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Abstract

Susceptible S-Infected I-Recovered R-Death D (SIRD) compartmental models are often used
for modelling of infectious diseases. On the basis of the analogy between SIRD and compart-
mental models in hydrology, this study makes mathematical formulations developed in
hydrology available for modelling in epidemiology. We adapt the Hayami model solution
of the diffusive wave equation generally used in hydrological modelling to compartmental
I–R–D models in epidemiology by simulating the relationships between the number of infec-
tious I(t), the number of recoveries R(t) and the number of deaths D(t). The Hayami model is
easy-to-use, robust and parsimonious. We compare the empirical one-parameter exponential
model usually used in SIRD models to the two-parameter Hayami model. Applications were
implemented on the recent Covid-19 pandemic. The application on data from 24 countries
shows that both models give comparable performances for modelling the I–D relationship.
However, for modelling the I–R relationship and the active cases, the exponential model
gives fair performances whereas the Hayami model substantially improves the model perfor-
mances. The Hayami model also presents the advantage that its parameters can be easily esti-
mated from the analysis of the data distributions of I(t), R(t) and D(t). The Hayami model is
parsimonious with only two parameters which are useful to compare the temporal evolution
of recoveries and deaths in different countries based on different contamination rates and
recoveries strategies. This study highlights the interest of knowledge transfer between different
scientific disciplines in order to model different processes.

Introduction

Since the pioneer study of [1] in epidemiology, SIRD (Susceptible S-Infected I-Recovered
R-Death D) compartmental models are often used for modelling of infectious diseases, and
are now used for the recent Covid-19 pandemic in China [2–4]. SIRD models can be used at
the patch scale or over a large area [5–10], and can be coupled to probabilistic approaches
[11, 12] and various processes such as population mobility [13–16]. When used at the scale
of a patch, or of a country when the latter is considered as one homogeneous patch, SIRD mod-
els can be viewed similar to lumped hydrological models representing the links between several
water cycle compartments [17] with rain as input (equivalent to the input S) and river flow, infil-
tration and evaporation as outputs (equivalent to the outputs R and D). Different hydrological
modelling approaches were developed on the basis of an interaction between two categories of
‘functions’ called ‘production function’ and ‘transfer function’ [17, 18]. The production function
separates the rain into runoff, infiltration and evaporation, and therefore distributes the mass bal-
ance between different compartments. Based on mass conservation, the transfer function is con-
sidered as a filter which transforms an input signal into an output signal, and calculates the time
distribution of the production function outputs. In epidemiology, we can define by analogy a
‘production function’ to represent the relationship S–I which calculates the part of S contributing
to I, and a ‘transfer function’ to represent the relationships I–R–D.

For the Covid-19 pandemic, the daily number of infected cases I(t), recoveries R(t) and
deaths D(t) are freely available on websites of governmental institutions [19–21]. From graph-
ics, we observe that the relationships I–R and I–D have similar shapes to those obtained from
hydrologic transfer functions. First, mass conservation is verified because the total number of
I(t) is equal to the total numbers of R(t) and D(t). Second, the output signals R(t) and D(t) can
be derived from the input signal I(t) using a mathematical formulation identical to the transfer
function describing the physical advection-dispersion processes: a lag time translation (for the
advection process) and an attenuation of the peak (for the dispersion process). Although on
the basis of analogical properties, transfer functions have been successfully used in other dis-
ciplines such as astronomy, geophysics, soil mechanics, meteorology, oceanography, traffic
simulation or biological flows [22, 23], to our knowledge, no applications of the transfer

https://doi.org/10.1017/S0950268821001011
Downloaded from https://www.cambridge.org/core. INRAE, on 26 Jul 2021 at 14:22:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://www.cambridge.org/hyg
https://doi.org/10.1017/S0950268821001011
https://doi.org/10.1017/S0950268821001011
mailto:roger.moussa@inrae.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0869-6172
https://crossmark.crossref.org/dialog?doi=10.1017/S0950268821001011&domain=pdf
https://doi.org/10.1017/S0950268821001011
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


functions were conducted for modelling I–R–D relationships in
compartmental models in epidemiology.

This study aims to adapt transfer functions used in hydrology
for modelling I–R–D relationships in epidemiology. I–R–D models
are generally described by partial differential equations [24–26]
where parsimonious first-order kinetics remains to be largely
used because of their simplicity, robustness and their low number
of parameters [27, 28]. In hydrology, under the hypotheses that
the system is linear and time invariant, simplified versions of
the transfer function were developed like the ‘unit hydrograph’,
that is equivalent to a convolution with a kernel function repre-
senting the response to a Dirac input [29]. Furthermore, a linear
reservoir is a one-parameter kernel function (or unit hydrograph)
with an exponential decrease equivalent to first-order kinetics
used in epidemiology (dR/dt = γI or dD/dt = δI with γ and δ as
parameters). However, one-parameter unit hydrograph is not
adapted to represent processes such as flood routing in channels
where at least two-parameter unit hydrographs are needed to
describe both advection and dispersion processes.

In epidemiology, first-order kinetics remains to be the simplest
model [2, 16], and a question arises whether one-parameter first-
order kinetics is sufficient to model at the country scale the I–R–D
relationships for Covid-19, and whether simulations could be
improved by using other mathematical formulations such as the
two-parameter kernel functions. Various unit hydrographs have
been developed [29], but one is of interest for possible applica-
tions in epidemiology: the Hayami model [30] used as a unit
hydrograph resolution of the diffusive wave equation with para-
meters having a physical interpretation [31–34]. For applications
in epidemiology, questions arise on the adaptability of the Hayami
model to simulate the relationships I–R–D, the interpretation of
model parameters and how could these parameters be used to
compare different case studies.

This study attempts to make the Hayami solution of the diffusive
wave equation available for modelling the I–R–D relationships in
epidemiology. Applications were implemented on the actual 2020
Covid-19 pandemic. First, we present the I–R–D model, the
Hayami model, its adaptation for compartmental models in epi-
demiology, and an application example to simulate R and D
(given I ) in the case of China where the pandemic is ending.
Then, applications were implemented on data from 24 countries
all round the world, with different levels of evolution of the pan-
demic, contamination rates and recoveries strategies. Finally, we
show how the model parameters can be used to compare recoveries
and deaths in different countries, and discuss the usefulness and the
limitations of the model. The Supplementary material presents the
theory of the unit hydrograph, and shows a comparison between
the observed and calculated R(t), D(t) an A(t) for 24 countries.

The I–R–D model

The I–R–D model developed herein is based on the unit hydrograph
theory in hydrology adapted for applications in epidemiology. Inputs
are the observed number of daily infected cases Io(t) and the
observed mortality ratio μ, and outputs are the calculated daily recov-
ered cases Rc(t) and the calculated daily death cases Dc(t). The per-
formances of the I–R–D model are obtained by comparing the
observed daily recovered cases Ro(t) to the calculated Rc(t), and
the observed daily death cases Do(t) to the calculated Dc(t).

The distribution Io(t) is separated into two series: IR(t) repre-
senting the part of Io(t) that would recover, and ID(t) the part of
Io(t) that would die (Fig. 1). We suppose a simple proportionality

relationship between Io(t) and each of IR(t) and ID(t) according
to:

Io(t) = IR(t)+ ID(t) (1)

IR(t) = (1–m)Io(t) and ID(t) = mIo(t) (2)

The I–R–D model is divided into two models: I–R and I–D.
On the basis of the unit hydrograph theory [17, 29] (see details
in the Supplementary material) we have

I–R model: Rc(t) = IR(t) ∗ uR(t) and

I–D model: Dc(t) = ID(t) ∗ uD(t)
(3)

where the symbol ‘*’ represents the convolution relation, and
uR(t) and uD(t) [T−1] are mathematical kernel functions with
an integral equal to 1. For a Dirac (unit) input at t = 0, the output
has the same mathematical equation as uR(t) (or uD(t)). In
hydrology, the functions uR(t) and uD(t) are called unit hydro-
graphs [29]. Section ‘Adapting the Hayami kernel function to epi-
demiology’ shows how these functions can be calculated.

The model also enables us to compare the observed cumulated
number of recoveries Rto(t) to the calculated Rtc(t), the observed
cumulated number of deaths Dto(t) to the calculated Dtc(t), and
the observed daily active cases Ao(t) to the calculated Ac(t) with
the below equation:

Ao(t) = Ao(t − 1)+ Io(t)− Ro(t)− Do(t) and

Ac(t) = Ac(t − 1)+ Io(t)− Rc(t)–Dc(t)
(4)

The performances of the I–R model, the I–D model and the
active cases are calculated using the Nash–Sutcliffe efficiency
(NSE) criteria [35] traditionally used in hydrology, with the
below equations, respectively:

NSER = 1−
∑n

t=1 [Ro(t)− Rc(t)]
2∑n

t=1 [Ro(t)− Rm]
2 ;

NSED = 1−
∑n

t=1 [Do(t)− Dc(t)]
2∑n

t=1 [Do(t)− Dm]
2 ;

NSEA = 1−
∑n

t=1 [Ao(t)− Ac(t)]
2∑n

t=1 [Ao(t)− Am]
2

(5)

with Rm the mean value of Ro(t), Dm the mean value of Do(t), Am

the mean value of Ao(t) and n the number of time steps. The
criteria NSE is inferior to 1 with an optimum corresponding to
NSE = 1. NSE = 0 corresponds to using the mean value of observa-
tions as a benchmark predictor and is regularly used as a benchmark
to compare models [36, 37]. NSE < 0 indicates that the model is a
worse predictor than the mean of observations. However the NSE
is an indicator of performance which is sensitive to peak values.
Increasingly an alternative metric, the Kling–Gupta efficiency
(KGE) [38] is used instead with the below equations, respectively

KGER = 1−
��������������������������������������������
(rR − 1)2 + sR,c

sR,o
− 1

( )2

+ mR,c

mR,o
− 1

( )2
√

; (6a)
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where rR is the linear correlation between Ro(t) and Rc(t), σR,o is
the standard deviation of Ro(t), σR,c is the standard deviation of
Rc(t), μR,o is the mean of Ro(t) and μR,c is the mean of Rc(t):

KGED = 1−
��������������������������������������������
(rD − 1)2 + sD,c

sD,o
− 1

( )2

+ mD,c

mD,o
− 1

( )2
√

; (6b)

where rD is the linear correlation between Do(t) and Dc(t), σD,o is
the standard deviation of Do(t), σD,c is the standard deviation of
Dc(t), μD,o is the mean of Do(t) and μD,c is the mean of Dc(t):

KGEA = 1−
��������������������������������������������
(rA − 1)2 + sA,c

sA,o
− 1

( )2

+ mA,c

mA,o
− 1

( )2
√

; (6c)

where rA is the linear correlation between Ao(t) and Ac(t), σA,o is
the standard deviation of Ao(t), σA,c is the standard deviation of
Ac(t), μA,o is the mean of Ao(t) and μA,c is the mean of Ac(t).

Knoben et al. [39] analysed the relationships between the NSE and
the KGE, and concluded that NSE and KGE values cannot be directly
compared because their relationship is non-unique. They also showed
that using the mean observations as a benchmark does not result in
KGE = 0 but KGE =−0.41. Thus KGE >−0.41 indicate that a model
improves upon the mean observation benchmark.

In the following, we note the input i(t) for IR(t) or ID(t) and the
output o(t) for Rc(t) or Dc(t). Although i(t) and o(t) are continuous
functions in time in hydrological models, herein i(t) and o(t) are
discrete functions representing the distribution of the number of
cases per day, with t an integer representing the day number. In
hydrology, different approaches can be used to calculate u(t) [29].

The exponential model, similar to the solution of the first-
order kinetics used in compartmental models in epidemiology,
is a unit hydrograph considered as a reference model as below:

u(t) = 1
k
e−t/k (7)

where k [T] is a parameter representing linear reservoir retention.

Adapting the Hayami kernel function to epidemiology

Saint-Venant [40] formulated the system of partial differential
equations (continuity and momentum) to describe one-

dimensional, gradually-varied, unsteady flow in rivers. The solu-
tion of the Saint-Venant equations has given rise to a number
of numerical methods because no analytical solution is available.
In practical applications of flood routing in natural channels, the
acceleration terms in the Saint-Venant equations can be
neglected, and the system is reduced to one parabolic equation,
the diffusive wave equation [31, 32]:

∂Q
∂t

+ C(Q)
∂Q
∂x

− D(Q)
∂2Q
∂x2

= 0 (8)

where x [L] is the length along the channel, t [T ] is the time and
the celerity C(Q) [LT−1] and the diffusivity D(Q) [L2T−1] are
functions of the discharge Q [L3T−1]. Let I(t) and O(t) be,
respectively, the upstream inflow and the downstream outflow.
In the particular case of a semi-infinite channel, no physical
downstream boundary condition exists, and C(Q) and D(Q) con-
stant, the diffusive wave equation has as solution the analytical
Hayami (1951) equation [30]:

O(t) =
∫t
0
I(t − t)u(t)dt = I(t) ∗ u(t) (9)

where u(t) is the Hayami kernel function:

u(t) = uz
p

( )1/2 e[z(2−u/t−t/u)]

t3/2
(10)

with two parameters θ [T ] the lag time and z [dimensionless] a
shape parameter. When z tends to zero, the Hayami equation
has comparable shape as the exponential model equation (7). For
hydraulic applications, equation (10) is generally written as a func-
tion of two physically based parameters, changing the two-
parameter (θ, z) into (C, D), with C = L/θ (L being the length)
and D = L2/(4θz). The use of the two-parameter (C, D) is more
adapted for hydraulic application because both parameters have
physical significance. The use of the two-parameter (θ, z) is more
adapted for hydrologic applications on catchments because θ repre-
sents the lag time between i(t) and o(t), and can be thus estimated.
However, z is empirical and needs to be calibrated. For applications
in epidemiology, the parameter θ represents the lag time between
either IR(t) and Ro(t), or ID(t) and Do(t), and hence can be easily
interpreted, whereas the parameter z has no significance for the
relationships I–R and I–D. This is why equation (10) needs to be
rewritten according to two parameters that can be more easily
interpreted in epidemiology. For that, i(t) and o(t) can be consid-
ered as distributions characterised respectively as below (Fig. 2):

• GI and GO: the centres of gravity.
• TI and TO: the abscissae of GI and GO which represent the
means of i(t) and o(t).

• sI and sO: the standard deviations of i(t) and o(t), and hence sI
2

and sO
2 are the variances.

The values of TI and TO depend on the time origin (t = 0) whereas
sI and sO do not depend on time origin. Following Moussa [31,
32], we have

u = TO − TI and z = (TO − TI)
2

2(s2O − s2I )
(11)

Fig. 1. I–R–Dmodel structure. The input Io(t) is the observed number of daily infected
cases divided into IR(t) and ID(t) proportional to the mortality ratio μ. t is the time
expressed in days. The I–R model calculates the daily number of recoveries Rc(t),
with a performance NSER. The I–D model calculates the daily number of deaths
Dc(t), with a performance NSED. The active cases Ac(t) are calculated with a perform-
ance NSEA.
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The parameter θ represents the time delay between the two
centres of gravity GI and GO. Let τ be

t =
��������
s2O − s2I

√
(12)

The new parameter τ has a time dimension, and is proportional
to the square root of the difference of the variance of o(t) and i(t).
Combining equations (11) and (12), we have the relationships:

z = u2

2t2
and t = u���

2z
√

Substituting equation (13) in (10) we obtain the expression of
the Hayami unit hydrograph function of (θ, τ) instead of (θ, z):

u(t) = u3

2pt2

( )1/2
e[(u

2/2t2)(2−u/t−t/u)]

t3/2
(14)

The Hayami u(t) given by equation (14) is applicable for the
continuous function data. But, the Covid-19 pandemic problem
dealing with I–R–D and active variables are observed in discrete
time interval of 1 day. This necessitates the conversion of the con-
tinuous function u(t) to discrete 1-day time interval. To obtain
at the discrete u(t) of the Hayami model at Δt time interval
(with Δt = 1 day herein), we use the discrete u(t) of the Hayami
model using a similar approach as the method described by
[41] (see details in the Supplementary material). Another solution
consists of subdividing the daily time step into finer numerical
time steps under the hypothesis of uniform distribution of data.
The finer the time step, the closer one gets to a continuous func-
tion of time (see the sensitivity analysis for Δt = 10 min, 1 h, 3 h
and 1 day in Section ‘Sensitivity analysis of the I–R–D Hayami
model to the time step of calculation’). The I–R–D model pro-
posed herein was developed in Matlab® and integrated in the
MHYDAS hydrological model (MHYDAS-IRD) [42].

The two parameters (θ, τ) are related to the means and var-
iances of the two distributions i(t) and o(t) by equations (10)
and (11). The advantage of equation (14) using (θ, τ) instead of
(θ, z) is that both parameters (θ, τ) can be estimated from data

analysis without any calibration. However, the calibration of
(θ, τ) can be also undertaken in order to improve the model
performances.

Figure 3a shows the shape of the output distribution for differ-
ent values of θ. A small θ value gives a sharp output distribution
with a small time delay between the input and the output, whereas
a large θ value gives a damped output distribution with a large
time delay between the input and the output. Figure 3b shows
the output distribution for different values of τ. A small τ value
gives a damped and more asymmetric output distribution with
a small time delay between the input and the output, whereas a
large τ value gives a sharp and more symmetric output distribu-
tion with a large time delay between the input and the output.
Figures 3c and d show the cumulative distribution function
(CDF) of Figures 3a and b: they represent the time evolution of
the total number of o(t) when i(t) is a Dirac delta function.

In the applications, we compare the reference one-parameter
exponential model (equation 7) with kR the parameter of uR(t)
and kD the parameter of uD(t), to the two-parameter Hayami
model (equation 14) with (θR, τR) the parameters of uR(t) and
(θD, τD) the parameters of uD(t). The mortality ratio μ is supposed
to be known from the observed data. For both models, the para-
meters of uR(t) are calculated separately from those of uD(t). The
performances are NSER and KGER for I–R, NSED and KGED for
I–D and NSEA and KGEA for the active cases (equations (5)
and (6)). The parameters are calibrated using an iterative auto-
matic trial-and-error method maximising the NSE criteria. This
method can be used for both exponential and Hayami models,
for datasets (Io(t), Ro(t) and Do(t)) that are partial (pandemic is
evolving) or complete (pandemic is ending).

Applications on the Covid-19 pandemic

Data

Applications were implemented on the actual Covid-19 pandemic
which occurred in Wuhan, Hubei Province, China, in December
2019. Data are available from Worldometer [20] Covid-19 data
used by Johns Hopkins CSSE [19], governmental institutions and
many others [21]. Daily data for Io(t), Ro(t) and Do(t) are available
from 1 January until 19 May 2020 for 24 countries: Australia

Fig. 2. Example of the distributions of the input i(t) and the output o(t). GI and GO are, respectively, the centres of gravity of i(t) and o(t). TI and TO are the abscissae
of GI and GO representing the means of i(t) and o(t). sI and sO are the standard deviations of i(t) and o(t). θ is the time delay between the two centres of gravity.
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(denoted AU), Austria (AT), Belgium (BE), China (CN), Cuba
(CU), Czechia (CZ), Denmark (DK), France (FR), Germany
(DE), Iceland (IS), Iran (IR), Italy (IT), Japan (JP), Malaysia
(MY), New Zealand (NZ), Romania (RO), Slovakia (SK), South
Korea (KR), Spain (ES), Switzerland (CH), Thailand (TH),
Turkey (TU), USA (US) and the whole world (World). The latter
case enables us to study an overall average trend in the whole world.

Figure 4 shows the characteristics of the data for all 24 coun-
tries, where for each country It is the total number of infected
cases, Rt the total number of recoveries and Dt the total number
of deaths. Figure 4a shows the large range of variability of It
with 2 × 103 (IS, NZ, SK) < It < 5 × 106 (World). We define also
the index (Rt +Dt)/It representing the evolution of the pandemic
at the date of data availability 19 May 2020: the index is close to 1
when the pandemic is ending (e.g. CN, IS, NZ) and lowest than
0.5 (e.g. BE, US, World) when the pandemic is still actively evolv-
ing. Figure 4b shows the large range of variability of the mortality
ratio μ =Dt/It with 0.005 (IS) < μ < 0.16 (BE). Probably different
data collection strategies have been carried out among the differ-
ent countries. However, the I–R–D model was applied separately
to each country, and therefore the calibrated sets of parameters
can be considered as descriptors of the I–R and I–D relationships
for each country.

We compare the exponential and the Hayami I–R–Dmodels to
simulate the relationships I–R, I–D and the active cases. As we
observe noisy signals for Io(t), Ro(t) and Do(t), simulations can
be improved by smoothing these signals. For both the exponential
and the Hayami models, we also compare four smoothing strat-
egies: without smoothing, 3-days moving average, 5-days moving
average, and 7-days moving average. A sensitivity analysis was
also undertaken to study the impact of the time step of calculation
on the calibrated parameters and the model performances, by

subdividing the daily time step into finer numerical time steps
(Δt = 10 min, 1 h, 3 h and 1 day). For the I–R model, we note
NSER, NSER3, NSER5 and NSER7, the values of NSE respectively
for the four smoothing strategies. For the I–D model, we note
NSED, NSED3, NSED5 and NSED7. For the active cases, we
note NSEA, NSEA3, NSEA5 and NSEA7. For the I–R model, we
note KGER, KGER3, KGER5 and KGER7, the values of KGE respect-
ively for the four smoothing strategies. For the I–D model, we
note KGED, KGED3, KGED5 and KGED7. For the active cases, we
note KGEA, KGEA3, KGEA5 and KGEA7.

First, we present an example of application and the sensitivity
analysis on China where the pandemic is ending. Then, we show
the results for all 24 countries, for both the exponential and
Hayami models, and for the three smoothing strategies. The
Supplementary material shows the comparison between the
observed {Ro(t), Do(t), Ao(t)} and the calculated {Rc(t), Dc(t),
Ac(t)} for all countries.

Application on China

First, we study in detail the case of China where the pandemic was
ending by the mid of April 2020. The total number of infected I is
82 123 cases, recoveries R is 78 042 cases and deaths D is 3324 cases
and the mortality ratio is μ = 0.041. Figures 5 and 6 show the
observed {Ro(t), Do(t), Ao(t)} and the calculated {Rc(t), Dc(t),
Ac(t)} for respectively the exponential and the Hayami models
after calibration of the parameters using data with 3-days moving
average. For the I–R model, the calibrated parameters of uR(t)
are for the exponential model kR = 26.5 days with fair performance
NSER3 = 0.648 (Fig. 5a), and for the Hayami model θR = 21.8 days
and τR = 10.3 days (very close to those calculated from equation
(10) θR = 20.3 days and τR = 9.5) with excellent performance

Fig. 3. Examples of the Hayami unit hydrograph u(t). (a) For τ = 10 days and different values of θ. (b) For θ = 20 days and different values of τ. (c) CDF of (a) and
(d) CDF of (b).
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NSER3 = 0.99 (Fig. 6a). The calibrated values of the lag time kr and
θR are comparable to cure rate for infections (17–20 days) obtained
in [4]. For the I–Dmodel, the calibrated parameters of uD(t) are for
the exponential model kD = 9.3 days with very good performance
NSED3 = 0.93 (Fig. 5b), and for the Hayami model θD = 10.1 days
and τD = 11.1 days with excellent performance NSED3 = 0.95
(Fig. 6b). When comparing the observed and calculated active

cases A(t), we observe that the exponential model gives good results
NSEA3 = 0.82 (Fig. 5c) whereas the Hayami model gives much bet-
ter results NSEA3 = 0.95 (Fig. 6c). Finally, when comparing the
cumulated observed and calculated number of recoveries, and the
cumulated observed and calculated number of deaths, we observe
also fair performance of the exponential model (Fig. 5d) and excel-
lent performance of the Hayami model (Fig. 6d).

Fig. 4. Data characteristics for the 24 countries, where for each country It is the total number of infected cases, Rt the total number of recoveries and Dt the total
number of deaths. Data are available from 1 January to 19 May 2020. (a) Pandemic evolution index (Rt + Dt)/It function of It and (b) mortality ratio: μ = Dt/It.

Fig. 5. I–R–D exponential model application on Covid-19 in China (with 3-days smoothing average of data) using the calibrated parameters. (a) Comparison of the
observed and calculated recoveries; (b) comparison of the observed and calculated deaths; (c) comparison of the observed and calculated active cases; (d) com-
parison of the cumulated observed infected cases, the observed and calculated recoveries, and the observed and calculated deaths. Data are available from 1
January 2020 to 19 May 2020.
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Fig. 6. I–R–D Hayami model application on Covid-19 in China (with 3-days smoothing average of data) using the calibrated parameters. (a) Comparison of the
observed and calculated recoveries; (b) comparison of the observed and calculated deaths; (c) comparison of the observed and calculated active cases; (d) com-
parison of the cumulated observed infected cases, the observed and calculated recoveries, and the observed and calculated deaths. Data are available from 1
January 2020 to 19 May 2020.

Fig. 7. Comparison of the unit hydrographs calibrated for the exponential and Hayami models for the Covid-19 in China: (a) uR(t); (b) uD(t); (c) CDF of (a) and (d) CDF
of (b).
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These results show that the one-parameter exponential model is
sufficient and give comparable results to the Hayami model only
for modelling the relationship I–D. However, for modelling the
relationship I–R and the active cases, the Hayami model highly
improves the performances in comparison with the exponential
model, presenting also the advantage that its parameters can be
easily estimated from the analysis of the data distributions of I(t)
and R(t). Figure 7 shows the uR(t) and uD(t) obtained with the cali-
brated parameters for China. For uR(t) (Fig. 7a and the correspond-
ing CDF in Fig. 7c), we observe different behaviours for the two
models. The exponential model cannot reproduce a unit hydro-
graph that rises to a maximum and then falls down, which explains
the fair performance of the exponential model. However, the
Hayami model succeeds because it enables us to take into account
a lag time translation (comparable to the advection process) and an
attenuation of the peak (comparable to the dispersion process). For
uD(t) (Fig. 7b and the corresponding CDF in Fig. 7d), we observe
very comparable results for both models.

Sensitivity analysis of the I–R–D Hayami model to the time
step of calculation

This section presents a sensitivity analysis of the Hayami I–R–D
model on China. Compared to applications in hydrology where
the discharge is a continuous function of time, the major

difference for epidemiological applications of the Hayami I–R–
D model is that in epidemiology the data are a discrete time
function representing the daily number of cases. However, all
unit hydrograph approaches, including the Hayami model, can
be easily adapted for applications on discrete or continuous
data as discussed in Section ‘Adapting the Hayami kernel function
to epidemiology’ [41, 43]. Around the reference data time step
Δt = 1 day, we conduct a sensitivity analysis by subdividing the
daily time step into finer time steps (Δt = 10 min, 1 h and 3 h)
under the assumption of a uniform distribution of the number
of cases. The finer the time step Δt, the closer one gets to a con-
tinuous function of time. For the data used, we also compare four
smoothing strategies: without smoothing, 3-days moving average,
5-days moving average and 7-days moving average.

Table 1 shows the values of the calibrated parameters of the
I–R model (θR and τR) and the corresponding criteria functions
(NSER and KGER), the calibrated parameters of the I–D model
(θD and τD) and the corresponding criteria functions (NSED
and KGED), and the criteria functions corresponding to the
actives cases (NSEA and KGEA). For the fine time steps (10 min,
1 h and 3 h), the calibrated parameters and the corresponding
performance criteria remain very close in comparison with
those obtained with the reference time step of 1 day. This is
due to the fact that the use of a fine time step only allows tending
to continuous time functions (i.e. Δt = 10 min) but using the same

Table 1. I–R–D Hayami model application on Covid-19 in China for different time steps analysis by subdividing the daily time step into finer time steps (Δt = 10 min,
1 h, 3 h and 1 day) and four smoothing strategies (without smoothing, 3-days moving average, 5-days moving average and 7-days moving average): the calibrated
parameters of the I–R model (θR and τR) and the corresponding criteria functions (NSER and KGER), the calibrated parameters of the I–D model (θD and τD) and the
corresponding criteria functions (NSED and KGED), and the criteria functions corresponding to the actives cases (NSEA and KGEA).

I–R model I–D model Active cases

Δt
θR

(days)
τR

(days) NSER KGER
θD

(days)
τD

(days) NSED KGED NSEA KGEA

Without smoothing

10 min 21.6 10.5 0.973 0.606 10.2 11.0 0.919 0.967 0.997 0.739

1 h 21.6 10.5 0.971 0.604 10.2 11.0 0.918 0.967 0.997 0.739

3 h 21.7 10.4 0.969 0.604 10.1 11.0 0.918 0.967 0.997 0.739

1 day 21.8 10.3 0.966 0.603 10.1 11.1 0.915 0.966 0.997 0.739

Smoothing using 3-days moving average

10 min 21.5 10.5 0.986 0.614 10.3 11.0 0.956 0.982 0.997 0.739

1 h 21.6 10.5 0.986 0.614 10.2 11.0 0.955 0.982 0.997 0.739

3 h 21.6 10.4 0.985 0.612 10.2 11.1 0.953 0.982 0.997 0.739

1 day 21.7 10.3 0.984 0.611 10.2 11.1 0.953 0.982 0.997 0.739

Smoothing using 5-days moving average

10 min 21.5 10.5 0.990 0.618 10.3 11.1 0.971 0.988 0.998 0.740

1 h 21.5 10.5 0.990 0.617 10.3 111 0.970 0.987 0.998 0.740

3 h 21.6 10.4 0.989 0.615 10.2 11.2 0.969 0.986 0.998 0.740

1 day 21.6 10.4 0.988 0.615 10.2 11.2 0.968 0.985 0.998 0.740

Smoothing using 7-days moving average

10 min 21.5 10.5 0.993 0.621 10.2 11.1 0.980 0.988 0.998 0.740

1 h 21.6 10.5 0.992 0.619 10.2 11.2 0.980 0.988 0.998 0.740

3 h 21.6 10.5 0.992 0.619 10.3 11.2 0.979 0.987 0.998 0.740

1 day 21.6 10.4 0.992 0.619 10.3 11.2 0.978 0.987 0.998 0.740
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data as for Δt = 1 day. However, we observe an improvement in
model performances and a slight change in the values of the set
parameters when the original data are smoothed (21.5 < θR <
21.8 days and 10.3 < τR < 10.5 days). The improvement of
model performances comparing the data without smoothing to
7-days moving average smoothed data are as follows: NSER =
0.966 and 0.992, KGER = 0.603 and 0.619, NSED = 0.915
and 0.978, KGER = 0.966 and 0.987, NSEA = 0.997 and 0.998,
KGEA = 0.739 and 0.740. As the model results are more sensitive
to smoothing data then to the use of finer time steps, in the fol-
lowing we limit the applications to compare the performance of
the models using the daily time step for the four smoothing strat-
egies (without smoothing, 3-days, 5-days moving and 7-days
moving average).

Application on 24 countries

This section aims to show how the methodology can be applied,
and how the parameters could be used to analyse the variability
among different countries. For a part of the 24 countries, the pan-
demic is still evolving, and the series Io(t), Ro(t) and Do(t) are still
incomplete. Hence, the parameters of both the exponential and
the Hayami models calibrated on the available data, may slightly
change when the pandemic ends. For each country, we obtain
generally similar values of the calibrated parameters for the four
smoothing strategies (without smoothing, 3-days moving average,
5-days moving average and 7-days moving average) but the per-
formances (NSE and KGE) may vary drastically with the smooth-
ing strategy.

Figure 8 shows a comparison of the NSE (Figs 8a–c) and KGE
(Figs 8d–f) of the exponential and the Hayami models for the
four smoothing strategies for all studied countries. For the I–R

model, the 7-days moving average improves the performances
NSE (Fig. 8a) of both the exponential and the Hayami models
in comparison with the two remaining smoothing strategies.
Moreover, the Hayami model performs much better than the
exponential model: for the 5-days moving average, NSER5 > 0.90
for four countries with the exponential model, and for 20 coun-
tries with the Hayami model (Fig. 9a). For the I–D model,
Figure 8b shows that for both the exponential and the Hayami
models, the 3-days, 5-days and 7-days moving average give similar
results but better than without smoothing. The Hayami model
gives comparable and slightly better results than the exponential
model: for the 5-days moving average, NSED5 > 0.90 for 12 coun-
tries with the exponential model, and for 16 countries with the
Hayami model (Fig. 9b). For the active cases, Figure 8c shows
that the three smoothing strategies give similar results for both
the exponential and the Hayami models, because the active
cases is a cumulated function, and consequently is less sensitive
to noisy data. However, the Hayami model gives better results
than the exponential model: for the 5-days moving average,
NSEA5 > 0.95 for nine countries with the exponential model,
and for all 24 countries with the Hayami model (Fig. 9c).

Similar results are obtained with the KGE. The Hayami model
performs much better than the exponential model: for the 5-days
moving average, KGER5 > 0.90 for two countries with the expo-
nential model, and for 16 countries with the Hayami model
(Fig. 9d); KGED5 > 0.90 for six countries with the exponential
model, and for 12 countries with the Hayami model (Fig. 9e);
KGEA5 > 0.90 for seven countries with the exponential model,
and for 14 countries with the Hayami model (Fig. 9e).

Finally, Figure 10 shows the Hayami calibrated parameters
for the 24 countries for both the I–R model (θR and τR) and
the I–D model (θD and τD). The parameters range are: 11 days

Fig. 8. For the I–R model (a and d), the I–D model (b and e) and the active cases (c and f), comparison of the exponential model (denoted Exp) and the Hayami
model (Hay) for four different smoothing strategies: without smoothing, 3-days moving average (3d), 5-days moving average (5d), and 7-days moving average (7d).
The values of the NSE (a, b and c) and KGE (d, e and f) performance criteria are classified by ascending order for the 24 countries.
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(IR) < θR < 89 days (US), 1.5 days (IR) < τR < 99 days (US), 4 days
(DK, MY) < θD < 30 days (KR), 1 day (NZ) < τD < 27 days (KR).
High values of θR (or θD) correspond to a long time interval
between infection and recoveries (or deaths). High values of τR
(or τD) correspond to a high difference of the variance between
Io(t) and Ro(t) (or Io(t) and Do(t)) as given in equation (9) and
shown in Figure 2. Some particular cases can be examined such
as Iran which has the shortest recovery period of θR = 11 days
with small τR = 1 day in comparison with results of other

countries. A small value of θR can be due either to a late date
of detection of infected cases and consequently a shorter recovery
period, or to the recovery criterion with, for example a single
negative test instead of two for recovered patients, which shortens
the contamination period. The small value of τR is an indicator
that both I(t) and R(t) have the same dynamic with low diffusion.
Conversely, France and the US data are characterised by a large τR
(respectively, 82 and 99). This is mainly due to the fact that the R
(t) curves were rising and incomplete by mid-May 2020.

Fig. 9. Comparison of the performances NSE (a, b and c) and KGE (d, e and f) of the exponential (denoted Exp) and the Hayami models (smoothing data with 5-days
moving average) for : the I–R model (a and d), the I–D model (b and e), and the active cases (c and f).

Fig. 10. Hayami calibrated parameters for the 24 countries for: (a) I–R model (θR and τR) and (b) I–D model (θD and τD).
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Fig. 11. Comparison between the observed Ro(t) and the calculated Rc(t) recoveries, and between the observed Ao(t) and the calculated Ac(t) active cases, for 24
countries using the Hayami I–R–D model (smoothing data with 5-days moving average).
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Consequently, the calibration of the I–R–D model on the NSE cri-
terion favouring the high values of the observation can induce a
poor estimation of the parameters. This is not the case where
the pandemic is over (e.g. Austria, China, Germany, Iceland,
New Zealand, etc.), where small values of τR (between 6 and 10
days) are calibrated.

The four parameters (θR, τR, θD and τD) are descriptors of the
relationships between the distributions I(t), R(t) and D(t).
Consequently, they depend on various factors such as the meas-
urement strategy of each country, the health policy, the popula-
tion density, the presence and date of closure of the local
airport, etc. Given the heterogeneities of countries, and the time
evolution of health policies, it could be hard to explain as well.
However, these parameters remain useful indicators on data
acquisition, recoveries strategies and pandemic evolution. They
are also useful to compare and classify countries and regions.

Finally, Figure 11 shows the overall very good performances of
the I–R–D Hayami model (with 5-days moving average data
smoothing) for the 24 countries, comparing the observed Ro(t)
and the calculated Rc(t) recoveries, and the observed Ao(t) and
the calculated Ac(t) active cases. Calibrated parameters and
model performances will probably change when additional data
will be available. However, these applications should be seen as
first tests that show that the Hayami solution of the diffusive
wave equation, and more generally the unit hydrograph theory,
can be easily adapted to compartmental I–R–D models in epi-
demiology. In hydrology, the input i(t) and the output o(t) signals
are continuous functions, whereas Io(t), Ro(t) and Do(t) functions
in epidemiology are discrete functions. Despite discontinuities in
data, and the different methods among countries to define the
observed Io(t), Ro(t) and Do(t), the I–R–D model provides simu-
lations mostly qualified as excellent when slightly smoothing the
noisy data. The Hayami model is easy-to-use and parsimonious
with only two parameters for each of uR(t) and uD(t). One
main advantage of the Hayami model is that both parameters
(θ, t) can be estimated using equation (11) from the analysis of
Io(t), Ro(t) and Do(t) when the pandemic ends, avoiding the cali-
bration procedure. The parameters, either calibrated or estimated,
are useful simple describers to compare the temporal evolution of
recoveries and deaths in different countries.

Conclusion

On the basis of the analogy between SIRD and compartmental
models in hydrology, this study makes mathematical formulations
developed in hydrology available for modelling in epidemiology.
We adapt the ‘transfer functions’ generally used in hydrological
modelling to compartmental I–R–D models in epidemiology in
order to simulate the relationships between the number of infec-
tious I(t), the number of recovered R(t), the number of death
cases D(t) and the number of active cases A(t). Simplified
approaches of the transfer functions such as the unit hydrograph
are easy-to-use and parsimonious with a low number of para-
meters. We compare the one-parameter exponential model usu-
ally used in SIRD epidemiologic model to the two-parameter
physically based Hayami model solution of the diffusive wave
equation. Applications were implemented on the recent
Covid-19 pandemic.

The application on 24 countries enables us to compare the per-
formances of the two models. The exponential model gives very
good performances for modelling the relationship I–D, but fair
performances for modelling I–R and the number of active cases.

For I–R, the Hayami model improves significantly the perfor-
mances with excellent performances for all variables. The
Hayami model presents also the advantage that its parameters
can be easily estimated from the analysis of the data distributions
of I(t), R(t) and D(t).

The Hayami model is parsimonious with only two parameters
which are useful simple describers to compare the temporal evo-
lution of recoveries and deaths in different countries with differ-
ent contamination rates and strategies for recoveries.

These first results illustrate the interest of adapting mathemat-
ical formulations developed in a physical discipline like hydrology
for applications in epidemiology. This allows epidemiology to
benefit from the numerous advances in hydrology, and provides
epidemiological modellers simple and easy-to-use parsimonious
tools that have been evaluated in the literature, and could possibly
make a modest contribution to the complex modelling exercise in
epidemiology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821001011
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