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Abstract: Fibrin clot structure and function are major determinants of thromboembolic 

diseases. The study aim was to determine the impact of epicatechin (a flavonoid with 

cardiovascular protective effects) on fibrin clot structure and permeability.  

Plasma samples from 12 healthy subjects were incubated with increasing concentrations of 

epicatechin. Turbidity of fibrin clot was analyzed by absorbance measurement at 405nm. The 

fibrin clot nanostructure was determined by scanning spectrometry (wavelength from 500 to 

800nm) and fibrin fiber size by electron microscopy. Permeability was analyzed to assess the 

fibrin clot functional properties. 

Epicatechin addition increased the maximum absorbance from 0.34 ± 0.066 (vehicle) to 0.35 

± 0.077 (P=0.1), 0.35 ± 0.072 (P<0.05) and 0.34 ± 0.065 (P=0.5) for 1, 10 and 100µM 

epicatechin, respectively. Epicatechin increased the fibrin clot fiber radius (nm) from 109.2 ± 

3.2 (vehicle) to 108.9 ± 4.3 (P=0.9), 110.0 ± 3.6 (P<0.05) and 109.5 ± 3.3 (P=0.4), and the 

distance between protofibrils (nm) from 22.2 ± 1.5 (vehicle) to 22.1 ± 2.3 (P=0.9), 22.6 ± 1.8 

(P<0.05) and 22.3 ± 1.8 (P=0.9) for 1, 10 and 100µM epicatechin respectively. Electron 

microscopy confirmed these changes. Fibrin clot permeability, expressed as Darcy’s 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0014299920309353
Manuscript_7490ddcb413a0637749b07d3c847d0c5

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0014299920309353
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0014299920309353


2 

 

constant (Ks, cm²), increased from 2.97 ± 1.17 (vehicle) to 3.36 ± 1.21 (P<0.05), 3.81 ± 1.41 

(P<0.01) and 3.38 ± 1.33 (P=0.9).  

Upon epicatechin addition, the fibrin clot structure became less dense and more permeable. 

 

Keywords: Cardiovascular disease; coagulation; epicatechin; fibrin clot; permeability; 

turbidity; 
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1. Introduction 

The hemostatic fibrin clot is formed after generation of the thrombin peak on the platelet 

surface following coagulation activation (Monroe and Hoffman, 2006). Upon clot formation 

initiation, fibrinogen is cleaved by thrombin into fibrinopeptide A and B to form fibrin 

monomers. These monomers assemble into half-staggered double-stranded oligomers to 

form protofibrils. This is followed by lateral aggregation within and between protofibrils, 

leading to fibrin fiber formation (Mihalko and Brown, 2020). Clot function and structure (e.g. 

thickness, porosity, density and resistance to lysis) are essential for its physiological role in 

bleeding control, fibrinolysis and wound healing. Fibrin clot properties are altered in various 

diseases, including venous and arterial thromboembolic disease (Undas and Ariëns, 2011). 

Recent data indicate that the precise characterization of the fibrin clot is of particular interest 

for patient management, prognosis, and to predict the occurrence of complications (Baker et 

al., 2019; Undas, 2020). Specifically, clots display a less permeable structure (Cieslik et al., 

2018) and higher density, and they seem to be resistant to lysis (Siudut et al., 2016; Undas 

et al., 2009). The fibrin clot quality can also be a risk factor for cardiovascular disease (Mills 

et al., 2002) with reduced clot permeability and fibrinolysis (Bridge et al., 2014), and can be a 

predictor of anticoagulation efficacy and adverse clinical outcome in patients with atrial 

fibrillation and acute coronary syndrome (Sumaya et al., 2018). 

Several reviews and meta-analyses highlighted the positive effect of a diet rich in flavonoids 

on cardiovascular  risk and mortality (Del Bo’ et al., 2019; Mozaffarian and Wu, 2018; 

Ottaviani et al., 2018). There is a growing body of evidence on the beneficial properties for 

cardiovascular health of flavan-3-ols, one of the major classes of dietary flavonoids. 

Epicatechin is one of the main representatives of this class, due to its wide distribution in a 

large variety of fruits and vegetables, such as tea and cocoa. Besides its anti-oxidant and 

anti-inflammatory activities (Natsume, 2018; Qu et al., 2020) that may affect fibrin clot 

(Undas et al., 2008), new evidence shows that epicatechin can also positively affect all 

hemostasis stages. Indeed, it has been reported that epicatechin decreases platelet 
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aggregation, has an anticoagulant effect, and displays pro-fibrinolytic activity. This suggests 

a promising role in the prevention of the thrombogenicity of atherosclerotic plaques (Abou-

Agag et al., 2001; Sinegre et al., 2019). Epicatechin might also inhibit the action of thrombin 

(Bijak et al., 2014; Mozzicafreddo et al., 2006) that with fibrinogen, is a key molecule in fibrin 

clot formation and structure. To the best of our knowledge, no study has assessed whether 

epicatechin can modulate fibrin clot structure and function. Thus, the aim of this study was to 

determine epicatechin effect on the fibrin clot structure evaluated by turbidity, electron 

microscopy and permeability assays. 

2. Materials and Methods  

2.1. Subjects 

Twelve healthy volunteers, 7 women and 5 men (mean age: 33 years [20-46]), were enrolled 

in 2018 to provide blood samples. Exclusion criteria were history of bleeding and 

thromboembolism, ongoing antiplatelet drug or anticoagulant therapy, and abnormal blood 

counts including thrombocytopenia <150 G/L and coagulation disturbances (fibrinogen <2.0 

g/L, prothrombin time >15.5 s, activated partial thromboplastin time >40 s). All experiments 

were performed in accordance with the French laws and approved by the ethics committee of 

the university hospital of Clermont-Ferrand (Comité de Protection des Personnes Sud-Est VI, 

ref. AU765). Informed consents were obtained from all human participants of this study 

2.2. Blood sampling and plasma preparation 

Blood was collected by venipuncture in 0.109 M citrate tubes (Beckton Dickinson, le Pont de 

Claix, France) after discarding the first few milliliters. Platelet-poor plasma (PPP) was 

prepared by double centrifugation (2500 g, 21 °C for 15 min) with an intermediate step of 

plasma decantation, according to the International Society on Thrombosis and Haemostasis 

(ISTH) guidelines (Subcommittee on Control of Anticoagulation of the SSC of the ISTH, 
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2011). PPP samples were stored, at -80 °C until testing (less than 3 month). Before the 

experiments, frozen plasma samples were thawed in a water bath at 37 °C for 5 min. 

A stock solution of epicatechin (12.5 mM in DMSO) was diluted with phosphate buffered 

saline to 0.1, 1 and 10 mM working solutions that were used to supplement the plasma 

samples to reach the target concentrations of 1, 10 and 100 µM with a constant 1/100 

dilution. An equivalent volume of vehicle was added to the baseline samples without 

epicatechin. Before each experiment, plasma samples were incubated with epicatechin at 37 

°C for 10 min. 

2.3. Turbidity assay 

Clot formation kinetics was monitored in 96-well plates with a flat bottom (Greiner Bio-One). 

As described by Pieters et al. (Pieters et al., 2018), plasma was diluted in buffer (final dilution 

3 : 10) and coagulation was initiated by adding thrombin and calcium at the final 

concentration of 0.5 NIH U/ml and 15 mM, respectively. After stirring, absorbance was 

measured at 37°C on a spectrophotometer (Spark, Tecan, Switzerland) at 405 nm every 10 s 

for 120 min. The main parameters were the lag time (from the start to when absorbance 

increased 0.015 from baseline), the slope calculated at the midpoint, and the maximum 

absorbance. All tests were performed in duplicate with a coefficient of variation <5%. 

2.4. Fibrin fiber nanostructure analysis 

The fibrin clot nanostructure was investigated by scanning spectrometry as described by 

Yeromonahos et al. (Yeromonahos et al., 2010). Briefly, fibrin clots were formed in 96-well 

plates with a flat bottom (Greiner Bio-One) from diluted plasma (1 : 6) to which thrombin and 

calcium were added at the final concentration of 0.5 NIH U/ml and 10 mM, respectively. After 

incubation at 37°C for 90 min, clots were scanned over wavelengths ranging from 500 to 800 

nm, every 1 nm (Spark). In parallel, in order to study the specific role of thrombin, the clot 

was also formed in the same way by replacing thrombin with reptilase (0.5 Batroxobine U/ml; 
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Stago, Aisnières, France). The primary endpoints included the average fiber radius, number 

of protofibrils in fibers, and distance between fibers. All tests were performed in triplicate with 

a coefficient of variation <5%. 

2.5. Electron microscopy 

The plasma clot structure was analyzed by electron microscopy. Clots were formed by 

adding thrombin and calcium at the final concentration of 0.7 NIH U/ml and 15 mM, 

respectively, in the presence of increasing final concentrations of epicatechin. Clots were 

washed with TBS for 2 h and fixed in 2% glutaraldehyde at 20°C for 2 h and gradually 

desiccated. Then, clots were sputter coated with 10 nm gold-palladium (JFC-1300, JEOL, 

Tokyo, Japan) and examined with an electron microscope (JSM-6060LV, JEOL). 

Experiments were performed in duplicate. 

2.6. Fibrin clot permeability 

Fibrin clot permeability was tested using a pressure-driven system, as described by Pieters 

et al. (Pieters et al., 2012). Briefly, fibrin clots were formed in a tube from 100 µl of plasma by 

addition of 10 µl of activation mixture containing thrombin and calcium at the final 

concentration of 1.0 NIH U/ml and 20 mM, respectively. After incubation at 37°C in a wet 

chamber for 2 h, tubes containing clots were connected to a reservoir containing Tris-HCL 

buffer (0.05 M Tris-HCL, 0.10 NaCl, pH 7.5). After an initial wash, the volume of buffer that 

passed through the clots, under constant pressure (4 cm H2O), was measured for 2 h. The 

permeability coefficient (Ks; cm2), which reflects the fibrin network in the clot and particularly 

the pore size, was determined using Darcy's law: Ks = Q x L x η / (t × A × Δp), where Q is the 

volume of buffer collected in time t, L is the fibrin clot length, η is the liquid viscosity, A is the 

cross-sectional area of the clot container, and Δp the pressure drop. All tests were performed 

in quadruplicate with a coefficient of variation <10%. 

2.7. Statistical analysis 
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Statistical analyses were performed with the Prism software, version 6 (GraphPad software, 

Inc., La Jolla, USA). Tests were two-sided, with a type I error set at α=0.05. Data were 

presented as mean ± standard deviation (S.D.). The statistical significance of differences 

between classes was determined with ANOVA or the Friedman test, followed by the 

appropriate multiple-comparison post-hoc, Tukey-Kramer or Dunn test. 

3. Results 

3.1. Epicatechin impact on turbidity assays 

The turbidity kinetic analysis by measuring absorbance over time after incubation or not with 

epicatechin (Fig. 1) indicated that the mean maximum absorbance at 405 nm increased from 

0.34 ± 0.066 for vehicle to 0.35 ± 0.077 (P = 0.10), 0.35 ± 0.072 (P < 0.05), and 0.34 ± 0.065 

(P = 0.5) for 1 µM, 10 µM and 100 µM epicatechin, respectively. Epicatechin did not have 

any effect on lag time (in s) [83.0 ± 36.7 for vehicle versus 85.1 ± 30.3 (P = 0.99), 75.0 ± 36.7 

(P = 0.77), 66.9 ± 34.8 (P = 0.33)] and on absorbance rate (s-1) [2.0 ± 1.1 for vehicle versus 

2.0 ±1.1 (P = 0.99), 2.0 ± 1.4 (P = 0.99) and 2.2 ± 1.2 (P = 0.62), for 1 µM, 10 µM and 100 

µM epicatechin, respectively].  

3.2. Epicatechin impact on fibrin fiber nanostructure 

Analysis of the fibrin fiber nanostructure thrombin-induced by absorbance measurement after 

incubation or not with epicatechin (Fig. 2) showed that the fibrin fiber radius (nm) [109.1 ± 3.2 

for vehicle versus 108.9 ± 4.3 (P = 0.99), 110.0 ± 3.6 (P < 0.05) and 109.5 ± 3.3 (P = 0.41)] 

and the distance between protofibrils (nm) [22.2 ± 1.5 for vehicle versus 22.1 ± 2.3 (P = 

0.99), 22.6 ± 1.8 (P < 0.05) and 22.3 ± 1.8 (P = 0.86)  for 1 µM, 10 µM and 100 µM 

epicatechin, respectively] were significantly increased only in samples incubated with 10 µM 

epicatechin. The protein mass concentration (Da.cm-3) was significantly decreased only after 

incubation with 10 µM epicatechin [3.0 ± 0.4 for vehicle versus 3.0 ± 0.7 (P = 0.89), 2.8 ± 0.4 
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(P < 0.05) and 2.9 ± 0.4 (P = 0.94) for 1 µM, 10 µM and 100 µM epicatechin, respectively], 

whereas the number of protofibrils was similar in all conditions (between 75 and 77). 

No impact of epicatechin on the structural parameters of the clot reptilase-induced was found 

whatever the concentration (Fig. 3). These results support an impact of epicatechin on the 

structure of the fibrin clot through its action on thrombin. 

The plasma clot structural analysis by electron microscopy after incubation or not with 

epicatechin (Fig. 4) showed that the fiber diameter (n=100 fibers/condition) was increased 

after incubation with 1 µM and 10 µM epicatechin: 81.7 ± 13.0 for vehicle versus 88.9 ± 10.9 

(P < 0.01), 95.5 ± 12.0 (P < 0.001) and 78.5 ± 12.9 (P = 0.37) for 1 µM, 10 µM and 100 µM 

epicatechin, respectively. 

3.3. Impact of epicatechin on fibrin clot permeability 

The pore size within fibrin clots was estimated by measuring permeability (Ks; cm2) after 

incubation or not with epicatechin (Fig. 5). Permeability was significantly increased after 

incubation with 1 µM and 10 µM epicatechin: 2.97 ± 1.17 for vehicle versus 3.36 ± 1.21 (P 

<0.05), 3.81 ± 1.41(P <0.01) and 3.38 ± 1.33 (P = 0.99) for 1 µM, 10 µM and 100 µM 

epicatechin, respectively. 

4. Discussion 

Cardiovascular diseases and venous thromboembolism are leading causes of death 

worldwide. There is growing evidence that the fibrin clot architecture is a major determinant 

of arterial and venous thromboembolic diseases and could represent an essential parameter 

in patient monitoring (Undas and Ariëns, 2011). The present study investigated epicatechin 

effect on fibrin clot structure and function. Epicatechin is a major flavonoid compound with 

extensively documented cardiovascular protective effects (Qu et al., 2020). Few previous 

studies examined the impact of other flavonoids (e.g. flavonols and flavones) on fibrin clot 

and reported an inhibitory effect on the polymer formation by turbidimetry and microscopy 
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analyses. Conversely, no information was available on epicatechin (Choi et al., 2015c, 

2015a, 2015b).  

Our turbidity data indicate that epicatechin increases the maximum absorbance, but does not 

affect the absorbance rate. The maximum absorbance value should reflect clot growth and 

partly the fibrin fiber diameter (Ząbczyk and Undas, 2017). However, its meaning is debated 

because of the many involved determinants and the different analytical conditions (Mihalko 

and Brown, 2020; Pieters et al., 2020). Nevertheless, our turbidity results are in agreement 

with our structural analysis of plasma clots that highlighted an increase in the fiber radius 

associated with higher distance between protofibrils upon incubation with epicatechin. Of 

note, the impact of epicatechin on the fibrin clot structure is comparable to the effect obtained 

by an anticoagulant therapy, although the effect size of epicatechin remains smaller 

(supplementary Table 1). Similarly, the electron microscopy analysis showed a progressive 

increase in fiber size after incubation with up to 10 μM epicatechin, and then a reduction with 

100 μM epicatechin. These results are in agreement with the previously reported 

profibrinolytic effect of epicatechin (Sinegre et al., 2019) that seems to hinder the 

thrombogenic clot formation with thin fibers and ultimately prevents the normal course of the 

fibrinolytic process (Collet et al., 2000). Finally, these structural data on the fibrin clot are 

consistent with the observed permeability characteristics where porosity increased after 

incubation with up to 10 μM epicatechin, whereas higher concentrations did not have any 

effect. These results corroborate the potential beneficial effects of epicatechin on clot 

sensitivity to lysis, and were obtained using different experimental methods without and with 

clot desiccation (electron microscopy) (Undas, 2020, 2016).  

Altogether, our results suggest that epicatechin at low (1µM) to moderate (10µM) 

concentrations positively modulates fibrin clot formation, while epicatechin appears to be 

ineffective at the highest concentration (100 µM). This bell-shaped response curve has 

already been described for flavonoids, arguing a possible desensitization at high 

concentrations (Claude et al., 2014). Our previous work showed that epicatechin decreases 
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thrombin generation (Sinegre et al., 2019), and this could constitute a preferential 

mechanism for the epicatechin-mediated formation of thicker fibrin fibers (Domingues et al., 

2016). This hypothesis is consistent with the absence of impact on nanostructure of 

reptilase-induced fibrin clot and the reported effects of drugs, particularly anticoagulants, that 

decrease thrombin generation (Undas, 2014; Undas and Zabczyk, 2018). Moreover, 

fibrinogen is also a major determinant of the clot and thrombotic disease (Ariëns, 2013), and 

its concentration, polymorphisms or mutations can alter the fibrin clot quality (Allan et al., 

2012; Lim et al., 2003). Fibrinogen post-translational modifications, notably oxidation to 

which fibrinogen is particularly susceptible, also may impact fibrin clot structure, permeability, 

and sensitivity to lysis (de Vries et al., 2020). Therefore, due its anti-inflammatory and 

antioxidant properties, epicatechin might also interfere with the fibrin clot characteristics 

(Undas et al., 2008). 

The choice to work on plasma of healthy subjects could induce a potential bias, therefore our 

results must be confirmed in patients with thromboembolic diseases. Moreover, Ottaviani et 

al. (Ottaviani et al., 2016) established epicatechin pharmacokinetic profile and described 

more than 20 different metabolites in plasma. These epicatechin-derived metabolites 

originate from the action of phase II and gut microbial enzymes. Some of these derivatives 

might be involved in mediating epicatechin beneficial properties on fibrin clot in vivo; 

however, as these molecules are not commercially available, they could not be tested in this 

study. Therefore, rather than a short in vitro exposure at high epicatechin concentrations, the 

effect of long-term in vivo exposure to physiological epicatechin concentrations including its 

metabolites deserves to be explored. 

In conclusion, our study demonstrated that epicatechin affects the fibrin clot structure making 

it more permeable, less dense, and consequently more sensitive to lysis. Due to the fibrin 

clot importance in cardiovascular diseases, as the thrombogenesis end point, an in vivo 

study needs to be carried out to confirm epicatechin beneficial role and to overcome the 

incapacity to test in vitro the plasma metabolites of epicatechin. 
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Figures legends 

 

Figure 1: Impact of epicatechin on turbidity parameters of fibrin clots.  

A. Lag time (s). B. Maximum absorbance at 405 nm. C. Rate of absorbance (s-1). NS, not 

significant, *P < 0.05 compared with vehicle. 

 

Figure 2: Impact of epicatechin on the nanostructure of a thrombin-induced fibrin clot. 

A. Fiber radius (nm). B. Distance between protofibrils (nm). C. Protofibril number. D. Protein 

mass concentration (Da.cm-3). NS, not significant, *P < 0.05 compared with vehicle. 

 

Figure 3: Impact of epicatechin on the nanostructure of a reptilase-induced fibrin clot.  

A. Fiber radius (nm). B. Distance between protofibrils (nm). C. Protofibril number. D. Protein 

mass concentration (Da.cm-3). NS, not significant. 

 

Figure 4: Impact of epicatechin on fiber size within the fibrin clot by electron microscopy.  

The clot structure is analyzed with an electron microscope x10 000. A. Vehicle. B. 1 µM 

Epicatechin. C. 10 µM Epicatechin. D. 100 µM Epicatechin. 

 

Figure 5: Impact of epicatechin on fibrin clot permeability.  

Pore size is expressed as Darcy’s constant (Ks). *P < 0.05, **P < 0.01 compared with 

vehicle. #P < 0.05 compared with 1 µM Epicatechin. 
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