoviridae N.D Oenococcus oeni 

[98] 1 Siphoviridae Virulent Oenococcus oeni 

[99] 17 Siphoviridae N.D Oenococcus oeni 

[17] 1 Tectiviridae Temperate Gluconobacter cerinus 

[100] 17 Siphoviridae Temperate Oenococcus oeni 

N.D = Not Documented.  379 

*For cheese, no example describing the isolation of phages infecting LAB starter culture is listed since 380 

the literature on such phages is extremely abundant and already reviewed [23,24]. 381 

 382 

Figure captions 383 

Figure 1: General methods for the study of bacteriophages in fermented foods.   384 

 385 

  386 
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Box1: definitions of the different bacteriophage types according to (Hobbs & Abedon, 2016). 

Professionally lytic: Phage that is both obligately lytic and not recently descended from a 
temperate ancestor 
 
Virulent mutant (ex-temperate): Clear temperate phage mutant that can form plaques even 
on lysogens (i.e. bacteria hosting a prophage) formed by the phage wild-type parent 
 
Temperate phage: Description of a phage that is able to display lysogenic cycles (under the 

form of a prophage) or lytic cycle according to specific environmental and host parameters. 

 

Filamentous phage: Phage whose productive infection is chronic (may or may not be a 

temperate phage) 

 

Box1
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Table 1. Selected examples describing the isolation of phages directly from fermented foods. 

 

Fermented 
food 

References  Phage families Type  Host 

Cheese* 

(Cheng et al., 
2018) 

7 Siphoviridae Virulent 
Propionibacterium 

freudenreichii 

(De Melo et 
al., 2020) 

16 Siphoviridae Virulent  
Brevibacterium 

aurantiacum 

(Del Rio et al., 
2019) 

1 Myoviridae Virulent Enterococcus faecalis  

(Ladero et al., 
2016) 

1 Siphoviridae Virulent Enterococcus faecalis 

Fermented 
Cucumber 

(Lu et al., 
2003a) 

1 Siphoviridae Virulent 
Lactobacillus 

plantarum 

(Lu et al., 
2012) 

3 Siphoviridae 
and 3 Myoviridae 

N.D 

Lactobacillus brevis, 
Lactobacillus 

plantarum, Weissella 
paramesenteroides, 

Weissella cibaria 

(Yoon et al., 
2007) 

1 Siphoviridae Virulent Pediococcus sp. 

Fermented 
Soybean 

(Nagai & 
Yamasaki, 

2009) 
N.D 

Virulent and 
temperate 

Bacillus subtilis  

(Oh et al., 
2017) 

16 Siphoviridae N.D Bacillus cereus  

(Shin et al., 
2011) 

1 Myoviridae N.D Bacillus cereus 

(Uchida & 
Kanbe, 1993) 

1 Siphoviridae 
and 1 Myoviridae 

N.D 
Pediococcus 
halophilus 

Kefir  
(Antoni et al., 

2010) 
2 Siphoviridae N.D 

Lactobacillus 
plantarum 

Kimchi 

(Kleppen et 
al., 2012) 

1 Podoviridae N.D Weissella cibaria 

(Kong & Park, 
2019) 

N.D N.D 
Weissella cibaria, 

Leuconostoc citreum 

(Yoon et al., 
2001) 

1 Siphoviridae N.D 
Lactobacillus 

plantarum 

Salami  
(Bruttin et al., 

1992) 
2 Podoviridae N.D 

Staphylococcus 
carnosus 

Sauerkraut  

(Barrangou et 
al., 2002) 

3 Siphoviridae 
and 3 Myoviridae 

N.D Leuconostoc fallax 

(Lu et al., 
2003b) 

5 Siphoviridae 
and 3 Myoviridae 

N.D 

Leuconostoc 
pseudomesenteroides, 

Leuconostoc 
mesenteroides, 

Leuconostoc citreum, 
Leuconostoc fallax, 

Weissella sp., 
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Lactobacillus 
plantarum, 

Lactobacillus brevis 

(Lu et al., 
2010) 

1 Siphoviridae Virulent  
Leuconostoc 

mesenteroides 

(Mudgal et 
al., 2006) 

2 phages N.D 
Leuconostoc 

mesenteroides 

(Yoon et al., 
2002) 

2 
Myoviridae ‘type 
1’, 5 Myoviridae 

’type 2’ and 2 
Siphoviridae 

N.D 

Leuconostoc 
mesenteroides, 

Lactobacillus 
plantarum 

Sourdough 
bread 

(Foschino et 
al., 2001) 

9 Siphoviridae 
3 virulent and 
6 temperate 

Lactobacillus 
fermentum 

(Foschino et 
al., 2005) 

1 Siphoviridae Virulent 
Lactobacillus 

sanfranciscensis 

Wine 

(Arendt & 
Hammes, 

1992) 
11 Siphoviridae N.D Oenococcus oeni  

(Cordero-
Bueso et al., 

2020) 

Siphoviridae, 
Myoviridae, 
Tectiviridae 

N.D 

Lactobacillus 
plantarum, 

Lactobacillus hilgardii, 
Oenococcus oeni 

(Costantini et 
al., 2017) 

15 Siphoviridae Temperate Oenococcus oeni 

(Davis et al., 
1985) 

4 Siphoviridae N.D Oenococcus oeni 

(Henick‐Kling 
et al., 1986) 

2 Siphoviridae N.D Oenococcus oeni 

(Jaomanjaka 
et al., 2016) 

1 Siphoviridae Virulent Oenococcus oeni 

(Nel et al., 
1987) 

17 Siphoviridae N.D Oenococcus oeni 

(Philippe et 
al., 2018) 

1 Tectiviridae Temperate Gluconobacter cerinus 

(Santos et al., 
1996) 

17 Siphoviridae Temperate Oenococcus oeni 

N.D = Not Documented.  

*For cheese, no example describing the isolation of phages infecting LAB starter culture is listed since 

the literature on such phages is extremely abundant and already reviewed (Brüssow, 2001; Garneau 

& Moineau, 2011). 



Highlights  

 Food fermentations are driven by microbial communities 

 Bacteriophages have an impact on the dynamic of food microbial communities 

 The precise roles of bacteriophages in fermented foods remain to be characterized  
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