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1  | INTRODUC TION

Livestock production is responsible for environmental burdens par-
ticipating in around 14.5% of global greenhouse gas emissions (GHG; 
Gerber et al., 2013). Among those GHG, enteric methane (CH4) emis-
sion contributes up to 40% of livestock's GHG (Gerber et al., 2013). 
Consequently, several nutritional strategies to mitigate enteric CH4 have 
been studied and developed (Hristov et al., 2013). Among the different 

options, feed and feed management measures, such as enhanced forage 
quality (increased digestibility by feed processing [i.e., drying, grinding]) 
and livestock precision feeding are the most promising strategies to re-
duce enteric CH4 (Gerber et al., 2013). Animal performance is related 
to efficient forage use associated with good nutrition management 
allowing to combine increased animal production with CH4 reduc-
tion measures (Pereira et al., 2015). In the last decades, a large num-
ber of studies have been conducted related to the effects of forages  
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Abstract
Nutritional strategies, including feed management measures, are promising meth-
ods for CH4 and overall GHG reduction. Evidence from literature is reviewed in this 
article in relation to the effects of forage quality (digestible organic matter, DOM) 
and forage type (grasses vs. legumes, and maize). The major determinants of forage 
quality are botanical composition and phenological stage, i.e., at advanced growth 
stages of plants, the fibre content increases while DOM decreases. Methane yield 
(g/kg DMI) decreases with increased digestibility of forages in both dairy cattle and 
sheep, and also CH4 intensity (g/kg milk) decreases with increased digestibility of 
forages for dairy cattle. Using forage legumes in ruminant feeding systems can re-
duce overall GHG emissions due to decreased N fertilizer use and related emissions. 
Recommended dietary mitigation measures are often related to a reduction in N ex-
cretion such as better matching of dietary protein to animal needs, shifting N excre-
tion from urine to faeces (by tannin inclusion at low levels) and reducing the amount 
of excreted fermentable organic matter. Methane decreases with increasing intake of 
forage legumes rich in tannins and there is a shift of N partition from urinary N to-
wards faecal N. Reduced CH4 emissions from ruminants fed on forage- based diets will 
decrease the carbon footprint of livestock and agriculture and improve the efficiency 
of productive ruminants in both developing and developed countries. Likewise, esti-
mations of net CH4 output should account for enteric CH4 emissions and soil carbon 
(C) sequestration of land used for feed production (i.e., grasslands and croplands).
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(grass, legumes, or mixture) on N excretion and N20 emissions, and to 
the effects of grassland management on C fluxes. Grass- based diet has 
gained interest, as bringing together pasture ecosystem services and 
livestock production. Among pasture ecosystem services beneficial for 
livestock production and emissions are biodiversity, which relates to 
forage quality and subsequent product quantity and quality but also to 
the environment, e.g., legumes reduce the need for mineral N fertilisa-
tion and related N2O emissions, and finally C sequestration of pastures.

However, the different options diverge in terms of viability, 
costs, and acceptance by the producers. To be adopted, these strat-
egies should provide similar or increased animal performance and 
economic viability while reducing CH4 intensity (emission per unit of 
milk or meat), but also other sources of GHG, such as N2O from crop 
fertilizers/manure and CO2 from feed production and C sequestra-
tion (Gerber et al., 2013; Pereira et al., 2015).

This article aims to review the forage GHG mitigating options from 
individual studies and review articles from the literature that are the 
most documented and promising. It summarises both qualitative and 
quantitative effects of those mitigating options (i.e., forage quality, type, 
and conservation modes, grassland management, biodiversity) mostly 
on enteric CH4, N excretion and related N20 (along with CH4) and C 
sequestration. Moreover, it provides insights into statistical models that 
consider the effects of diet composition, such as the chemical com-
position or digestibility of forages on GHG emissions. Their ability to 
capture the GHG abatement options is crucial nowadays in order to be 
implemented into GHG accounting tools or national GHG inventories.

2  | ENTERIC METHANE MITIGATION

2.1 | Forage quality

Increasing forage digestibility and digestible forage intake seems to be 
one of the main CH4 mitigation practices, recommended worldwide 
(Hristov et al., 2013). The effect of forage organic matter (OM) digest-
ibility on CH4 emission intensity has been studied for forages with 
different nature (i.e., fresh herbage and silage) and for different forage 
types, such as grass, legume or maize, and for different animal catego-
ries (cattle and sheep; Phelan et al., 2015; Van Gastelen et al., 2019). 
Though large efforts have been made, the response in CH4 emission is 
not consistent and depends on the unit as well as the animal category 
considered (Van Gastelen et al., 2019). Increased forage digestibility 
resulted in increased dry- matter intake (DMI, kg/day) and conse-
quently increased CH4 emission (g/day) for dairy and beef cattle, but 
not for sheep. When intake or production is considered, both CH4 
yield (g/kg DMI) and CH4 intensity (g/kg milk) are decreased with in-
creased digestibility for dairy cattle, but no difference in CH4 yield (g/
kg DMI) was observed for beef cattle. For sheep, CH4 yield decreased 
with increased forage digestibility (Van Gastelen et al., 2019).

It is important to include forage quality into GHG accounting 
tools or GHG inventory methodology. A number of equations have 
been developed during the last years for different animals fed forages 
or on pasture to predict CH4 emission (e.g., Archimède et al., 2011; 

Ellis et al., 2007; Escobar- Bahamondes et al., 2017; Van Lingen 
et al., 2019; Niu et al., 2018; Rico et al., 2016). To be more general, 
Sauvant et al. (2018) have developed an equation using “Methafour” 
database (104 publications, 211 experiments, 592 treatments; see 
Nozière et al., 2018), comprising CH4 emissions measured under cur-
rently applicable measurement techniques, in ruminants only fed with 
forages, used for GHG inventory methodology and in INRA’s feeding 
system. Briefly, the equation estimated the CH4 production per kg of 
digestible OM (g/kg DOM; 34.7 ± 9.1, min = 10.9, max = 69.1) and 
was based on the combination of feeding level (FL, DMI % of body 
weight (BW)) and NDF content of forage (proposed by Eugène et al., 
2014), and the DOM content of the forage (Equation 1 in Table 1). 
There are only a few direct comparisons in in vivo trials, and con-
sequently, the specific effect of type of forage and species cannot 
be assessed. There is a marginal increase of the slope for forages 
with low quality as compared to mean CH4 production (i.e., 60 vs. 
40 g/kg DOM, respectively) whereas for forages with high quality, 
there is a marginal decrease of the slope as compared to mean CH4 
production (36 vs. 40 g/kg DOM, respectively). Comparisons of rela-
tionships including CH4/DMI (Equation 2) or CH4/DOM (Equation 1) 
indicate that DOM is an important explanatory variable that needs to 
be considered (Table 1). Consequently, equations with CH4/DOM are 
recommended as DOM considers both quantity and quality of for-
age. For animals fed with forages, there is a close positive relationship 
between CH4% of gross energy (GE) and the acetate to propionate 
ratio in the rumen (C2/C3; Moss et al., 2000), as illustrated in Figure 1. 
The fermentation of cell wall carbohydrates in forages generally pro-
duces a higher C2/C3 ratio in the rumen and consequently a higher 
amount of CH4 as compared to non- fibre carbohydrate fermentation 
(Hegarty, 1999; Moss et al., 2000). Indeed, propionate production fa-
vours competitive pathways for H2 use in the rumen, whereas acetate 
production favours H2 production in the rumen (Moss et al., 2000).

The difference between animals (bovine vs. ovine) could also 
be linked to mean retention time differences and fractional deg-
radation rates of feeds in the rumen (Poppi et al., 1981; Siddons & 
Paradine, 1983). Poppi et al. (1981) reported a longer mean retention 
time and lower fractional degradation rates in beef and dairy cattle 
than in sheep.

TA B L E  1   Methane prediction for animal fed forages

CH4 (g/kg DOM) = 34.95 − 4.05 × FL + 0.027 × NDF − 0.010 × 
DOM. (Equation 1)

(n of data points = 412, number of trials = 153, RMSE = 3.1 g/kg 
DOM). Sauvant et al. (2018)

CH4 (g/kg DMI) = – 22.4 − 2.25 × FL + 0.137 × DOM (g/kg DM) − 
0.00009 × DOM2 (g/kg DM). (Equation 2)

(n = 283, n trials = 53, RMSE = 1.6 g/kg DMI). Sauvant et al. (2011)

CH4 (g/kg DOM) = 34.26 − 3.96 × FL + 0.027 × NDF − 0.008 × 
DOM − 1.72 × Log10 (1 + TAN). (Equation 3)

(n = 398, n trials = 147, RMSE = 3.1 g/kg DOM) Eugène, Sauvant, 
et al. (2019)

Note: FL is the feeding level (DMI%BW), NDF content, digestible OM 
(DOM) content and TAN is the tannin content (g/kg DM) of the forages. 
Methane yield is expressed as g/kg DMI or g/kg DOM.
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According to the analysis of the "Methafour" database (Nozière 
et al., 2018) for this present review, the main factor of forage quality 
is the stage of growth (i.e., phenology of vegetation, Baumont et al., 
2018); when the growth stages advance (i.e., the vegetation becomes 
older as moving from vegetative to generative cycle), we observed an 
increase in the crude fibre (3.72 ± 3.28 g/kg DM) and NDF contents 
(4.78 ± 3.54 g/kg DM) for every 10 days of grass growth, which ex-
plains the decrease in the quality. Most of the studies used in this 
analysis were conducted during spring and not in autumn where a 
delayed harvest time also results in older vegetation but then with-
out generative grass stems. However, there is also a decline in the 
level of DMI/BW (−0.15 ± 0.08 g/kg BW for every 10 days). This last 
parameter has a dominant effect on CH4 production which increases 
per unit of DMI (0.145 ± 0.106 g/kg DM for 10 days) but not per kg 
BW, leading to a mean decrease equal to 0.51 ± 0.06 g/kg DM.

2.2 | Forage type and conservation methods

2.2.1 | Legumes versus grass

Feeding forages, especially forage legume species, represents an 
interesting strategy to both provide nitrogen to the animal and de-
crease CH4 emissions, thus enhancing animal productivity (growth, 
milk, and wool production) and mitigating climate change (CH4, N20, 
and ammonia emissions; Makkar, 2003; Reed, 1995). However, sev-
eral authors have stressed the importance to conduct diet improve-
ments in a holistic multi- criteria approach (Kebreab et al., 2006; Van 
den Pol et al., 2018) in order to integrate diet management to all 
aspects of a farm (field operations, supply chain, socio- economics, 
environment, etc.). For instance, one important factor of diet is the 
ability of forages to prevent gastrointestinal parasitic nematodes 
(Makkar, 2003; Mueller- Harvey et al., 2019). Forage legumes contain-
ing condensed tannins (e.g., sainfoin (Onobrychis viciifolia Scop.), birds-
foot trefoil (Lotus corniculatus L.), and sulla (Hedysarum coronarium L.)) 

or polyphenol oxidase enzymes (e.g., red clover (Trifolium pratense 
L.)) have been shown to reduce rumen protein degradation in vitro 
(Makkar, 2003) and ruminants seem to capture these proteins more 
efficiently into meat and milk. However, more evidence is required 
using in vivo production experiments. To assess the quantitative ef-
fects of tannins on CH4 emissions, Eugène, Doreau, et al. (2019) con-
ducted a meta- analysis. Although several reviews have been published 
on that topic (Jayanegara et al., 2012), only a few general equations, 
mostly derived from in vitro trials, have been published because of the 
diversity in methods and types of tannins. Using the “Methafour” da-
tabase (Nozière et al., 2018), it was possible to significantly complete 
Equation 1 by integrating tannin content (TAN, g/kg DM, Equation 3). 
In Equation 3 (see Table 1), CH4 (g/kg DOM; 34.7 ± 9.1, min = 10.9, 
max = 69.1 g/kg DOM) is expressed by the log- transformed TAN 
(Eugène, Sauvant, et al., 2019). In spite of this, the coefficients of re-
gression of other variables remained fairly stable between Equations 
1 and 3. Consequently, we recommend using the TAN coefficient in 
Equation 3 to evaluate the average quantitative effect of tannins in all 
types of diets. Nevertheless, more data are needed to fully assess the 
differential effects of the wide variety of tannins in different diets, 
concerning the structure/activity relationships of tannins (condensed 
or hydrolysable), and the long- term effects of such diets.

The use of forage legumes such as lucerne (Medicago sativa L.), 
red clover or white clover (Trifolium repens L.) that contain high con-
centrations of degradable proteins may increase the risk of bloat 
(Phelan et al., 2015). Because these legumes are associated with high 
voluntary intake and fast rates of particle breakdown in the rumen, 
they tend to be associated with higher bloat risks. Sainfoin, birdsfoot 
trefoil or sulla contain tannins or saponins, which may explain their 
low risk of bloat. However, when compared to grass-  or cereal- based 
ruminant production systems using high amounts of N fertilizer, for-
age legume- based production systems (i.e., farms) tend to have a 
less negative environmental impact on plant species biodiversity, N 
losses via leaching and GHG emissions (Phelan et al., 2015). Although 
these forage legumes generally have lower yields and persistence, 

F I G U R E  1   Intra- experiment 
relationships between energy from CH4 
in % of gross energy (ECH4%GE) and 
the acetate/propionate (C2/C3) ratio in 
the rumen, for ruminant fed- forages, 
in different studies (from Methafour 
database)
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genetic modification would allow the insertion of these traits into 
more widely cultivated forages (Broderick, 2018).

The soluble carbohydrate content of forage legumes is low as 
compared to forage grasses, so that the use of supplements rich in 
starch (cereals) are required (Ruckle et al., 2017).

Forages rich in secondary plant compounds, such as tannins, 
have been studied both for their nutritional effects on animal pro-
ductivity (Reed, 1995) and for their anti- methanogenic properties, 
as thoroughly described by Jayanegara et al. (2012) and Jayanegara 
et al. (2015). Condensed tannins (CTs) can account for up to 20% 
of the dry matter in forage legumes rich in tannins used as rumi-
nant feeds. Compared to temperate forages, tropical forages have a 
lower digestibility and differ in their chemical and structural compo-
sition (Leng, 1990). Ruminants fed tropical grasses seemed to have 
increased CH4 emissions as compared to when fed tropical legumi-
nous forages (Archimède et al., 2011; Eugène et al., 2014; Table 2).

However, the mitigating effect of tannins on CH4 is inconsistent 
(Beauchemin et al., 2008; Makkar, 2003). The discrepancies of re-
sponses of animals to tannins among different studies are attributed 
to the different tannin concentrations in the diet, chemical struc-
tures of tannins, and types of diets. Recent research has highlighted 
the importance of the molecular structure of tannins (Mueller- 
Harvey et al., 2019). An establishment of a structure- activity rela-
tionship would be required to explain differences among studies 
and obtain consistent analyses of the beneficial effects related to 
tannins (Patra & Saxena, 2011). Likewise, multi- criteria analysis of 
the “Methafour” database indicated that the use of tannin- rich diets 
shifted the N partition from urinary N towards faecal N (Figure 2a). 
Consequently, as urinary N is a source of N2O, a shift towards faecal 
N will decrease N20 emissions. This shift is explained by the positive 
relation between faecal N excretion/non- digestible OM (g/kg) and 
tannin contents (log- transformed) of forages fed (Figure 2b), in other 
words, the correlation between TAN and N/C ratio of faecal excre-
tions (i.e., Mueller- Harvey et al., 2019).

Other possible diets becoming more interesting in the view of the 
environment are legume silage (red clover; Dewhurst, 2012; Hristov 

et al., 2013) or mixtures of grass and legumes (such as white or red 
clover, birdsfoot trefoil, sainfoin; Phelan et al., 2015) and the use of 
legumes as an intercropping culture (such as Stylosanthes guianensis 
(Aubl.) Sw., Lablab purpureus (L.) Sweet, and Vigna unguiculata (L.) 
Walp.) (Hassen et al., 2017). Indeed, intercropped legumes could in-
crease the forage productivity at the system level and help to preserve 
biodiversity, while reducing N losses via leaching and gas emissions.

2.2.2 | Silages

Maize silage
Although responses vary, CH4 emissions can be reduced when maize 
silage replaces grass silage in the diet (Hristov et al., 2013). Van 
Gastelen et al. (2019) have summarised different studies comparing 
the CH4 emission of ruminants fed maize silage in the replacement of 
grass silage or legume silage.

Different responses in CH4 emission and intake are observed be-
tween dairy, beef, and sheep. For sheep, there was a quadratic effect 
on CH4 yield (Jonker et al., 2016) when maize silage gradually re-
placed lucerne silage fed at an intake level of 2% BW. In other words, 
methane yield (g/kg of DMI; % of GEI) increased when sainfoin, 
birdsfoot trefoil, sulla or red clover were used with up to 50% of the 
diet. When using higher proportions of feed supplements, methane 
yield decreased but the level did not fall below that of 100% lucerne 
silage. For dairy cattle, increased levels of maize silage resulted in an 
average decreased CH4 yield (g/kg DMI; MJ/MJ GEI), while some 
studies reported quadratic relations (Arndt et al., 2015; Hassanat 
et al., 2013; Van Gastelen et al., 2019). Several factors may contrib-
ute to the responses observed. First, DMI and consequently intake 
level (DMI % BW), feed digestibility and retention time in the rumen 
may have an effect. Moreover, there might be a starch concentration 
threshold that shifts the fermentation in the rumen towards more 
propionate formation (Hassanat et al., 2013), but this was not ev-
idenced in the work of Jonker et al. (2016), where sheep were fed 
increasing levels of maize silage in the replacement of lucerne silage.

Although maize silage decreases enteric CH4 production, manure 
CH4 could increase due to increased faecal output of fermentable 
OM. Especially soil CO2 emissions are much greater for maize silage 
compared with grass silage, reducing C sequestration potential as 
a result of crop cultivation (Börjesson et al., 2018; Franzluebbers 
et al. 2014). Accordingly, there is a need to use a holistic approach 
to evaluate and reconcile animal production with GHG emissions for 
different feed production systems.

Grass silage
Some studies and literature reviews indicate that the improvement 
of digestibility of grass silage could lead to reduced methanogen-
esis (Van Gastelen et al., 2019). This can be explained by the stage 
of maturity at which grass has been harvested, as grass silage can 
have lower fibre concentration, higher fibre digestibility and higher 
nitrogen content depending on mowing date, climate and species 
mixture of the sward (Elgersma & Søegaard, 2018). Accordingly, 

TA B L E  2   Effect of forage type on CH4 emission, in L/kg dry 
matter intake (DMI), L/kg organic matter intake (OMI), L/kg 
digested OM (DOM), from Archimède et al. (2011)

CH4 CH4 CH4

(L/kg DMI) (L/kg OMI) (L/kg DOM)

Grasses

C3 type 30.0b 33.1b 52.1b

C4 type 33.7c 38.8c 57.7b

Legumes

Cool 30.1bc 33.7bc 52.4b

Warm 25.9a 27.2a 40.7a

SEM 1.8 1.8 2.9

p .001 .001 .001

a,b,cSuperscripts: Mean values within columns carrying no common 
letters are significantly different at p < .05.
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the phenological stage and subsequent optimal timing for mowing 
may help to achieve high animal performance and reduced retention 
time in the rumen (Dewhurst et al., 2009). These strategies are most 
effective for dairy cattle, and also for beef cattle to a certain ex-
tent, but seem to have minor or no effects for sheep (Van Gastelen 
et al., 2019).

3  | C SEQUESTR ATION

3.1 | Mitigation through the C sequestration of 
grazed grasslands

GHG balance studies with growing ruminants show a mean parti-
tion of ingested C between faeces (29%), CH4 (4%), urine (4.5%), 
CO2 (58%) and 4.5% for the C balance (i.e., calorimetric studies 
“Rumener” database, Sauvant & Giger- Reverdin, 2009). In lactating 
ruminants, the corresponding values are 29% (faeces); 3.5% (CH4); 
3.5% (urine); 42% (CO2), 3% retained and 21% in milk. The majority 

of ingested C is thus partitioned into CO2 and emitted into the air 
(around 50% in cattle), and faecal C (around 30%, that returns to 
grasslands), followed by milk, urine, CH4 and C balance (Sauvant & 
Giger- Reverdin, 2009).

There is evidence that the GHG balance of ruminants can be 
improved by grass- based systems and the capacity of grasslands to 
sequester C in soil. In general, grasslands have a higher soil organic 
matter content and soil C has longer residence time than croplands, 
because there is less soil disturbance (i.e., grassland ploughing, mow-
ing and renovation) and a greater proportion of the input from root 
turnover is physically protected as chemically stabilized particulate 
organic matter (Six et al., 2004).

In grasslands, the degree of sequestered C is primarily influenced 
by plant productivity and the frequency and extent of disturbance (i.e., 
grazing; grassland ploughing and renovation). In view of that, graz-
ing has a direct impact on grassland productivity, plant community 
structure and biogeochemical cycling. In grazed grasslands, much of 
the primary production is ingested by animals, where about 50% are 
emitted in the air (i.e., cow respiration), and returned to the soil in the 

F I G U R E  2   Intra- experiment 
relationships between tannin contents 
and the Urinary N/Faecal N ratio (a) 
and faecal N excretions/non- digestible 
OM (g/kg) (b), for ruminant fed- forages, 
in different studies (from Methafour 
database)
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form of faecal OM (non- digestible carbon; 25% to 40% of the intake, 
depending directly on its digestibility); the remainder is returned to 
the soil in the form of plant litter (ungrazed biomass) or root exudates. 
Accordingly, effects of grazing are driven by plant tissue removal (de-
foliation, intake), excretion (dung and urine deposits; with a C urine/C 
faecal ratio of 12.2 ± 6.0%, Sauvant & Giger- Reverdin, 2009), but also 
by trampling, which exerts mechanical pressure and causes physical 
damage to the vegetation where animals pass repeatedly. Due to un-
even patterns of defoliation and animal returns, grazing animals pro-
mote spatial heterogeneity in C- N- P pools and fluxes, which add to a 
mosaic of patches of variable vegetation height and feed quality, and 
C storage potential (Bloor & Pottier, 2014).

At low grazing intensities, it seems that the animal excretion fa-
vours the N cycle in the soil and the net primary productivity of veg-
etation cover (via a reduction in above- ground standing biomass), as 
well as litter production and plant nutrient status. Similarly, if there 
is much dead plant material in the sward, shading the live leaves (e.g., 
extensive low- productive swards), grazing events can allow light to 
penetrate into the plant canopy and encourage new tillers, leading 
to an increase in the storage of C (Zhou et al., 2017). Conversely, 
if grazing is too intense or the period between successive grazing 
periods is too short, the biomass and soil cover (e.g., amount of live 
leaves) can be reduced so that light interception falls, and growth 
and C capture are reduced as well as litter and root production. In 
these cases, intense grazing can lead to a reduction in soil C storage 
(Derner & Schuman, 2007; Zhou et al., 2017). There exists, therefore, 
a compromise between promoting animal production and promoting 
carbon sequestration (see Soussana & Lemaire, 2014), which is the 
compromise between biomass production (and intensity of use), and 
C inputs to soil (via litter, animal wastes and roots). In the relation 
between C storage and herbage use (i.e., ratio between produced 
biomass and biomass removal by grazing), we observed an increase 
of both, until an optimum beyond which the storage of C decreased 
(threshold of ~0.5 to 0.7) with further increase in herbage use 
(Klumpp & Graux, 2020). The C sequestration potential of European 
grazed grasslands (on average 0.21 ± 0.6 Mg C ha−1 year−1) showed 
large variability, related to on site- effects such as climate, soil type, 
grazing intensity and vegetation cover (Klumpp & Graux, 2020).

3.2 | Indirect effects of forage quality C 
sequestration

In productive systems, biomass production is associated with forage 
quality given there is sufficient N available. Grasslands adapted to low 
grazing levels are generally characterized by slow- growing plant spe-
cies and lower aboveground net primary productivity and quality, a mi-
crobial community dominated by fungi, as well as greater N retention 
and C storage (see also Eugène et al., 2014). In these latter pastures, 
grazing has long- term effects on litter quality and quantity, which are 
driven by changes in plant community composition and defoliation- 
tolerant species or unpalatable species (Wardle et al., 2004). Under 
medium to high grazing pressure, fast- growing, palatable species 

typical of nutrient- rich, managed grasslands show high above- ground 
productivity and quality (lower C: N), promoting higher C inputs to soil 
and rapid degradation by bacteria (Cotrufo et al., 2013).

3.3 | Effects of plant biodiversity on C sequestration

Grazing has the capacity to change the vegetation by modifying plant 
botanical composition (presence of legumes in particular; Bagchi 
& Ritchie, 2010; Zhou et al., 2017), which affects the supply of soil 
with aerial and root plant biomass. Those in turn can affect not only 
grassland productivity, but also soil organic matter decomposition. 
Then again, in agricultural settings, plant diversity is often associated 
with low biomass yield and low forage quality. Recent studies under-
line that increased plant diversity is an important production factor 
being independent of management intensity, as it enhances quality- 
adjusted yield (Schaub et al., 2020). Besides, it appears that grasslands 
with complex flora (with high species number) allow higher C storage 
(Hungate et al., 2017; Lange et al., 2015). This storage increases in fact 
with the specific richness of the sward and with the presence of leg-
umes (Cong et al., 2014; Rutledge et al., 2017). The latter is probably 
linked to a diversity of root systems (more or less dense and deep), as 
well as to an increase in the availability of N in the presence of urine, 
dung and legumes and thus, variation in primary productivity.

Most grasslands are subject to the marked seasonality of bio-
mass production. Annual cycles of temperature or rainfall impose 
cycles of plant growth and phenology that result in cycles of bio-
mass abundance and quality. For instance, factors that affect for-
age quality are leaf- to- stem ratio, phenological stage, diseases and 
pests. Forage digestibility declines with an increased stem propor-
tion; it declines as plants develop from the vegetative into the gen-
erative stage. For that reason, information on the nutritive value of 
forage quality by the use of phenological stages may help to choose 
suitable grazing/harvesting times and stocking rates. This, in turn, 
may help to achieve higher animal performance without damage to 
the vegetation and related decline in C sequestration potential, in-
crease in soil N2O and enteric CH4 (see Van den Pol et al., 2018). Poor 
forage quality is often related to lower intake and digestibility and 
thus increases the CH4 yield of ruminants (Archimède et al., 2011; 
Rossignol et al., 2014). Although effects on CH4 yield seem to be 
variable, CH4 intensity increases with reduced forage quality (Van 
Gastelen et al., 2019). Accordingly, there are a number of trade- offs 
that need to be considered when intensifying grazed systems (see 
Soussana & Lemaire, 2014, Figure 3): (a) an increase in productivity 
(and subsequent biomass removal) leads to a decline in the amounts 
of organic carbon returned to the soil, (b) maximization of forage 
quality (low C/N ratio) and the related increased digestibility (i.e., 
improved animal production) leads to a decline in mean residence 
time of soil organic C (i.e., increase of root and shoot litter decom-
posability), and (c) increasing net primary productivity through fer-
tilizer supply and legumes (biological N fixation) leads to an increase 
in N2O emissions (from fertilizer and urine) and CH4 emissions from 
enteric fermentation due to increased forage quality.
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4  | CONCLUSIONS

Feeding systems of ruminants based on high- quality forages can 
decrease the contribution of livestock and agriculture to GHG. 
The major determinant of forage quality is the stage of growth at 
harvest and species mixture. With the advanced stage of growth, 
the fibre contents increase resulting in higher methane produc-
tion. Forage legumes used in ruminant systems can decrease GHG 
emissions due to lower N fertilizer use and fertilizer production, 
enhancement of biodiversity and decreased parasitism in rumi-
nants. Therefore, they are environmentally and economically ben-
eficial for some systems, for which there is no overload of N supply. 
Moreover, with regard to manure, dietary measures reducing the 
amount of N excreted (e.g., better matching of dietary protein to 
animal requirements), shifting N excretion from urine to faeces 
(e.g., tannin inclusion at low levels) and reducing the amount of fer-
mentable organic matter excreted are recommended. Ruminants 
will retain their niches because of their ability to produce valuable 
human food from low- value feedstuffs. Employing these emerging 
strategies will allow improved productive efficiency of ruminants 
in both developing and developed countries. Net CH4 output is 
required to consider the enteric CH4 emissions and soil C seques-
tration potential of fields having served for feed (e.g., grasslands 
and croplands management). The next step could be a multicriteria 
assessment of GHG mitigations based on forages, such as life cycle 
analysis or process- based modelling, to consider the interactions 
and trade- off/synergy between GHG.
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